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Abstract. The Directed Maximum Leaf Out-Branching problem
is to find an out-branching (i.e. a rooted oriented spanning tree) in a
given digraph with the maximum number of leaves. In this paper, we
improve known parameterized algorithms and combinatorial bounds on
the number of leaves in out-branchings. We show that

– every strongly connected digraph D of order n with minimum in-
degree at least 3 has an out-branching with at least (n/4)1/3 − 1
leaves;

– if a strongly connected digraph D does not contain an out-branching
with k leaves, then the pathwidth of its underlying graph is O(k log k);

– it can be decided in time 2O(k log2 k) · nO(1) whether a strongly con-
nected digraph on n vertices has an out-branching with at least k
leaves.

All improvements use properties of extremal structures obtained after
applying local search and properties of some out-branching decomposi-
tions.

1 Introduction

Given a digraph D, a subdigraph T of D is an out-tree if T is an oriented
tree with only one vertex s of in-degree zero (called the root) and if T is a
spanning out-tree, i.e. V (T ) = V (D), then T is called an out-branching of D.
The vertices of T of out-degree zero are called leaves. The Directed Maximum
Leaf Out-Branching (DMLOB) problem is to find an out-branching in a
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given digraph with the maximum number of leaves. This problem is a natural
generalization of the well studied Maximum Leaf Spanning Tree problem
on connected undirected graphs [5, 7, 10–12, 14, 15, 20, 22]. Unlike its undirected
counterpart which has attracted a lot of attention in all algorithmic paradigms
like approximation algorithms [14, 20, 22], parameterized algorithms [5, 10, 12],
exact exponential time algorithms [11] and also combinatorial studies [7, 15, 16,
19], the Directed Maximum Leaf Out-Branching problem has largely been
neglected until recently. Apart from [2] mentioned below, the only other paper is
the very recent paper [9] that describes an O(

√
opt)-approximation algorithms

for DMLOB.
In [2] we initiated algorithmic and combinatorial study of DMLOB and ob-

tained, as the main result of the paper, the first fixed parameter tractable al-
gorithms for the problem on strongly connected digraphs and acyclic digraphs
based on various combinatorial lemmas. In this paper we continue our investiga-
tion of DMLOB and obtain several improved parameterized algorithms for the
problem as well as combinatorial results regarding the number of leaves possi-
ble in an out-branching of a digraph based on new approaches and ideas which
are interesting on their own and could be useful for solving other problems on
digraphs.

In parameterized algorithms, for decision problems with input size n, and a
parameter k, the goal is to design an algorithm with runtime f(k)nO(1), where
f is a function of k alone. (For DMLOB such a parameter is the number of
leaves in the out-tree.) Problems having such an algorithm are said to be fixed
parameter tractable (FPT). The book by Downey and Fellows [8] provides an
introduction to the topic of parameterized complexity. For recent developments
see the books by Flum and Grohe [13] and by Niedermeier [21].

The parameterized version of DMLOB is defined as follows: Given a digraph
D and a positive integral parameter k, does there exist an out-branching with at
least k leaves? We denote the parameterized versions of DMLOB by k-DMLOB.
If in the above definition we do not insist on an out-branching and ask whether
there exists an out-tree with at least k leaves, we get parameterized Directed
Maximum Leaf Out-Tree problem (denoted k-DMLOT).

In this paper we obtain the following new algorithmic and combinatorial re-
sults on k-DMLOB for strongly connected digraphs and acyclic digraphs. Before
we go any further we remark that the algorithmic results presented here also
hold for all digraphs if we consider k-DMLOT rather than k-DMLOB. However,
we mainly restrict ourselves to k-DMLOB for clarity and the harder challenges
it poses, and we briefly consider k-DMLOT only in the last section.

