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Abstract. In the classical balls-and-bins paradigm, where n balls are

placed independently and uniformly in n bins, typically the number of

bins with at least two balls in them is Θ(n) and the maximum number

of balls in a bin is Θ( logn
log logn

). It is well known that when each round

offers k independent uniform options for bins, it is possible to typically

achieve a constant maximal load if and only if k = Ω(log n). Moreover,

it is possible whp to avoid any collisions between n/2 balls if k > log2 n.

In this work, we extend this into the setting where only m bits of

memory are available. We establish a tradeoff between the number of

choices k and the memory m, dictated by the quantity km/n. Roughly

put, we show that for km� n one can achieve a constant maximal load,

while for km � n no substantial improvement can be gained over the

case k = 1 (i.e., a random allocation).

For any k = Ω(log n) and m = Ω(log2 n), one can achieve a constant

load whp if km = Ω(n), and the load is unbounded if km = o(n).

Similarly, if km > Cn then n/2 balls can be allocated without any

collisions whp, whereas for km < εn there are typically Ω(n) collisions.

Furthermore, we show that the load is whp at least log(n/m)
log k+log log(n/m)

.

In particular, for k � polylog n, if m = n1−δ the optimal maximal load

is Θ( logn
log logn

) (the same as in the case k = 1), while m = 2n suffices

to ensure a constant load. Finally, we analyze non-adaptive allocation

algorithms and give tight upper and lower bounds for their performance.

1. Introduction

The balls-and-bins paradigm (see, e.g., [6],[8]) describes the process where
b balls are placed independently and uniformly at random in n bins. Many
variants of this classical occupancy problem were intensively studied, having
a wide range of applications in Computer Science.

It is well-known that when b = λn for λ fixed and n → ∞, the load
of each bin tends to Poisson with mean λ and the bins are asymptotically
independent. In particular, for b = n, the typical number of empty bins at
the end of the process is (1/e + o(1))n. The typical maximal load in that
case is (1+o(1)) logn

log logn (cf. [7]). In what follows, we say that an event holds
with high probability (whp) if its probability tends to 1 as n→∞.

The extensive study of this model in the context of load balancing was
pioneered by the celebrated paper of Azar et. al. [3] (see the survey [10])
that analyzed the effect of a choice between k independent uniform bins on
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the maximal load, in an online allocation of n balls to n bins. It was shown
in [3] that the Greedy algorithm (choose the least loaded bin of the k)
is optimal and achieves a maximal-load of logk log n whp, compared to a
load of logn

log logn for the original case k = 1. Thus, k = 2 random choices
already significantly reduce the maximal load, and as k further increases,
the maximal load drops until it becomes constant at k = Ω(log n).

In the context of online bipartite matchings, the process of dynamically
matching each client in a group A of size n/2 with one of k independent
uniform resources in a group B of size n precisely corresponds to the above
generalization of the balls-and-bins paradigm: Each ball has k options for
a bin, and is assigned to one of them by an online algorithm that should
avoid collisions (no two balls can share a bin). It is well known that the
threshold for achieving a perfect matching in this case is k = log2 n: For
k ≥ (1 + ε) log2 n, whp every client can be exclusively matched to a target
resource, and if k ≤ (1− ε) log2 n then Ω(n) requests cannot be satisfied.

In this work, we study the above models in the presence of a constraint
on the memory that the online algorithm has at its disposal. We find that a
tradeoff between the choice and the memory governs the ability to achieve
a perfect allocation as well as a constant maximal load. Surprisingly, the
threshold separating the subcritical regime from the supercritical regime
takes a simple form, in terms of the product of the number of choices k, and
the size of the memory in bits m:

• If km� n then one can allocate (1−ε)n balls in n bins without any
collisions whp, and consequently achieve a load of 2 for n balls.
• If km � n then any algorithm for allocating εn balls whp creates

Ω(n) collisions and an unbounded maximal load.

Roughly put, when km � n the amount of choice and memory at hand
suffices to guarantee an essentially best-possible performance. On the other
hand, when km� n, the memory is too limited to enable the algorithm to
make use of the extra choice it has, and no substantial improvement can be
gained over the case k = 1, where no choice is offered whatsoever.

Our first main result establishes the exact threshold of the choice-memory
tradeoff for achieving a constant maximal-load. As mentioned above, one
can verify that when there is unlimited memory, the maximal load is whp
uniformly bounded iff k = Ω(log n). Thus, assuming that k = Ω(log n) is a
prerequisite for discussing the effect of limited memory on this threshold.

Theorem 1. Consider n balls and n bins, where each ball has k = Ω(log n)
uniform choices for bins, and m = Ω(log2 n) bits of memory are available.
If km = Ω(n), one can achieve a maximal-load of O(1) whp. Conversely,
if km = o(n), any algorithm whp creates a load that exceeds any constant.
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Consider the case k = Θ(log n). The näıve algorithm for achieving a
constant maximal-load in this setting requires n bits of memory (2n bits of
memory always suffice; see Subsection 1.3). Surprisingly, the above theorem
implies that O(n/ log n) bits of memory already suffice, and this is tight.

As we later show, one can extend the upper bound on the load, given
in Theorem 1, to O( n

km) (useful when n
km ≤

logn
log logn), whereas the lower

bound tends to ∞ with n
km . This further demonstrates how the quantity

n
km governs the value of the optimal maximal load. Indeed, Theorem 1 will
follow from Theorems 3 and 4 below, which determine that the threshold
for a perfect matching is km = Θ(n).

Again consider the case of k = Θ(log n), where an online algorithm with
unlimited memory can achieve an O(1) load whp. While the above theorem
settles the memory threshold for achieving a constant load in this case,
one can ask what the optimal maximal load would be below the threshold.
This is answered by the next theorem, which shows that in this case, e.g.,
m = n1−δ bits of memory yield no significant improvement over an algorithm
which makes random allocations.

Theorem 2. Consider n/k balls and n bins, where each ball has k uniform
choices for bins, and m bits of memory are available. For any algorithm,
the maximal load is at least (1 + o(1)) log(n/m)

log log(n/m)+log k whp. Specifically, if
m = n1−δ for some δ > 0 fixed and k = O(polylog(n)), then the maximal
load is Θ

( logn
log logn

)
whp.

Recall that a load of order logn
log logn is what one would obtain using a

random allocation of n balls in n bins. The above theorem states that,
when m = n1−δ and k ≤ polylog(n), any algorithm would create such a load
already after n/k rounds.

Before describing our remaining results, we note that the lower bounds in
our theorems in fact apply to a more general setting. In the original model,
in each round the online algorithm chooses one of k uniformly chosen bins,
thus inducing a distribution on the location of the next ball. Clearly, this
distribution has the property that no bin has a probability larger than k/n.

Our theorems applies to a relaxation of the model, where the algorithm
is allowed to dynamically choose a distribution Qt for each round t, which
is required to satisfy the above property (i.e., ‖Qt‖∞ ≤ k/n). We refer to
these distributions as strategies.

Observe that indeed this model gives more power to the online algorithm:
For instance, if k = 2 (and the memory is unlimited), an algorithm in the
relaxed model can allocate n/2 balls perfectly (by assigning 0 probability
to the occupied bins), whereas in the original model collisions occur already
with n2/3 log n balls whp.
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Furthermore, we also relax the memory constraint on the model. Instead
of treating the algorithm as an automaton with 2m states, we only impose
the restriction that there are at most 2m different strategies to choose from.
In other words, at time t, the algorithm knows the entire history (the exact
location of each ball so far), and needs to choose one of its 2m strategies for
the next round. In this sense, our lower bounds are for the case of limited
communication complexity rather than limited space complexity.

We note that all our bounds remain valid when each round offers k choices
with repetitions.

1.1. Tradeoff for perfect matching. The next two theorems address the
threshold for achieving a perfect matching when allocating (1− δ)n balls in
n bins for some fixed 0 < δ < 1 (note that for δ = 0, even with unlimited
memory, one needs k = Ω(n) choices to avoid collisions whp). The upper
and lower bounds obtained for this threshold are tight up to a multiplicative
constant, and again pinpoint its location at km = Θ(n). The constants
below were chosen to simplify the proofs and could be optimized.

