Graph Theory 0366-3267
 Noga Alon, Michael Krivelevich
 Fall Semester 2011

Homework 1
Due: Nov. 30, 2011

1. Prove that every simple graph with $n \geq 7$ vertices and at least $5 n-14$ edges contains a subgraph with minimum degree at least 6 .
2. Prove that the number of graphs on n labeled vertices with all degrees even is $2\binom{n-1}{2}$.
3. Prove that every graph $G=(V, E)$ with $|E|=m$ edges has a bipartition $V=V_{1} \cup V_{2}$ such that the number of edges of G crossing between V_{1} and V_{2} is at least $m / 2$.
4. (a) Let G be a graph with all degrees at least three. Prove that G contains a cycle with a chord.
(b) Let G be a graph on $n \geq 4$ vertices with $2 n-3$ edges. Prove that G contains a cycle with a chord.
5. Let $0<d_{1} \leq d_{2} \leq \ldots \leq d_{n}$ be integers. Prove that there exists a tree with degrees d_{1}, \ldots, d_{n} if and only if

$$
d_{1}+\ldots+d_{n}=2 n-2 .
$$

6. Prove that every graph G with minimal degree d contains every tree on $d+1$ vertices as a subgraph.
7. Let X be an n-element set and let A_{1}, \ldots, A_{n} be distinct subsets of X. Prove that there exists an element $x \in X$ such that the subsets $A_{1} \cup\{x\}, \ldots, A_{n} \cup\{x\}$ are distinct as well. (Hint: Define a graph G with vertex set $[n]$, where i, j are connected by an edge if the symmetric difference between A_{i} and A_{j} is a single element y; use y to label this edge. Prove that there is a forest in G containing exactly one edge with each label used. Use this to obtain the desired x.)
8. Compute the number of spanning trees in the complete bipartite graph $K_{m, n}$.