Faster Algorithm. We design a new algorithm which decides in time 2O(k log2 k)·
nO(1) whether a strongly connected digraph on n vertices has an out-branching
with at least k leaves (Corollary 2). On acyclic graphs we can solve the problem
even faster, in time 2O(k log k) ·nO(1) (Corollary 1). These are significant improve-
ments over running time 2O(k2 log k) · nO(1) for both classes of digraphs obtained
in [2]. The improvements do not result from a careful tuning of the algorithm
from [2] but from several novel ideas. In particular, we use local search and
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specific tree partition arguments. While local search is a widely used technique
in heuristics and approximation algorithms (see, e.g., [1]) we are not aware of
its applications in parameterized complexity. We find it to be of independent
interest.
Combinatorial bounds. Kleitman and West [16] and Linial and Sturtevant [19]
showed that every connected undirected graph G on n vertices with minimum
degree at least 3 has a spanning tree with at least n/4+2 leaves. In [2] we proved
an analogue of this result for directed graphs: every strongly connected digraph
D of order n with minimum in-degree at least 3 has an out-branching with at
least (n/2)1/5 − 1 leaves. In this paper (Theorem 4), we improve this bound to
(n/4)1/3− 1. We do not know whether the last bound is tight, however we show
that there are strongly connected digraphs with minimum in-degree 3 in which
every out-branching has at most O(

√
n) leaves (Theorem 6). Another parallel

between the worlds of directed and undirected graphs established in this paper
(and used intensively in the algorithmic part) is the relation between the number
of leaves in a maximum leaf out-branching in a digraph D and the pathwidth
of its underlying graph. It is easy to check (see, e.g., [4]), that every connected
undirected graph of pathwidth at least k, contains a spanning tree with at least
k leaves. We show (Theorem 8) that if a strongly connected digraph D does not
contain an out-branching with k leaves, then the pathwidth of its underlying
graph is O(k log k).

2 Preliminaries

Let D be a digraph. By V (D) and A(D) we represent the vertex set and arc
set of D, respectively. An oriented graph is a digraph with no directed 2-cycle.
Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the digraph induced
on V ′. The underlying undirected graph UN(D) of D is obtained from D by
omitting all orientations of arcs and by deleting one edge from each resulting
pair of parallel edges. The connectivity components of D are the subdigraphs of
D induced by the vertices of components of UN(D). A digraph D is strongly
connected if, for every pair x, y of vertices there are directed paths from x to
y and from y to x. A maximal strongly connected subdigraph of D is called a
strong component. A vertex u of D is an in-neighbor (out-neighbor) of a vertex v
if uv ∈ A(D) (vu ∈ A(D), respectively). The in-degree d−(v) (out-degree d+(v))
of a vertex v is the number of its in-neighbors (out-neighbors).

We denote by `(D) the maximum number of leaves in an out-tree of a digraph
D and by `s(D) we denote the maximum possible number of leaves in an out-
branching of a digraph D. When D has no out-branching, we write `s(D) = 0.
The following simple result gives necessary and sufficient conditions for a digraph
to have an out-branching. This assertion allows us to check whether `s(D) > 0
in time O(|V (D)|+ |A(D)|).

Proposition 1 ([3]). A digraph D has an out-branching if and only if D has a
unique strong component with no incoming arcs.
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Let P = u1u2 . . . uq be a directed path in a digraph D. An arc uiuj of D is a
forward (backward) arc for P if i ≤ j − 2 (j < i, respectively). Every backward
arc of the type vi+1vi is called double.

For a natural number n, [n] denotes the set {1, 2, . . . , n}.
A tree decomposition of an (undirected) graph G is a pair (X, U) where U is

a tree whose vertices we will call nodes and X = ({Xi | i ∈ V (U)}) is a collection
of subsets of V (G) such that

1.
⋃

i∈V (U) Xi = V (G),
2. for each edge {v, w} ∈ E(G), there is an i ∈ V (U) such that v, w ∈ Xi, and
3. for each v ∈ V (G) the set of nodes {i | v ∈ Xi} forms a subtree of U .