Theorem 3. For δ > 0 fixed, consider (1−δ)n balls and n bins, where each
ball has 2 ≤ k ≤ O(n/ log n) uniform choices for bins, and there are m bits
of memory available. Let L > 0 be an arbitrarily large constant, and suppose

km ≤ εn for a suitably small fixed ε = ε(L) > 0 .

Then any algorithm whp either creates a load of nε or has Ω(n) collisions
and a load of L. Furthermore, the maximal load is whp Ω(log log(n/(km)).

Theorem 4. For δ > 0 fixed, consider (1−δ)n balls and n bins, where each
ball has k uniform choices for bins, and m bits of memory are available.
The following holds for any k ≥ (2/δ) log n and m ≥ log n · log2 log n: If

km ≥ Cn for some C = C(δ) > 0 ,

then a perfect allocation (no collisions) can be achieved whp.

In light of the above, for any value of k, the online allocation algorithm
given by Theorem 4 is optimal with respect to its memory requirements.

1.2. Non-adaptive algorithms. In the non-adaptive case the algorithm is
again allowed to choose a fixed (possibly randomized) strategy for selecting
the placement of ball number t in one of the k possible randomly chosen
bins given in step t. Therefore, each such algorithm consists of a sequence
Q1, Q2, . . . , Qn of n pre-determined strategies, where Qt is the strategy for
selecting the bin in step number t. Here we show that even if k = n log logn

logn ,

the maximum load is whp at least (1− o(1)) logn
log logn , that is, it is essentially
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as large as in the case k = 1. It is also possible to obtain tight bounds for
larger values of k. We illustrate this by considering the case k = n/2.

Theorem 5. Consider the problem of allocating n balls into n bins, where
each ball has k uniform choices for bins, using a non-adaptive algorithm.

(i) The maximum load in any non-adaptive algorithm with k ≤ n log logn
logn

is whp at least (1− o(1)) logn
log logn .

(ii) The maximum load in any non-adaptive algorithm with k = n/2 is whp
Ω(
√

log n). This is tight, that is, there is a non-adaptive algorithm with
k = n/2 so that the maximum load in it is O(

√
log n) whp.

1.3. Range of parameters. In the above theorems and throughout the
paper, the parameter k may assume values up to n. As for the memory, one
may näıvly use n log2 L bits to store the status of n bins, each containing at
most L balls. The next observation shows that the log2 L factor is redundant:

Observation. At most n+ b− 1 bits of memory suffice to keep track of the
number of balls in each bin when allocating b balls in n bins.

Indeed, one can maintain the number of balls in each bin using a vector in
{0, 1}n+b−1, where 1-bits stand for separators between the bins. In light of
this, the original case of unlimited memory corresponds to the case m = 2n.

1.4. Main techniques. The key argument in the lower bound on the per-
formance of the algorithm with limited memory is analyzing the expected
number of new collisions that a given step introduces. We wish to estimate
this value with an error probability smaller than 2−m, so it would hold whp
for all of the 2m possible strategies for this step.

To this end, we generalize the standard Azuma-Hoeffding martingale con-
centration inequality, and in turn use it to obtain the above mentioned
bounds on the error probabilities. Theorem 2.1 bounds the probability of
deviation of a martingale, in terms of the bound on its increments and the
cumulative variance. The novelty here is that this theorem does not require
a uniform bound on individual variances (as it appears in standard versions),
and rather treats them as random variables. The proof of this theorem uses
probabilistic tools rather than analytical ones.

For the upper bounds, the algorithm essentially partitions the bins into
blocks, where for different blocks it maintains an accounting of the occupied
bins with varying resolution. Once a block exceeds a certain threshold of
occupied bins, it is discarded and a new block takes its place.

1.5. Organization. The rest of this paper is organized as follows. In Sec-
tion 2 we prove the generalized Azuma-Heoffding concentration inequality
(Theorem 2.1). Section 3 contains the lower bounds on the collisions and
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load, thus proving Theorem 3. Section 4 provides algorithms for achieving
a perfect-matching and for achieving a constant load, respectively proving
Theorem 4 and completing the proof of Theorem 1. In Section 5 we extend
the analysis of the lower bound to prove Theorem 2. Section 6 discusses
non-adaptive allocations, and contains the proof of Theorem 5.

Remark. The problem of balanced allocations with limited memory was
proposed to us by Itai Benjamini. In a recent independent work, Benjamini
and Makarychev [4] settled the special case of the problem for k = 2 (i.e.,
when there are two choices for bins at each round). While our focus was
mainly the regime k = Ω(log n) (where one can readily achieve a constant
maximal load when there is unlimited memory), our results also apply for
smaller values of k, and extend the lower bounds of [4] to any k ≤ polylog(n).

2. A generalized Azuma-Hoeffding type inequality

In this section, we prove the following Martingale concentration inequal-
ity, which will later be one of the key ingredients in proving the lower bound
in the main theorem. This result extends the Azuma martingale inequality,
which involves an a-priori bound on the variance of each of the individual
increments, into one that incorporates an estimate on the sum of these. For
related results, see [5] and the references therein.

Theorem 2.1. Let (Xi)ni=0 be a martingale with respect to the filter (Fi).
Suppose that |Xi+1−Xi| ≤M for all i, and write Vi =

∑i
j=1 Var(Xi | Fi−1).

Then for an absolute constant c > 0 and any λ, ` > 0 and integer n we have

P (Xn ≥ X0 + λ , Vn ≤ `) ≤ exp
[
−cλ2/(`+Mλ)

]
.

As a special case of Theorem 2.1, note that whenever each of the terms
Var(Xi | Fi−1) is bounded by some constant σ2

i , then Vn ≤
∑

i σ
2
i with

probability 1, and we obtain the following well-known result (cf., e.g., [9]):

Corollary 2.2. Let (Xi)ni=0 be a martingale with respect to the filter (Fi).
Suppose that |Xi+1 − Xi| ≤ M and Var(Xi | Fi−1) ≤ σ2

i hold for every i.
Then for some absolute constant c > 0 and any λ > 0 and integer n,

P(Xn ≥ X0 + λ) ≤ exp
[
− cλ2/

( n∑
i=1

σ2
i +Mλ

)]
.

In addition, an immediate corollary of Theorem 2.1 provides a useful
bound for the case where the deviation λ exceeds Vn with probability 1:

Corollary 2.3. Let (Xi)ni=0 be a martingale with respect to the filter (Fi).
Suppose that |Xi+1−Xi| ≤M for all i, and that

∑n
j=1 Var(Xi | Fi−1) ≤ σ2.
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Then for an absolute constant c > 0, any integer n and any λ ≥ σ2/M ,

P (Xn ≥ X0 + λ) ≤ exp (−cλ/M) .

Proof of Theorem 2.1. Define the following stopping times for (Xi):

τj
4= min

{
t > τj−1 :

∣∣Xt −Xτj−1

∣∣ ≥ 2M
}

for j = 1, 2, . . . ; τ0
4= 0 .

By the Optional Stopping Theorem, we have that (Xt∧(τ1∧n)) is a martingale,
and since in addition it is bounded at all times (by |X0| + Mn) and so is
our stopping-time, we further have that EXτ1∧n = X0. The exact same
reasoning gives that for all j

E[Xτj∧n | Fτj−1 ] = Xτj−1 ,

giving rise to the following definition of a martingale:

Zj
4= Xτj∧n .

Further define J 4= min{j : τj ≥ n}, and notice that Xn = ZJ . We aim to
show that, as long as the variance of X is suitably large, one can derive a
lower bound on the number of steps made by X along a single move of Z,
providing an upper bound on the value of J . To show this, first consider Z1

(the same analysis will then be applied to all j). It is standard to define

Yi
4= (Xi −X0)2 − Vi ,

and obtain that (Yi) is a martingale, since by definition

E[Yi+1 − Yi | Fi] = E[(Xi+1 −X0)2 | Fi]− (Xi −X0)2 −Var(Xi+1 | Fi)

= E[Xi+1 | Fi]2 −X2
i = 0 ,

where in the last equality we used the fact that (Xi) is itself a martingale.
Consider the following stopping times:

τσ1
4= min

{
t : Vt ≥M2

}
,

τ∗1
4= τσ1 ∧ τ1 ∧ n = min

{
t : (Vt ≥M2) or (|Xt −X0| ≥ 2M)

}
∧ n ,

and note that |Yτ∗1∧t| < 11M2, as |Xi+1−Xi| ≤M and Var(Xi+1 | Fi) ≤M2

for all i. Optional Stopping with respect to the (bounded) stopping-time τ∗1
again gives that (Yτ∗1∧t) is also a martingale and that furthermore

EYτ∗1 = Y0 = 0 .

