Graph Theory 0366-3267

Noga Alon, Michael Krivelevich Fall Semester 2011

Homework 2
Due: Dec. 21, 2011

1. Prove that in a connected graph G every two paths of maximum length share a vertex.
2. Let Q_{k} be the k-dimensional cube defined as follows: $V\left(Q_{k}\right)=\{0,1\}^{k}$, $\left(\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{k}\right)\right) \in E\left(Q_{k}\right)$ iff \mathbf{x} and \mathbf{y} differ in exactly one coordinate. Prove: $\kappa\left(Q_{k}\right)=\kappa^{\prime}\left(Q_{k}\right)=k$.
3. Let $k \geq 2$. Prove that every k-connected graph on at least $2 k$ vertices contains a cycle of length at least $2 k$.
4. Let d be a positive integer. Prove that every $2 d$-regular connected graph G with an even number of edges contains a spanning d-regular subgraph.
5. Let G be the graph whose vertices are the $4 n$ squares of the 4 -by- n "chessboard", where two vertices are adjacent if and only if a knight can jump between the corresponding squares. (Formally, the set of vertices is: $\{(i, j): 1 \leq i \leq 4,1 \leq j \leq n\}$, and $\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right)$ is an edge in G if and only if either $\left|i-i^{\prime}\right|=1$ and $\left|j-j^{\prime}\right|=2$, or $\left|i-i^{\prime}\right|=2$ and $\left|j-j^{\prime}\right|=1$.) Does G contain a Hamilton cycle? Prove your claim!
6. Let $t\left(n, H_{n}\right)$ be the maximum number of edges in a graph G on n vertices, not containing a Hamilton cycle H_{n}. Prove: $t\left(n, H_{n}\right)=\binom{n-1}{2}+1$. (You need to prove both lower and upper bounds for $t\left(n, H_{n}\right)$.)
7. Let G be a graph of connectivity $\kappa(G)$ with independence number $\alpha(G)$. Assume $\kappa(G) \geq$ $\alpha(G)-1$. Prove that G contains a Hamilton path.