The width of a tree decomposition ({Xi | i ∈ V (U)}, U) equals maxi∈V (U){|Xi|−
1}. The treewidth of a graph G is the minimum width over all tree decompositions
of G.

If in the definitions of a tree decomposition and treewidth we restrict U to
be a tree with all vertices of degree at most 2 (i.e., a path) then we have the
definitions of path decomposition and pathwidth. We use the notation tw(G)
and pw(G) to denote the treewidth and the pathwidth of a graph G.

We also need an equivalent definition of pathwidth in terms of vertex sepa-
rators with respect to a linear ordering of the vertices. Let G be a graph and let
σ = (v1, v2, . . . , vn) be an ordering of V (G). For j ∈ [n] put Vj = {vi : i ∈ [j]}
and denote by ∂Vj all vertices of Vj that have neighbors in V \ Vj . Setting
vs(G, σ) = maxi∈[n] |∂Vi|, we define the vertex separation of G as

vs(G) = min{vs(G, σ) : σ is an ordering of V (G)}.

The following assertion is well-known. It follows directly from the results of
Kirousis and Papadimitriou [18] on interval width of a graph, see also [17].

Proposition 2 ([17, 18]). For any graph G, vs(G) = pw(G).

3 Locally Optimal Out-Trees

Our improved parameterized algorithms are based on finding locally optimal
out-branchings. Given a digraph, D and an out-branching T , we call a vertex
leaf, link and branch if its out-degree in T is 0, 1 and ≥ 2 respectively. Let S+

≥2(T )
be the set of branch vertices, S+

1 (T ) the set of link vertices and L(T ) the set of
leaves in the tree T . Let P2(T ) be the set of maximal paths consisting of link
vertices. By p(v) we denote the parent of a vertex v in T ; p(v) is the unique
in-neighbor of v. We call a pair of vertices u and v siblings if they do not belong
to the same path from the root r in T . We start with the following well known
and easy to observe facts.

Fact 1 |S+
≥2(T )| ≤ |L(T )| − 1.

Fact 2 |P2(T )| ≤ 2|L(T )| − 1.
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Now we define the notion of local exchange which is intensively used in our
proofs.

Definition 3 `-Arc Exchange (`-AE) optimal out-branching: An out-
branching T of a directed graph D with k leaves is `-AE optimal if for all arc
subsets F ⊆ A(T ) and X ⊆ A(D) − A(T ) of size `, (A(T ) \ F ) ∪ X is either
not an out-branching, or an out-branching with ≤ k leaves. In other words, T
is `-AE optimal if it can’t be turned into an out-branching with more leaves by
exchanging ` arcs.

Let us remark, that for every fixed `, an `-AE optimal out-branching can be
obtained in polynomial time. In our proofs we use only 1-AE optimal out-
branchings. We need the following simple properties of 1-AE optimal out-branchings.

Lemma 1. Let T be an 1-AE optimal out-branching rooted at r in a digraph D.
Then the following holds:

(a) For every pair of siblings u, v ∈ V (T ) \ L with d+
T (p(v)) = 1, there is no arc

e = (u, v) ∈ A(D) \A(T );
(b) For every pair of vertices u, v /∈ L, d+

T (p(v)) = 1, which are on the same
path from the root with dist(r, u) < dist(r, v) there is no arc e = (u, v) ∈
A(D) \A(T ) (here dist(r, u) is the distance to u in T from the root r);

(c) There is no arc (v, r), v /∈ L such that the directed cycle formed by the
(r, v)-path and the arc (v, r) contains a vertex x such that d+

T (p(x)) = 1.

4 Combinatorial Bounds

We start with a lemma that allows us to obtain lower bounds on `s(D).

Lemma 2. Let D be a oriented graph of order n in which every vertex is of
in-degree 2 and let D have an out-branching. If D has no out-tree with k leaves,
then n ≤ 4k3.