Similarly, Optional Stopping gives that EXτ∗1
= X0, and combining this

with the fact that Vτ∗1 < 2M2 we deduce that

Var(Xτ∗1
) = E(Xτ∗1

−X0)2 = EVτ∗1 < 2M2 .
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Thus, Chebyshev’s inequality gives

P(|Xτ∗1
−X0| ≥ 2M) ≤

Var(Xτ∗1
)

(2M)2
≤ 1

2
.

Altogether, we have that

P ((τσ1 ∧ n) ≤ (τ1 ∧ n)) ≥ 1
2
.

Similarly, defining

τσj
4= min

{
t > τj−1 : Vt − Vτj−1 ≥M2

}
, τ∗j

4= τσj ∧ τj ∧ n ,

the same analysis implies that for all j we have

P
(
(τσj ∧ n) ≤ (τj ∧ n) | Fτj−1

)
≥ 1

2
.

Recalling that J = min{j : τj ≥ n}, let K 4= #{j < J : τσj ≤ τj}. The above
inequality implies that the number of events (τσj ≤ τj < n) that occur, given
that J > r, stochastically dominates a binomial variable Bin(r, 1

2):

(K | J > r) � Bin(r, 1
2) .

Each such event increases the value of V by at least M2. Thus, setting

r
4=

5`
M2
∨ λ

M
, (2.1)

we get

P(Vτr ≤ ` | J > r) ≤ P
(
K ≤ `

M2
| J > r

)
≤ `

M2

(
r

`/M2

)
2−r

≤ `

M2

(
e
(
rM2/`

)
2−

9
10

(rM2/`)
)`/M2

2−r/10

<
`

M2

(2
3

)`/M2

2−r/10 < 2−r/10 < exp(−r/5) , (2.2)

where all inequalities hold for any `, λ > 0 by the requirement r ≥ 5`/M2.
By (2.1) and (2.2), for any λ ≤ 5`/M (in which case λ2

` ≤ 25 `
M2 ) we have

P(Vτr ≤ ` | J > r) < e−`/M
2 ≤ e−

λ2

25` ,

whereas for any λ ≥ 5`/M

P(Vτr ≤ ` | J > r) < e−
λ

5M .

Combining the two bounds, we conclude that in both cases

P(Vτr ≤ ` | J > r) < exp
[
− λ2

25` ∨ 5λM

]
. (2.3)



CHOICE-MEMORY TRADEOFF IN ALLOCATIONS 9

On the other hand, we claim that, roughly put, when J ≤ r the probability
of |Xt −X0| exceeding λ becomes suitably small. More precisely, put

τ ′
4= min{t : |Zj − Z0| ≥ λ} , Z ′j = Zj∧τ ′ .

A final application of Optional Stopping gives that (Z ′j) is a martingale,
hence EZ ′j = Z ′0 = X0. Furthermore, as the increments of (Z ′j) are bounded
by 3M , the standard Azuma inequality guarantees that for any t,

P(|Z ′t −X0| ≥ λ) ≤ exp
[
− λ2

2(3M)2t

]
= exp

[
−λ2/

(
18M2t

)]
. (2.4)

The following inequality will now allow us to put all the pieces together into
a bound on |Xn −X0|:

P(|Xn −X0| ≥ λ , Vn ≤ `)
≤ P(|Xn −X0| ≥ λ , J ≤ r) + P(Vn ≤ ` , J > r)

= P(|ZJ −X0| ≥ λ , J ≤ r) + P(Vn ≤ ` , J > r)

≤ P(τ ′ ≤ J ≤ r) + P(Vn ≤ ` , J > r) .

By (2.3) and the fact that (Vj) is increasing in j,

P(Vn ≤ ` , J > r) < exp
[
− λ2

25(` ∨ λM)

]
,

whereas applying (2.4) with j = r gives

P(τ ′ ≤ J ≤ r) ≤ P(τ ′ ≤ r) = P(|Z ′r −X0| ≥ λ) ≤ exp
[
−λ2/

(
18rM2

)]
≤ exp

[
− λ2

18(5` ∨ λM)

]
.

Altogether, we obtain that

P(|Xn −X0| ≥ λ , Vn ≤ `) ≤ 2 exp
[
− λ2

100(` ∨ λM)

]
,

as required. �

3. Lower bounds on the collisions and load

Theorem 1, establishing that the quantity km (the choice times the mem-
ory) determines either if a perfect allocation is possible, or if any allocation
would necessarily produce nearly linearly many bins with arbitrarily large
load.

The main ingredient in proving the lower bound on the number of bins
with arbitrarily large load is an analogous bound for the number of collisions,
i.e., pairs of balls that share a bin, defined as follows: Let Nt(i) denote the
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number of balls in bin i after performing t rounds; the number of collisions
at time t is then

Col2(t) 4=
n∑
i=1

(
Nt(i)

2

)
.

The following theorem provides a lower bound on Col2(t) in the current
regime of km:

Theorem 3.1. In the setting of Theorem 1, there exists an absolute constant
c > 0 so that the following holds with probability 1−O(n−2):

(i) For all t ≥ c · k(m+ log n) we have

E Col2(t) ≥ 1
8
t2/n .

(ii) For all t ≥
[
c · k(m+ log n) ∨ Ln2/3 log n

]
, where L(n) is a function

such that 2 ≤ L ≤ nε, either the maximal load is at least L or

Col2(t) ≥ 1
10
t2/n .

Notice that Theorem 3 immediately follows from the above theorem, by
choosing t = n/2 and L = nε: Indeed, except with probability O(n−2),
either the maximal-load is nε, or we have Col2(n) ≥ n/40. It thus remains
to prove Theorem 3.1.

Proof of Theorem 3.1. The outline of the proof is as follows: We first
relax the problem into one where the algorithm comprises a (randomly and
adaptively chosen) sequence of distributions for the actual allocation of the
balls. The martingale concentration inequality of Section 2 would then be
used to show that the expected number of collisions between these distri-
butions approximates the actual number of collisions between the balls. A
lower bound on E Col2(t) is then derived by analyzing the best possible struc-
ture of these distributions, and is then translated to a bound on Col2(t) using
another application of the martingale inequality.

As noted in the Introduction, we relax the problem by allowing the algo-
rithm to choose any distribution µ = (µ(1), . . . , µ(n)) for the location of the
next ball, as long as it satisfies ‖µ‖∞ ≤ k/n.

We also relax the memory constraint as follows. The algorithm has a
pool of at most 2m different strategies, and may choose any of them at a
given step without any restriction (basing its dynamic decision on the entire
history).

To summarize, the algorithm has a pool of at most 2m strategies. In
each given round, it chooses a strategy µ from this pool based on the entire
history, and a ball then falls to a bin distributed according to µ.
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Let ν = (ν(1), . . . , ν(n)) be an arbitrary probability distribution on [n]
satisfying ‖ν‖∞ ≤ k/n, and denote by Qs = (Qs(1), . . . , Qs(n)) the strategy
of the algorithm at time s. It will be convenient from time to time to treat
these distributions as vectors in Rn.

By the above discussion, Qs is a random variable whose values belong to
some a-priori set {µ1, . . . , µ2m}. We further let Js denote the actual position
of the ball at time s (drawn according to the distribution Qs).

Given the strategy at time s, let xs denote the probability of a collision
between ν and Qs, i.e., that the ball that is distributed according to Qs
will collide with the one distributed according to ν. We let vs be the inner
product of Qs and ν, which measures the expectation of such collisions.

xνs
4= ν(Js) ,

vνs
4= 〈Qs, ν〉 =

n∑
i=1

Qs(i)ν(i) = E[xνs | Fs−1] .

Further define the cumulative sums of vνs and xνs as follows:

Xν
t
4=

t∑
s=1

xνs ,

V ν
t
4=

t∑
s=1

vνs .

To justify these definitions, notice that for each Q1, . . . , Qt,

XQs
s−1 =

t−1∑
i=1

Qs(Ji) =
n∑
i=1

Qs(i)|{r < s : Jr = i}| =
n∑
i=1

Qs(i)Ns−1(i) ,

and so XQs
s−1 (up to the factor k/n) is the expected number of collisions

that will be contributed by the ball Js ∼ Qs given the entire history Fs−1.
Summing over s, we have that

E Col2(t) =
t∑

s=1

EXQs
s−1 ,

thus estimating the quantities XQs
s−1 will provide a bound on the expected

number of collisions. The next lemma shows that Xt is well approximated
by Vt, thereby reducing the problem to analyzing the properties of the Qi-s.

Lemma 3.2. Let Xν
s and V ν

s be defined as above, and let c > 0 be some
absolute constant. Then with probability at least 1−n−5e−m, for any t, every
ν ∈ {µ1 . . . , µ2m} and all h ≥ c‖ν‖∞(m + log n), we have that V ν

s ≥ 2h
implies Xν

s ≥ h.
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Proof. Throughout the proof of the lemma, we omit the superscripts ν in
the quantities Xν

s and V ν
s .

Fix ν, suppose b = ‖ν‖∞ ( ≤ k/n ) and define

Zt
4= (Vt −Xt) /b .

Clearly, (Zt) is a martingale, since the definition that Js ∼ Qs gives

E[Zt − Zt−1 | Ft−1] = E[(vt − xt)/b | Ft−1] = 0 .

Moreover, the increments of this martingale are bounded, and so are their
variations: Indeed, as ‖ν‖∞ ≤ b, we have that 0 ≤ xs/b ≤ 1, and so

Var ((vs − xs)/b | Fs−1) = Var (xs/b | Fs−1) ≤ E [xs/b | Fs−1] = vs/b ,

giving that

|Zt − Zt−1| ≤ 1 ,

Var(Zt | Ft−1) ≤ vt/b , and thus
t∑

s=1

Var(Zt | Ft−1) ≤ Vt/b .

Also note that for any h, we have Zs ≥ h/b iff Xs ≤ Vs − h. Thus, applying
Theorem 2.1 to (Zs), we obtain that for some fixed c > 0 and any h > 0,

P(Xs ≤ h , 2h ≤ Vs ≤ 4h) ≤ P (Zs ≥ h/b , Vs ≤ 4h) ≤ exp (−ch/b) .

Summing the above over h, 2h, 3h, . . . we obtain that for any h > 0 such
that exp(−ch/b) ≤ 1

2 ,

P(Xs ≤ h , Vs ≥ 2h) ≤ 2 exp(−ch/b) .

In particular, choosing

h
4= c−1b(2m+ 3 log n) = c′‖ν‖∞(2m+ 6 log n)

implies that whenever Vs ≥ 2h, we have Xs ≥ h except with probability
2n−6e−2m. Summing over the pool of at most 2m predetermined strategies
ν and at most n different time-points completes the proof of the lemma. �

Having shown that Xν
t is well approximated by Vtν, and recalling that we

are interested in estimating XQs
s−1, we now turn our attention to the possible

values of V Qs
s−1.

Claim 3.3. For any strategies Q1, . . . , Qt we have that

t−1∑
s=1

V Qs
s−1 ≥

t(t− k)
2n

.
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Proof. By our definitions, for the strategies Q1, . . . , Qt we have
t∑

s=1

V Qs
s−1 =

t∑
s=1

s−1∑
r=1

〈Qr, Qs〉 =
n∑
i=1

∑
r<s≤t

Qr(i)Qs(i)

=
1
2

n∑
i=1

[( t∑
s=1

Qs(i)
)2
−

t∑
s=1

Qs(i)2
]
. (3.1)

Recalling the definition of the strategies Qi, we have that{
0 ≤ Qs(i) ≤ k/n for all i and s,∑n

i=1Qs(i) = 1 for all s.

Therefore,
n∑
i=1

t∑
s=1

Qs(i)2 ≤
k

n

n∑
i=1

t∑
s=1

Qs(i) =
kt

n
.

On the other hand, by Cauchy-Schwartz,
n∑
i=1

( t∑
s=1

Qs(i)
)2
≥ 1
n

( n∑
i=1

t∑
s=1

Qs(i)
)2

=
t2

n
.

Plugging these two estimates in (3.1) we deduce that

t∑
s=1

V Qs
s−1 ≥

t(t− k)
2n

,

as required. �

While the above claim tells us that the average size of V Qs
s−1 is fairly large

(has order at least (t − k)/n), we wish to obtain bounds corresponding to
individual distributions Qs. As we next show, this sum indeed enjoys a
significant contribution from indices s where V Qs

s−1 = Ω(k(m + log n)/n).
More precisely, setting h = ck(m+ log n)/n as in Lemma 3.2, we claim that

t∑
s=1

V Qs
s−11{V Qss−1>2h} ≥

t2

4n
. (3.2)

To see this, observe that if

t ≥ t0
4= 4ck(m+ log n) , (3.3)

where c is the absolute constant Lemma 3.2, then
t∑

s=1

V Qs
s−11{V Qss−1≤2h} ≤ t · 2ck(m+ log n)/n ≤ t2

2n
.

Combining this with Claim 3.3 yields (3.2).
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We may now apply Lemma 3.2, and obtain that, except with probability
n−2e−m, whenever V Qs

s−1 ≥ 2h we have XQs
s−1 ≥ 1

2V
Qs
s−1, and so

t∑
s=1

XQs
s−1 ≥

1
2

t∑
s=1

V Qs
s−11{V Qss−1>2h} ≥

t2

8n
. (3.4)

Altogether, we established that

E Col2(t) =
t∑

s=1

XQs
s−1 ≥

t2

8n
for all t ≥ t0. (3.5)

This proves Part (i) of Theorem 3.1. It remains to establish concentration
for Col2(t) under the added assumption that t ≥ Ln2/3 log n for some 2 ≤
L ≤ nε. Recalling that

Col2(t+ 1) = Col2(t) +Nt(Jt+1) ,

we let

Yt
4= Col2(t)−

t−1∑
s=1

XQt
s ,

and obtain that (Yt) is a martingale, as

E[Yt+1 − Yt | Ft] = E[Nt(Jt+1) | Ft]−XQt+1

t

=
∑
i

Qt+1(i)Nt(i)−XQt+1

t = 0 .

Set the following stopping-time for reaching a maximal-load of L:

τL
4= min

{
t : max

j
Nt(j) ≥ L

}
.

By Optional Stopping, we have that Yt∧τL is a martingale, and therefore
EYt∧τL = Y0 = 0. Moreover,

|Yt+1∧τL − Yt∧τL | ≤ 2L ,

and so an application of Azuma’s inequality implies that for any t,

P
(
|Yt∧τL | ≥ 1

100 t
2/n
)
≤ exp

[
− Ω

((t2/n)2

tL2

)]
≤ exp

[
−Ω
(
t3/(nL)2

)]
≤ exp

[
−Ω(L log3 n)

]
.

It follows that the following holds for all t ≥ (1
8 t

2/n ∨ Ln2/3 log n), except
with probability exp(−Ω(log4 n)): Either the maximal-load is at least L, or

Col2(t) ≥ E Col2(t)− t2

100n
,

and (3.5) now concludes the proof of Theorem 3.1. �
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3.1. Boosting the subcritical regime to unbounded maximal load.
While Theorem 3.1 given above provides a careful analysis for the number
of 2-collisions, i.e., pairs of balls sharing a bin, one can iteratively apply this
theorem, with very few modifications, in order to obtain that the number of
C-collisions (a set of C balls sharing a bin) has order Ω(n1−o(1)), or else the
maximal load is at least nε. The proof of this result hinges on the following
generalization of Theorem 3.1.

Theorem 3.4. Consider the following balls and bins setting:

(1) We have km ≤ εn for some suitably small ε > 0.
(2) The online adaptive algorithm has a pool of 2m possible strategies,

where each strategy µ satisfies ‖µ‖∞ ≤ k/n. The algorithm selects a
(random) sequence of strategies Q1, . . . , Qn adapted to the filter (Fi).