Proof. Let us assume that D has no out-tree with k leaves. Consider an out-
branching T of D with p < k leaves which is 1-AE optimal. Let r be the root of
T .

We will bound the number n of vertices in T as follows. Every vertex of T is
either a leaf, or a branch vertex, or a link vertex. By Facts 1 and 2 we already
have bounds on the number of leaf and branch vertices as well as the number
of maximal paths consisting of link vertices. So to get an upper bound on n in
terms of k, it suffices to bound the length of each maximal path consisting of
link vertices. Let us consider such a path P and let x, y be the first and last
vertices of P , respectively.

The vertices of V (T ) \ V (P ) can be partitioned into four classes as follows:

(a) ancestor vertices: the vertices which appear before x on the (r, x)-path of T ;
(b) descendant vertices : the vertices appearing after the vertices of P on paths

of T starting at r and passing through y;
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(c) sink vertices: the vertices which are leaves but not descendant vertices;

(d) special vertices: none-of-the-above vertices.

Let P ′ = P −x, let z be the out-neighbor of y on T and let Tz be the subtree
of T rooted at z. By Lemma 1, there are no arcs from special or ancestor vertices
to the path P ′. Let uv be an arc of A(D) \ A(P ′) such that v ∈ V (P ′). There
are two possibilities for u: (i) u 6∈ V (P ′), (ii) u ∈ V (P ′) and uv is backward for
P ′ (there are no forward arcs for P ′ since T is 1-AE optimal). Note that every
vertex of type (i) is either a descendant vertex or a sink. Observe also that the
backward arcs for P ′ form a vertex-disjoint collection of out-trees with roots at
vertices that are not terminal vertices of backward arcs for P ′. These roots are
terminal vertices of arcs in which first vertices are descendant vertices or sinks.

We denote by {u1, u2, . . . , us} and {v1, v2, . . . , vt} the sets of vertices on P ′

which have in-neighbors that are descendant vertices and sinks, respectively. Let
the out-tree formed by backward arcs for P ′ rooted at w ∈ {u1, . . . , us, v1, . . . , vt}
be denoted by T (w) and let l(w) denote the number of leaves in T (w). Observe
that the following is an out-tree rooted at z:

Tz ∪ {(in(u1), u1), . . . , (in(us), us)} ∪
s⋃

i=1

T (ui),

where {in(u1), . . . , in(us)} are the in-neighbors of {u1, . . . , us} on Tz. This out-
tree has at least

∑s
i=1 l(ui) leaves and, thus,

∑s
i=1 l(ui) ≤ k − 1. Let us denote

the subtree of T rooted at x by Tx and let {in(v1), . . . , in(vt)} be the in-neighbors
of {v1, . . . , vt} on T − V (Tx). Then we have following out-tree:

(T − V (Tx)) ∪ {(in(v1), v1), . . . , (in(vt), vt)} ∪
t⋃

i=1

T (vi)

with at least
∑t

i=1 l(vi) leaves. Thus,
∑t

i=1 l(vi) ≤ k − 1.

Consider a path R = v0v1 . . . vr formed by backward arcs. Observe that the
arcs {vivi+1 : 0 ≤ i ≤ r − 1} ∪ {vjv

+
j : 1 ≤ j ≤ r} form an out-tree with

r leaves, where v+
j is the out-neighbor of vj on P. Thus, there is no path of

backward arcs of length more than k− 1. Every out-tree T (w), w ∈ {u1, . . . , us}
has l(w) leaves and, thus, its arcs can be decomposed into l(w) paths, each
of length at most k − 1. Now we can bound the number of arcs in all the trees
T (w), w ∈ {u1, . . . , us}, as follows:

∑s
i=1 l(ui)(k−1) ≤ (k−1)2. We can similarly

bound the number of arcs in all the trees T (w), w ∈ {v1, . . . , vs} by (k − 1)2.
Recall that the vertices of P ′ can be either terminal vertices of backward arcs
for P ′ or vertices in {u1, . . . , us, v1, . . . , vt}. Observe that s + t ≤ 2(k − 1) since∑s

i=1 l(ui) ≤ k − 1 and
∑t

i=1 l(vi) ≤ k − 1.
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Thus, the number of vertices in P is bounded from above by 1 + 2(k − 1) +
2(k − 1)2. Therefore,

n = |L(T )|+ |S+
≥2(T )|+ |S+

1 (T )|
= |L(T )|+ |S+

≥2(T )|+
∑

P∈P2(T )

|V (P )|

≤ (k − 1) + (k − 2) + (2k − 3)(2k2 − 2k + 1)
< 4k3.

Thus, we conclude that n ≤ 4k3. ut
Theorem 4. Let D be a strongly connected digraph with n vertices.

(a) If D is an oriented graph with minimum in-degree at least 2, then `s(D) ≥
(n/4)1/3 − 1.

(b) If D is a digraph with minimum in-degree at least 3, then `s(D) ≥ (n/4)1/3−
1.

Proof. Since D is strongly connected, we have `(D) = `s(D) > 0. Let T be an
1-AE optimal out-branching of D with maximum number of leaves. (a) Delete
some arcs from A(D) \ A(T ), if needed, such that the in-degree of each vertex
of D becomes 2. Now the inequality `s(D) ≥ (n/4)1/3 − 1 follows from Lemma
2 and the fact that `(D) = `s(D).

(b) Let P be the path formed in the proof of Lemma 2. (Note that A(P ) ⊆
A(T ).) Delete every double arc of P , in case there are any, and delete some more
arcs from A(D) \A(T ), if needed, to ensure that the in-degree of each vertex of
D becomes 2. It is not difficult to see that the proof of Lemma 2 remains valid
for the new digraph D. Now the inequality `s(D) ≥ (n/4)1/3 − 1 follows from
Lemma 2 and the fact that `(D) = `s(D). ut
Remark 5 It is easy to see that Theorem 4 holds also for acyclic digraphs D
with `s(D) > 0.

While we do not know whether the bounds of Theorem 4 are tight, we can
show that no linear bounds are possible. The following result is formulated for
Part (b) of Theorem 4, but a similar result holds for Part (a) as well.

Theorem 6. For each t ≥ 6 there is a strongly connected digraph Ht of order
n = t2 + 1 with minimum in-degree 3 such that 0 < `s(Ht) = O(t).

Proof. Let V (Ht) = {r} ∪ {ui
1, u

i
2, . . . , u

i
t | i ∈ [t]} and

A(Ht) =
{
ui

ju
i
j+1, u

i
j+1u

i
j | i ∈ [t], j ∈ {0, 1, . . . , t− 3}}

⋃ {
ui

ju
i
j−2 | i ∈ [t], j ∈ {3, 4, . . . , t− 2}}

⋃ {
ui

ju
i
q | i ∈ [t], t− 3 ≤ j 6= q ≤ t

}
,

where ui
0 = r for every i ∈ [t]. It is easy to check that 0 < `s(Ht) = O(t). ut
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5 Decomposition Algorithms

By Proposition 1, an acyclic digraph D has an out-branching if and only if D
possesses a single vertex of in-degree zero.

Theorem 7. Let D be an acyclic digraph with a single vertex of in-degree zero.
Then either `s(D) ≥ k or the underlying undirected graph of D is of pathwidth
at most 4k and we can obtain this path decomposition in polynomial time.

Proof. Assume that `s(D) ≤ k − 1. Consider a 1-AE optimal out-branching T
of D. Notice that |L(T )| ≤ k− 1. Now remove all the leaves and branch vertices
from the tree T . The remaining vertices form maximal directed paths consisting
of link vertices. Delete the first vertices of all paths. As a result we obtain a
collection Q of directed paths. Let H = ∪P∈QP . We will show that every arc uv
with u, v ∈ V (H) is in H.