(3) Let A1 ⊂ . . . ⊂ An ⊂ [n] denote a random increasing sequence of
subsets adapted to the filter (Fi), i.e. Ai ∈ Fi.

(4) There are n rounds, where in round t a new potential location for a
ball is chosen according to Qt. If this location belongs to At, a ball
is positioned there (otherwise, nothing happens).

Define T =
∑

sQs(As). Then for some absolute constant c > 0 and any
function log n ≤ L ≤ nε we have

P
(
T ≥

(
ck(m+ log n) ∨ Ln2/3 log n

)
, Col2(n) < 1

10T
2/n
)
≤ n−2 .

Proof. As the proof follows the same arguments of Theorem 3.1, we restrict
our attention to describing the modifications that are required for the new
statement to hold.

Define the following sub-distribution of Qs with respect to As:

Q′s
4= Qs1As .

As before, given Qs, the strategy at time s, define the following parameters:

xνs
4= ν(Js) , vνs

4=
n∑
i=1

Q′s(i)ν(i) ,

and let the cumulative sums of vνs and xνs be denoted by:

Xν
t
4=

t∑
s=1

xνs , V
ν
t
4=

t∑
s=1

vνs .

We claim that the statement of Lemma 3.2 (showing that a lower bound on
Vt is with high probability a lower bound on Xt) holds as is with respect
to the above definitions. Indeed, the martingale concentration argument is
valid without any changes, and the only delicate point is the identity of the
target strategy ν, which we next address.
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Let ν be a candidate for a given time r > t. Before, ν was taken from an
pre-given pool of 2m strategies, whereas now our designated ν would be the
Q′r at the future point of time r. As such, Q′r may be dynamically influenced
by the random variable Ar, destroying the union bound over all the possible
strategies! The crucial observation that resolves this issue is the following:

Observation 3.5. Let r > t and let ν be a candidate strategy for time r.
Then V ν

t = V ν′
t and Xν

t = Xν′
t for any increasing sequence A1, . . . , Ar.

To see this, first consider Xν
t and Xν′

t . If Js for some 1 ≤ s ≤ t had a
non-zero contribution to Xν

t , then by definition i ∈ As ⊂ At and
Indeed, this follows from monotonicity, since any i ∈ As that qualifies this

index to contribute to 〈Q′s, ν〉 must also belong to Ar.
The equivalent of Claim 3.3 follows by definition of T as

∑
s

∑
iQ
′
s(i),

and the rest of the arguments hold unmodified. �

We next show how to infer the results regarding an unbounded maximal
load and C-collisions for any fixed C from Theorem 3.4. To do so, perform
iterations of this theorem as follows. In step ` = 0, 1, 2, . . ., we define the
increasing sequence (At) by:

At
4= {i ∈ [n] : Nt(i) ≥ `} .

For some L = L(n) to be specified later, and stop the process once we obtain
that

T <
(
ck(m+ log n) ∨ Ln2/3 log n

)
.

Consider the process at its end. By summing all the error probabilities in
Theorem 3.1, we may assume that as long as the process was alive, we had
Col2(n) ≥ 1

10T
2/n. Now, suppose that the maximal load at the end of the

process is less than L. It then follows that at the end of step `, we had at
least Col2(n)/L balls which incurred collisions in this step. This gives that

T`+1 ≥
T 2
`

10nL
, T0 = n

and in other words
T` ≥

n

(10L)2`−1
.

The stopping rule of T < εkm means that we stop at the first ` such that

(10L)2
`−1 ≥ n/(εkm) ,

that is, just as

` ≥ log2

(
1 +

log(n/(km)) + log(1/ε)
log(10L)

)
.
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As the maximal load is at least L ∧ `, selecting L = Ω(log log (n/(km))),
gives ` = Θ(L), and implies a final lower bound of Ω(log log (n/(km))).
This concludes the proof of Theorem 3. �

4. Algorithms for perfect matching and constant load

In this section, we prove Theorem 4 by providing an algorithm that avoids
collisions whp using only O(n/k) bits of memory, which is the minimum
possible by Theorem 3. The case km = Ω(n) of Theorem 1 will then follow
from repeated applications of this algorithm.

Perfect allocation algorithm for (1− δ)n balls

1. For ` = b n
bm/2cc, partition the bins into contiguous blocks B1, . . . , B`

each comprising bm/2c bins. Ignore any remaining unused bins.
2. Set d =

⌈
log2

(
1+ε
Cδ log n

)⌉
, and define the arrays A0, . . . , Ad−1:

• Aj comprises 2j contiguous blocks (a total of ∼ 2j−1m bins).
• For each contiguous (non-overlapping) 4j-tuple of bins in Aj , we

keep a single bit that holds whether any of its bins is occupied.
• Pointers to the first block of Aj are chosen so that the union
∪jAj forms a contiguous collection of bins.

3. Repeat the following procedure until exhausting all rounds:
• Let j be the minimal integer so that a bin of Aj , marked as

empty, appears in the current selection of k bins. If no such j

exists, the algorithm announces failure.
• Allocate the ball into this bin, and mark its 4j-tuple as occupied.
• If the fraction of empty 4j-tuples remaining in Aj just dropped

below δ/2, relocate the array Aj to a fresh contiguous set of
empty 2j blocks (immediately beyond the last allocated block).
If there are less than 2j available new blocks, the algorithm fails.

4. Once (1− δ)n rounds are performed, the algorithm stops.

Throughout the proof of the algorithm, assume that in each round we
are presented with k independent uniform indices of bins, possibly with
repetitions. Clearly, an upper bound for the maximal load in this relaxation
of the model translates into one for the original model (k choices without
repetitions).

4.1. First version of the algorithm. We begin with a description and a
proof of a simpler version of the algorithm, suited for the case where

km ≥ (3/δ)n log n . (4.1)
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This version will serve as the base for the analysis. For simplicity, assume
first that m | n.

First version of allocation algorithm for (1− δ)n balls

1. Let B1, . . . , B` be an arbitrary partition of the n bins into ` 4= n/m

blocks, each containing m bins. Put r 4= b(1− δ)mc.
2. Throughout stage j ∈ [`], only the m bins belonging to Bj are tracked.

At the beginning of the stage, all bins in the block are marked empty.
3. Stage j comprises r rounds, in each of which:

• The algorithm attempts to place a ball in an arbitrary empty
bin of Bj if possible.
• If no empty bin of Bj is offered, the algorithm declares failure.

4. Once (1− δ)n rounds are performed, the algorithm stops.

To verify that this algorithm indeed produces a perfect allocation whp,
examine a specific round of stage j, and condition on the event that so far
the algorithm did not fail. In particular, its accounting of which bins are
occupied in Bj is accurate, and at least m− r = (δ − o(1))m bins in Bj are
still empty (notice that by our assumption m = Ω(log n), and so m → ∞
with n).

Let Missj denote the event that the next ball precludes all of the empty
bins of Bj in its k choices, we have

P(Missj) ≤
(

1− m− r
n

)k
≤ e−(δ−o(1)) km

n ≤ n−3+o(1) , (4.2)

by assumption (4.1). A union bound over the n rounds now yields (with
room to spare) that the algorithm succeeds whp.

The case where m does not divide n is treated similarly: Set ` = b n
bm/2cc,

and partition the bins into blocks that now hold bm/2c bins each, except
for the final block B` which would have between bm/2c and m− 1 bins. As
before, in stage j we attempt to allocate b(1 − δ)|Bj |c balls into Bj , while
relying on the property that Bj has at least (δ − o(1))|Bj | ≥ (δ − o(1))m/2
empty bins. This gives

P(Missj) ≤ e−(δ−o(1))
km/2
n ≤ n−3/2+o(1) ,

as required.

4.2. Second version of the algorithm. We now wish to adapt the above
algorithm to the following case:

km log2m ≥ (20/δ) log(5/δ)n log n , log3 n ≤ m ≤ n

log n
. (4.3)
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Notice that if m ≥ nε, the above requirement is essentially that km = Ωε(n).
The full version of the algorithm eliminates this dependency on ε.

Second version of the algorithm for (1− δ)n balls

1. For ` = b n
bm/2cc, partition the bins into contiguous blocks B1, . . . , B`

each comprising bm/2c bins. Ignore any remaining unused bins.
2. Set d = b14 log2mc, and define the arrays A0, . . . , Ad−1:

• Aj is one of the blocks B1, . . . , B`.
• For each contiguous (non-overlapping) 2j-tuple of bins in Aj , we

keep a single bit that holds whether any of its bins is occupied.
3. Repeat the following procedure until exhausting all rounds:

• Let j be the minimal integer so that a bin of Aj , marked as
empty, appears in the current selection of k bins. If no such j

exists, the algorithm announces failure.
• Allocate the ball into this bin, and mark its 2j-tuple as occupied.
• If the fraction of empty 2j-tuples remaining in Aj just dropped

below δ/2, relocate the array Aj to a fresh block (immediately
beyond the last allocated block). If no such block is found, the
algorithm fails.

4. Once (1− δ)n rounds are performed, the algorithm stops.

Since the array Aj contains 2−j(m/2) different 2j-tuples, the amount of
memory required to maintain the status of all tuples is

m

2

d−1∑
j=0

2−j = (1− 2−d)m ≤ m−m3/4 .

In addition, we keep an index for each Aj , holding its position among the `
blocks. By definition of d and `, this amounts to at most

d log2 ` ≤ (log2 n)2 < m3/4

bits of memory, where the last inequality holds for any large n by (4.3).
We first show that the algorithm does not fail to find a bin of Aj marked

as empty. At any given point, each Aj has a fraction of at least δ/2 bins
marked as empty. Hence, recalling (4.2), the probability of missing all the
bins marked as empty in A0, . . . , Ad−1 is at most

exp
(
−
(δ

2
− o(1)

)km
2n

d
)
≤ exp

(
−
(δ

2
− o(1)

) 10 log n
δ log2m

log
(20
δ

)1
4

log2m
)

≤ n− log(5/δ)5/4−o(1) < n−5/4 ,

where the last inequality holds for large n. Therefore, whp the algorithm
never fails to find an array Aj with an empty bin among the k choices.
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It remains to show that, whenever the algorithm relocates an array Aj ,
there is always a fresh block available.

By the above analysis, the probability that a ball is allocated in Aj for
j ≥ 1 at a given round is at most

exp
(
−
(δ

2
− o(1)

)km/2
n

j
)
≤ exp

(
−
(δ

2
− o(1)

) 10 log n
δ log2m

log
(20
δ

)
j
)

≤ exp(−3 log(5/δ)j) 4= pj ,

where the last inequality holds for any sufficiently large n.
Let Nj denote the number of balls that were allocated in blocks of type j

throughout the run of the algorithm. Clearly, Nj is stochastically dominated
by a binomial random variable Bin(n, pj). Hence, known estimates for the
binomial distribution (see, e.g., [2]) imply that for all j,

P(Nj > npj + C
√
n log n) ≤ n−C .

The total number of blocks needed for Aj is at most⌈
2jNj

(1− δ
2)m2

⌉
,

and hence the total number of blocks needed is whp at most⌈ d−1∑
j=0

2j(1− δ)npj + C2j
√
n log n

(1− δ
2)m2

⌉
≤

d−1∑
j=0

2j(1− δ)npj
(1− δ

2)m2
+O

(n3/4 log n
m

)
.

Since
d−1∑
j=1

2jpj =
d−1∑
j=1

exp
(
j(log 2− 3 log(5/δ))

)
< 2 · 2(δ/5)3 < δ/5

(with room to spare), the total number of blocks needed is whp at most

(1 + δ/5)(1− δ)n
(1− δ

2)m2
+O

(n3/4 log n
m

)
<
⌊ n

bm/2c

⌋
for any sufficiently large n.

4.3. Final version of the algorithm. The main disadvantage in the sec-
ond version of the algorithm is that the size of each Aj was fixed at m/2
bins. Since the resolution of each Aj is in 2j-tuples, we are limited to
at most log2m arrays. However, the probability of missing all the arrays
A0, . . . , Ad−1 has to compete with n, hence the requirement that m would
be polynomial in n.

To remedy this, the algorithm uses arrays with varying sizes, namely 2j

blocks for Aj . The resolution of each array is now in 4j-tuples, i.e., Aj
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contains at most 2jbm/2c/4j tuples. Thus, the number of memory bits
required for all arrays is at most

m

2

d−1∑
j=0

2−j = (1− 2−d)m ≤ m−O(m/ log n) .

The following calculation shows that indeed there are sufficiently many
blocks to initially accommodate all the arrays:

(2d − 1)bm/2c ≤ 1 + ε

2Cδ
m log n ≤ km

2(1 + ε)C
=

n

2(1 + ε)
,

where we used the assumption that k ≥ 1+ε
δ log n, and took km = Cn.

(1) Pointers for the location of the arrays:

d log2 n = (log2 log n+O(1)) log2 n = (1 + o(1)) log2 n · log2 log n .

(2) Arrays have enough tuples: Ad−1 has about

1
2
m/2d−1 = m/2d =

Cδ

1 + ε
m/ log n

4d−1-tuples, and the assumption m = Ω(log n log logn) guarantees
this is large.

(3) Bins wasted on 4j-tuples throughout the (1 − δ)n rounds: stochas-
tically bounded by a binomial variable Bin ((1− δ)n, pj), where

pj = e−Cδ(2
j−1)4j .

Dominating value: j = 1, and so if

C > (1/δ) log(10/δ) ,

we have that
pj ≤ δ/10 ,

thus the wasted rounds vanish against the extra allocation of (δ/2)n
rounds.

This completes the proof of Theorem 4. �
By joining bins together (and using the fact that our upper bounds apply

to k choices with repetitions), we may extend the analysis to km = Ω(n)
and obtain a constant load. This implies the upper bound in Theorem 1.

5. Improved lower bounds for poly-logarithmic choices

5.1. Proof of Theorem 2. Our proof of this case is an extension of the
proof of Theorem 3 to estimate the number of q-collisions for general q:

Colq(t)
4=

n∑
i=1

(
Nt(i)
q

)
.
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The analysis hinges on a recursion on q, for which we need to achieve bounds
on a generalized quantity, a linear function of the q-collisions vector:

Xf ;q
t

4=
∑

s1<...<sq≤t

∑
i

f(i)1{Js1=i} · · ·1{Jsq=i} =
∑
i

f(i)
(
Nt(i)
q

)
, (5.1)

V f ;q
t

4=
∑

s1<...<sq≤t

∑
i

f(i)Qs1(i) · · ·Qsq(i) . (5.2)

Our objective is to obtain lower bounds for Xf ;q
t with f ≡ 1, as clearly

Colq(t) = X1;q
t . In general, our f will be the product of different strategies

Qi, a fact which would allow us to formulate a recursion relation between
the V f ;q

t -s and an approximate recursion for the Xf ;q
t . This is achieved by

the next lemma, where here in and throughout the proof we set

L
4= log(n/m) (5.3)

to denote a maximal load we do not expect to reach (except if the algorithm
is far from optimal).

Lemma 5.1. There exists an absolute constant c > 0 so that either the
maximal load exceeds L, or the following holds for all q < L, every t ≤ n/k
and every f ∈ {1, µ1, . . . , µ2m}L, except with probability n−5e−m.

If V f ;q
t ≥ c(2L)q+1

q!
m‖f‖∞ then Xf ;q

t ≥ 2−q V f ;q
t . (5.4)

Proof. The key property of the quantities V f ;q
t , which justified the inclusion

of the inner products with f , is the following recursion relation:

V f ;q+1
t =

∑
s<t

V (Qs+1·f);q
s for any q ≥ 1 and any t. (5.5)

We now wish to write a similar recursion for the variables Xf ;q
t . As opposed

to the variables V f ;q
t , which satisfied the above recursion combinatorially,

here the recursion will only be an approximation. Notice that

Xf ;q+1
t+1 −Xf ;q+1

t = f(Jt+1)
((

Nt(Jt+1) + 1
q + 1

)
−
(
Nt(Jt+1)
q + 1

))
= f(Jt+1)

(
Nt(Jt+1)

q

)
,

and hence

E
[
Xf ;q+1
t+1 −Xf ;q+1

t | Ft
]

=
∑
i

Qt+1(i)f(i)
(
Nt(i)
q

)
= X

Qt+1·f ;q
t .