Let P ′ ∈ Q. As in the proof of Lemma 2, we see that there are no forward
arcs for P ′. Since D is acyclic, there are no backward arcs for P ′. Suppose uv is
an arc of D such that u ∈ R′ and v ∈ P ′, where R′ and P ′ are distinct paths from
Q. As in the proof of Lemma 2, we see that u is either a sink or a descendent
vertex for P ′ in T . Since R′ contains no sinks of T , u is a descendent vertex,
which is impossible as D is acyclic. Thus, we have proved that pw(UN(H)) = 1.

Consider a path decomposition of H of width 1. We can obtain a path de-
composition of UN(D) by adding all the vertices of L(T )∪S+

≥2(T )∪F (T ), where
F (T ) is the set of first vertices of maximal directed paths consisting of link ver-
tices of T , to each of the bags of a path decomposition of H of width 1. Observe
that the pathwidth of this decomposition is bounded from above by

|L(T )|+ |S+
≥2(T )|+ |F (T )|+ 1 ≤ (k − 1) + (k − 2) + (2k − 3) + 1 ≤ 4k − 5.

The bounds on the various sets in the inequality above follows from Facts 1 and
2. This proves the theorem. ut

Corollary 1. For acyclic digraphs, the problem k-DMLOB can solved in time
2O(k log k) · nO(1).

Proof. The proof of Theorem 7 can be easily turned into a polynomial time
algorithm to either build an out-branching of D with at least k leaves or to show
that pw(UN(D)) ≤ 4k and provide the corresponding path decomposition. A
simple dynamic programming over the path decomposition gives us an algorithm
of running time 2O(k log k) · nO(1). ut

The following simple lemma is well known, see, e.g., [6].

Lemma 3. Let T = (V,E) be an undirected tree and let w : V → R+∪{0} be a
weight function on its vertices. There exists a vertex v ∈ T such that the weight
of every subtree T ′ of T − v is at most w(T )/2, where w(T ) =

∑
v∈V w(v).



Better Algorithms and Bounds for Directed Maximum Leaf Problems 9

Let D be a strongly connected digraph with `s(D) = λ and let T be an out-
branching of D with λ leaves. Consider the following decomposition of T (called
a β-decomposition) which will be useful in the proof of Theorem 8.

Assign weight 1 to all leaves of T and weight 0 to all non-leaves of T . By
Lemma 3, T has a vertex v such that each component of T − v has at most
λ/2 + 1 leaves (if v is not the root and its in-neighbor v− in T is a link vertex,
then v− becomes a new leaf). Let T1, T2, . . . , Ts be the components of T − v
and let l1, l2, . . . , ls be the numbers of leaves in the components. Notice that
λ ≤ ∑s

i=1 li ≤ λ + 1 (we may get a new leaf). We may assume that ls ≤ ls−1 ≤
· · · ≤ l1 ≤ λ/2 + 1. Let j be the first index such that

∑j
i=1 li ≥ λ

2 + 1. Consider
two cases: (a) lj ≤ (λ + 2)/4 and (b) lj > (λ + 2)/4. In Case (a), we have

λ + 2
2

≤
j∑

i=1

li ≤ 3(λ + 2)
4

and
λ− 6

4
≤

s∑

i=j+1

li ≤ λ

2
.

In Case (b), we have j = 2 and

λ + 2
4

≤ l1 ≤ λ + 2
2

and
λ− 2

2
≤

s∑

i=2

li ≤ 3λ + 2
4

.

Let p = j in Case (a) and p = 1 in Case (b). Add to D and T a copy v′ of
v (with the same in- and out-neighbors). Then the number of leaves in each of
the out-trees

T ′ = T [{v} ∪ (∪p
i=1V (Ti))] and T ′′ = T [{v′} ∪ (∪s

i=p+1V (Ti))]

is between λ(1+o(1))/4 and 3λ(1+o(1))/4. Observe that the vertices of T ′ have
at most λ + 1 out-neighbors in T ′′ and the vertices of T ′′ have at most λ + 1
out-neighbors in T ′ (we add 1 to λ due to the fact that v ‘belongs’ to both T ′

and T ′′).
Similarly to deriving T ′ and T ′′ from T , we can obtain two out-trees from

T ′ and two out-trees from T ′′ in which the numbers of leaves are approximately
between a quarter and three quarters of the number of leaves in T ′ and T ′′,
respectively. Observe that after O(log λ) ‘dividing’ steps, we will end up with
O(λ) out-trees with just one leaf, i.e., directed paths. These paths contain O(λ)
copies of vertices of D (such as v′ above). After deleting the copies, we obtain a
collection of O(λ) disjoint directed paths covering V (D).

Theorem 8. Let D be a strongly connected digraph. Then either `s(D) ≥ k or
the underlying undirected graph of D is of pathwidth O(k log k).

Proof. We may assume that `s(D) < k. Let T be be a 1-AE optimal out-
branching. Consider a β-decomposition of T . The decomposition process can
be viewed as a tree T rooted in a node (associated with) T . The children of T in
T are nodes (associated with) T ′ and T ′′; the leaves of T are the directed paths
of the decomposition. The first layer of T is the node T , the second layer are
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T ′ and T ′′, the third layer are the children of T ′ and T ′′, etc. In what follows,
we do not distinguish between a node Q of T and the tree associated with the
node. Assume that T has t layers. Notice that the last layer consists of (some)
leaves of T and that t = O(log k), which was proved above (k ≤ λ− 1).

Let Q be a node of T at layer j. We will prove that

pw(UN(D[V (Q)])) < 2(t− j + 2.5)k (1)

Since t = O(log k), (1) for j = 1 implies that the underlying undirected graph
of D is of pathwidth O(k log k).

We first prove (1) for j = t when Q is a path from the decomposition. Let
W = (L(T ) ∪ S+

≥2(T ) ∪ F (T )) ∩ V (Q), where F (T ) is the set of first vertices of
maximal paths of T consisting of link vertices. As in the proof of Theorem 7, it
follows from Facts 1 and 2 that |W | < 4k. Obtain a digraph R by deleting from
D[V (Q)] all arcs in which at least one end-vertex is in W and which are not arcs
of Q. As in the proof of Theorem 7, it follows from Lemma 1 and 1-AE opti-
mality of T that there are no forward arcs for Q in R. Let Q = v1v2 . . . vq. For
every j ∈ [q], let Vj = {vi : i ∈ [j]}. If for some j the set Vj contained k vertices,
say {v′1, v′2, · · · , v′k}, having in-neighbors in the set {vj+1, vj+2, . . . , vq}, then D
would contain an out-tree with k leaves formed by the path vj+1vj+2 . . . vq to-
gether with a backward arc terminating at v′i from a vertex on the path for each
1 ≤ i ≤ k, a contradiction. Thus vs(UN(D2[P ])) ≤ k. By Proposition 2, the
pathwidth of UN(R) is at most k. Let (X1, X2, . . . , Xs) be a path decomposition
of UN(R) of width at most k. Then (X1 ∪ W,X2 ∪ W, . . . , Xs ∪ W ) is a path
decomposition of UN(D[V (Q)]) of width less than k + 4k. Thus,

pw(UN(D[V (Q)])) < 5k (2)