We may thus define Zt = Zf ;q
t by

Zf ;q
t

4= Xf ;q+1
t −

∑
s<t

X(Qs+1·f);q
s ,
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and obtain that Zt is a martingale, as E [Zt+1 − Zt | Ft] = 0. Now apply
the martingale concentration inequality as follows: our bounded increment
is M ≤ ‖f‖∞

(
L
q

)
, where L is the maximal load of a bin, giving that

P(Xf ;q+1
t < h ,

∑
s<t

X(Qt·f);q
s > 2h) ≤ exp

(
−ch/

(
‖f‖∞

(
L

q

)))
.

Therefore, if

h > c′mL‖f‖∞
(
L

q

)
then the above event does not occur for any f that is the product of up to
L different strategies and all t except with probability n−10e−m. Therefore,
setting

hf ;q
4= c

(2L)q+1

q!
m‖f‖∞

for an appropriate aboslute constant c > 0, we have

Xf ;q+1
t ≥ 1

2

∑
s<t

X(Qt·f);q
s

provided that
∑

s<tX
(Qt·f);q
s > 2−qhf ;q except with probability n−10e−m.

We now proceed to prove (5.4) by induction on q. For q = 1, notice that

Xf ;1
t =

∑
s≤t

∑
i

f(i)1{Js=i} =
∑
i

f(i)Nt(i) ,

V f ;1
t =

∑
s≤t

∑
i

f(i)Qs(i) .

Furthermore, as the definitions of Xf ;q
t and Zf ;q

t also apply to the case q = 0,
we then have

Xf ;0
t =

∑
i

f(i) , and

Zf ;0
t = Xf ;1

t −
∑
s<t

∑
i

Qs+1(i)f(i) = Xf ;1
t − V f ;1

t .

The requirement V f ;1
t ≥ c (2L)q+1

q! m‖f‖∞ precisely ensures that V f ;1
t ≥ hf ;q.

Therefore, the above discussion guarantees that Xf ;1
t ≥ 1

2V
f ;1
t except with

probability n−10e−m.
It remains to establish the induction step. The induction hypothesis for q

states that whenever V f ;q
t ≥ hf ;q we also have Xf ;q

t ≥ 2−qV f ;q
t except with
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probability n−10e−m. Therefore,∑
s<t

X(Qs+1·f);q
s ≥ 2−q

∑
s<t

V (Qs+1·f);q
s · 1

{V (Qs+1·f);q
s >hQs+1·f ;q}

≥ 2−q
(∑
s<t

V (Qs+1·f);q
s − t · hQs+1·f ;q

)
≥ 2−q

(
V f ;q+1
t − t · c(3L)q+1

q!
m‖Qs+1 · f‖∞

)
, (5.6)

where in the last inequality we applied the recursion relation (5.5). Recalling
that Qs+1 is a strategy, the following holds for all t ≤ n/k:

t‖Qs+1 · f‖∞ ≤ t‖Qs+1‖∞‖f‖∞ ≤ t
k

n
‖f‖∞ ≤ ‖f‖∞ .

Plugging this into (5.6) we obtain that for all t ≤ n/k,∑
s<t

X(Qs+1·f);q
s ≥ 2−q

(
V f ;q+1
t − cL

q+1

q!
m‖f‖∞

)
. (5.7)

It now follows that if V f ;q+1
t ≥ hf ;q+1 = c (2L)q+2

(q+1)! m‖f‖∞, then in particular

V f ;q+1
t ≥ 2c

(2L)q+1

q!
m‖f‖∞ = 2hf ;q for all q ≤ L− 1.

Thus, under this assumption, (5.7) takes the following form:∑
s<t

X(Qs+1·f);q
s ≥ 2−qV f ;q+1

t ≥ 2−qhf ;q .

This entitles us to apply the martingale concentration result on Zt, and
obtain that except with probability n−10e−m,

Xf ;q+1
t ≥ 1

2

∑
s<t

X(Qs+1·f);q
s ≥ 2−(q+1)V f ;q+1

t ,

completing the induction step.
Summing the error probabilities over the induction steps for every q < L

concludes the proof of the lemma. �

It remains to apply the above lemma to deduce the maximal load of
Ω( logn

log logn) for k = polylog(n). Recalling that m ≤ n1−δ for some fixed
δ > 0, let 0 < ε < δ/2 and choose the following parameters:

q = (1− ε) log(n/m)
log k + log log(n/m)

, f = 1 , t = n/k .

Lemma 5.1 now gives that, either the maximal load exceeds L = log(n/m),
or whp the following statements holds:

If V 1;q
n/k ≥ c

(2L)q+1

q!
m then X1;q

n/k ≥ 2−q V 1;q
n/k .
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Notice that for the above value of q, we have 2−q = (n/m)o(1), thus showing
that V 1;q

n/k ≥ (n/m)ε would imply that the maximal load exceeds q whp.

The following lemma, which provides a lower bound on V 1;q
t , is thus the

final ingredient required for the proof of the theorem:

Lemma 5.2. For all t, k and q, all Q1, . . . , Qt and any fixed α > 0 we have

V 1;q
t ≥ α(t− (1 + α)kq)q

(1 + α)nq−1q!
.

Proof. Recall that

V 1;q
t =

∑
s1<...<sq≤t

n∑
i=1

(Qs1 · · ·Qsq)(i) ,

and observe that for all i ∈ [n],∑
s1≤...≤sq≤t
|{s1,...,sq}|<q

(Qs1 · · ·Qsq)(i) ≤ (q − 1)
k

n

∑
s1≤...≤sq−1≤t

(Qs1 · · ·Qsq−1)(i) ,

where we obtained an upper bound on the number of choices for q indices
in [t] with repetitions by selecting q − 1 such indices and duplicating one of
them. The factor of k/n results from the fact that ‖Qs‖∞ ≤ k/n for all s
by the definition of our strategies. Defining

ri
4=
∑
s≤t

Qs(i) ,

it then follows that

V 1;q
t ≥ 1

q!

∑
i

(
rqi − r

q−1
i

kq

n

)
≥ 1
q!

∑
i

rq−1
i

(
ri −

kq

n

)
1{ri>(1+α)kq/n}

≥ α

(1 + α)q!

∑
i

rqi 1{ri>(1+α)kq/n} .

Applying Cauchy-Schwartz, we infer that

V 1;q
t ≥ αn

(1 + α)q!

(∑
i ri1{ri>(1+α)kq/n}

n

)q
=
α
(∑

i ri1{ri>(1+α)kq/n}

)q
(1 + α)nq−1q!

.

The proof of the lemma now follows from noticing that∑
i

ri1{ri≤(1+α)kq/n} ≤ (1 + α)kq ,

whereas
∑

i ri =
∑

s≤t
∑

iQs(i) = t. �
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To complete the proof using Lemma 5.2, apply this lemma for α = 1,
t = n/k and kq = no(1), giving that

V 1;q
n/k ≥

(1
2

+ o(1)
)
nk−q/q! .

Therefore,

c(2L)q+1m/q!

V 1;q
n/k

≤ (2 + o(1))c(2L)q+1mkq/n ≤ 3c(2kL)q+1(m/n) ,

where the last inequality holds for any sufficiently large n. Since our choice
of q is such that

(2kL)q+1 = e(1+o(1))q(logL+log k) = (n/m)1−ε−o(1) ,

we get V 1;q
n/k ≥ (n/m)ε/2 for any large n, and so the maximal load is whp at

least q. This concludes the proof of Theorem 2. �

5.2. A corollary for non-adaptive algorithms. We end this section with
a corollary of Theorem 2 for the case of non-adaptive algorithms, i.e. the
strategies Q1, . . . , Qn are fixed ahead of time. Namely, we show that for
k = O(n log logn

logn ) the optimal maximal load is whp Θ( logn
log logn), of the same

order as the one for k = 1. Theorem 5, proved in Section 6, provides a
stronger version of this result (asymptotically tight).