Now assume that we have proved (1) for j = i and show it for j = i − 1.
Let Q be a node of layer i − 1. If Q is a leaf of T , we are done by (2). So, we
may assume that Q has children Q′ and Q′′ which are nodes of layer i. In the
β-decomposition of T given before this theorem, we saw that the vertices of T ′

have at most λ+1 out-neighbors in T ′′ and the vertices of T ′′ have at most λ+1
out-neighbors in T ′. Similarly, we can see that (in the β-decomposition of this
proof) the vertices of Q′ have at most k out-neighbors in Q′′ and the vertices
of Q′′ have at most k out-neighbors in Q′ (since k ≤ λ − 1). Let Y denote the
set of the above-mentioned out-neighbors on Q′ and Q′′; |Y | ≤ 2k. Delete from
D[V (Q′)∪V (Q′′)] all arcs in which at least one end-vertex is in Y and which do
not belong to Q′ ∪Q′′

Let G denote the obtained digraph. Observe that G is disconnected and
G[V (Q′)] and G[V (Q′′)] are components of G. Thus, pw(UN(G)) ≤ b, where

b = max{pw(UN(G[V (Q′)])), pw(UN(G[V (Q′′)]))} < 2(t− i + 4.5)k (3)

Let (Z1, Z2, . . . , Zr) be a path decomposition of G of width at most b. Then
(Z1 ∪ Y, Z2 ∪ Y, . . . , Zr ∪ Y ) is a path decomposition of UN(D[V (Q′)∪ V (Q′′)])
of width at most b + 2k < 2(t− i + 2.5)k. ut
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Similar to the proof of Corollary 1, we obtain the following:

Corollary 2. For a strongly connected digraph D, the problem k-DMLOB can
be solved in time 2O(k log2 k) · nO(1).

6 Discussion and Open Problems

In this paper, we continued the algorithmic and combinatorial investigation of
the Directed Maximum Leaf Out-Branching problem. In particular, we
showed that for every strongly connected digraph D of order n and with min-
imum in-degree at least 3, `s(D) = Ω(n1/3). The most interesting open com-
binatorial question here is whether this bound is tight. It would be even more
interesting to find the maximum number r such that `s(D) = Ω(nr) for every
strongly connected digraph D of order n and with minimum in-degree at least
3. It follows from our results that 1

3 ≤ r ≤ 1
2 .

We also provided an algorithm of time complexity 2O(k log2 k) · nO(1) which
solves k-DMLOB for a strongly connected digraph D. The algorithm is based
on a combinatorial bound on the pathwidth of the underlying undirected graph
of D. Unfortunately, this technique does not work on all digraphs. It remains an
algorithmic challenge to establish the parameterized complexity of k-DMLOB
on all digraphs.

Notice that `(D) ≥ `s(D) for each digraph D. Let L be the family of digraphs
D for which either `s(D) = 0 or `s(D) = `(D). The following assertion shows that
L includes a large number digraphs including all strongly connected digraphs and
acyclic digraphs (and, also, the well-studied classes of semicomplete multipartite
digraphs and quasi-transitive digraphs, see [3] for the definitions).

Proposition 3 ([2]). Suppose that a digraph D satisfies the following property:
for every pair R and Q of distinct strong components of D, if there is an arc
from R to Q then each vertex of Q has an in-neighbor in R. Then D ∈ L.

Let B be the family of digraphs that contain out-branchings. The results
of this paper proved for strongly connected digraphs can be extended to the
class L∩B of digraphs since in the proofs we use only the following property of
strongly connected digraphs D: `s(D) = `(D) > 0.

For a digraph D and a vertex v, let Dv denote the subdigraph of D induced
by all vertices reachable from v. Using the 2O(k log2 k) · nO(1) algorithm for k-
DMLOB on digraphs in L∩B and the facts that (i) Dv ∈ L∩B for each digraph
D and vertex v and (ii) `(D) = max{`s(Dv)|v ∈ V (D)} (for details, see [2]), we
can obtain an 2O(k log2 k) · nO(1) algorithm for k-DMLOT on all digraphs. For
acyclic digraphs, the running time can be reduced to 2O(k log k) · nO(1).
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