Corollary 5.3. Consider the allocation problem of n balls into n bins, where
each ball has k independent uniform choices. If k = O(n log logn

logn ), then any

non-adaptive algorithm whp creates a maximal-load of at least Ω( logn
log logn).

In particular, if k ≤ n log logn
logn then the load is at least (1

2−o(1)) logn
log logn whp.

Proof. Let Q1, . . . , Qn be the optimal sequence of strategies for the problem.
Using definitions (5.1) and (5.2) with f ≡ 1, we have the following for all q:

X1;q
t =

∑
i

(
Nt(i)
q

)
= Colq(t) , and

V 1;q
t = EX1;q

t .

Fix ε > 0. Applying Lemma 5.2 with α = ε/(1− ε), we get

V 1;q
n ≥ α(n− (1 + α)kq)q

(1 + α)nq−1q!
= ε
(

1− kq/(1− ε)
n

)q
· n
q!
. (5.8)

Recalling our assumption that k = O(n log logn
logn ), let C > 0 be such that

k ≤ C log logn
log n

n ,

and set
q =

1− ε
2(C ∨ 1)

· log n
log logn

.



CHOICE-MEMORY TRADEOFF IN ALLOCATIONS 27

This choice has k ≤ 1−ε
2 (n/q) and q! ≤ n

1−ε
2

+o(1). Combining it with (5.8),

EX1;q
q = V 1;q

n ≥ ε exp
(
− kq2/(1− ε)

n
/
(

1− kq/(1− ε)
n

)) n
q!

≥ ε exp(−q) n

n(1−ε)/2+o(1)
= n(1+ε)/2−o(1) > n1/2+ε/4 ,

where the last inequality holds for any sufficiently large n. As long as the
maximal load at time t does not exceed L, we have that

0 ≤ X1;q
t+1 −X

1;q
t ≤

(
L

q

)
.

Hence, using the standard Azuma inequality on Doob’s martingale for X1;q
t ,

combined with an application of Optional Stopping for the first time the
maximal load exceeds l, the following holds for t = n and λ = n1/2+ε/4:

P (Colq(n) < λ) ≤ P
(
|X1;q

n − EX1;q
n | > λ

)
≤ exp

(
− λ2

2n
(
L
q

)2) = exp(−Ω(nε/4−o(1))) .

We deduce that whp the maximal load is at least q = Ω
(

logn
log logn

)
. �

6. Tight bounds for non-adaptive allocations

In this section we present the proof of Theorem 5. Throughout the proof
we assume, whenever this is needed, that n is sufficiently large. To simplify
the presentation we omit all floor and ceiling signs whenever these are not
crucial. We need the following lemma.

Lemma 6.1. Let p1, p2, . . . , pn be reals satisfying 0 ≤ pi ≤ logn
log logn for all

i, such that
∑n

i=1 pi ≥ 1 − ε, where 0 ≤ ε ≤ 1 (and ε may be a function
of n). Let X1, X2, . . . , Xn be independent indicator random variables, where
P(Xi = 1) = pi for all i, and put X =

∑n
i=1Xi. Then

P
(
X ≥ (1− ε) log n

log log n

)
≥ 1
n1−ε .

Proof. Without loss of generality assume that p1 ≥ p2 ≥ · · · ≥ pn. Define
a family of k pairwise disjoint blocks B1, B2, . . . , Bk ⊂ {1, 2, . . . , n}, where
k ≥ (1− ε) logn

log logn so that for each i, 1 ≤ i ≤ k,

2
log n

≤
∑
j∈Bi

pj ≤
log logn

log n
.

This can be easily done greedily; the first block consists of the indices
1, 2, . . . , r where r is the smallest integer so that

∑r
j=1 pj ≥

2
logn . Note

that it is possible that r = 1, and that since the sequence pj is monotone
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decreasing,
∑r

j=1 pj ≤
log logn

logn . Assuming we have already partitioned the

indices {1, . . . , r} into blocks, and assuming we still do not have (1−ε) logn
log logn

blocks, let the next block be {r + 1, . . . , s} with s being the smallest inte-
ger exceeding r so that

∑s
j=r+1 pj ≥

2
logn . Note that if pr+1 ≥ 2

logn then
s = r + 1, that is, the block consists of a single element, and otherwise∑s

j=r+1 pj <
4

logn < log logn
logn . Thus, in any case the sum above is at least

2
logn and at most log logn

logn . Since the total sum of the reals pj is at least 1− ε
this process does not terminate before generating k ≥ (1− ε) logn

log logn blocks,
as needed.

Fix a family of k = (1 − ε) logn
log logn blocks as above. Note that for each

fixed block Bi in the family, the probability that
∑

j∈Bi Xj ≥ 1 is at least∑
j∈Bi

pj −
∑

j,q∈Bi,j<q
pjpq ≥

∑
j∈Bi

pj −
1
2

(
∑
j∈Bi

pj)2 ≥
2

log n
− 2

log2 n
>

1
log n

.

It thus follows that the probability that for each of the k blocks Bi in the
family

∑
j∈Bi Xj ≥ 1 is at least ( 1

logn)k = 1
n1−ε , completing the proof of the

lemma. �

Proof of Theorem 5. We begin with the proof of Part (i).
Let Q1, Q2, . . . , Qn be the strategies defining a non-adaptive algorithm,

where Qt is the strategy for placing ball number t. As mentioned in the pre-
vious sections, each such strategy Qt gives rise to a probability distribution
(pit : 1 ≤ i ≤ n) on the bins, where pit is the probability that the ball in
round t will be placed in bin number i. Clearly

pit ≤ k/n =
log log n

log n
for all i and t ,

and ∑
1≤i≤n

pit = 1 for all t .

The sum of entries of each column of the n by n matrix pit is 1, and hence
the total sum of its entries is n. If it contains a row i so that the sum of
entries in this row is at least, say, log n, then the expected number of balls in
bin number i by the end of the process is

∑n
t=1 pit ≥ log n. As the variance

is
n∑
t+1

pit(1− pit) ≤
n∑
t=1

pit ,

it follows by Chebyshev’s Inequality, (or by Hoeffding’s Inequality) that with
high probability the actual number of balls placed in bin number i exceeds
logn

2 > logn
log logn , showing that in this case the desired result holds.
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We thus assume that the sum of entries in each row is at most log n. As
the average sum in a row is 1, there is a row whose total sum is at least 1.
Omit this row, and note that since its total sum is at most log n, the sum
of all remaining entries of the matrix is still at least n − log n, and hence
the average sum of a row in it is at least n−logn

n−1 > 1− logn
n . Therefore there

is another row of total sum at least this quantity. Omitting this row and
proceeding in this manner we can define a set of rows so that the sum in each
of them is large. Note that as long as we defined at most n

log2 n
rows, the

total sum of the remaining elements of the matrix is still at least n− n
logn ,

and hence there is another row of total sum at least 1− 1
logn . We have thus

shown that there is a set I of n
log2 n

rows, so that

n∑
t=1

pit ≥ 1− 1
log n

for each i ∈ I .

By Lemma 6.1 (with, say, ε = 4 log logn
logn ), for each i ∈ I, the probability that

in bin number i there are at least (1− 4 log logn
logn ) logn

log logn balls is at least log4 n
n .

As these events for distinct values of i are negatively correlated, a simple
argument similar to the one in [1, Lemma 2.4] shows that the probability
that none of these events holds is at most the product of the probabilities
that all these events fail, which is at most

(
1− log4 n

n

)n/ log2 n
≤ e− log2 n.

This completes the proof of Part (i).
The proof of Part (ii), when k = n/2, is more complicated. Note that

here it is not enough to assume that in the strategy Qt each probability pit
is at most k/n = 1

2 , since if Qt assigns probability 1
2 to i = t and i = (t+ 1)

(with the indices reduced modulo n), the maximum load will be at most 2.
However, it is easy to see that in fact each strategy Qt is more restricted.
Indeed, the total probability it can assign to r bins does not exceed

1−
(
n−r
k

)(
n
k

) ,

which is roughly 1−2−r. This has to be used in the proof. The upper bound
is obtained by the natural algorithm which places the ball in round t in the
first possible bin (among the k given choices) that follows bin number t in
the cyclic order of the bins. The details will be given in the full version of
this manuscript. �
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