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Abstract

Extremal Combinatorics is one of the central areas in Discrete Mathematics. It deals with
problems that are often motivated by questions arising in other areas, including Theoretical
Computer Science, Geometry and Game Theory. This paper contains a collection of problems and
results in the area, including solutions or partial solutions to open problems suggested by various
researchers. The topics considered here include questions in Extremal Graph Theory, Polyhedral
Combinatorics and Probabilistic Combinatorics. This is not meant to be a comprehensive survey
of the area, it is merely a collection of various extremal problems, which are hopefully interesting.
The choice of the problems is inevitably biased, and as the title of the paper suggests, it is a
sequel to a previous paper [2] of the same flavour, and hopefully a predecessor of another related
future paper. Each section of this paper is essentially self contained, and can be read separately.

1 Introduction

Extremal Combinatorics deals with the problem of determining or estimating the maximum or min-
imum possible value of an invariant of a combinatorial object that satisfies certain requirements.
Problems of this type are often related to other areas including Computer Science, Information The-
ory, Number Theory and Game Theory. This branch of Combinatorics has been very active during
the the last few decades, see, e.g., [5], [11], and their many references.

This paper contains a collection of problems and results in the area, including solutions or partial
solutions to open problems suggested by various researchers. The questions considered include prob-
lems in Extremal Graph Theory, Polyhedral Combinatorics and Probabilistic Combinatorics. This is
not meant to be a comprehensive survey of the area, but rather a collection of several extremal prob-
lems, which are hopefully interesting. The techniques used include combinatorial, probabilistic and
algebraic tools. Each section of this paper is essentially self contained, and can be read separately.
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2 Balanced subgraphs in dense graphs

As mentioned below the title, this paper is dedicated to Miki Simonovits, one of the founders of
modern Extremal Graph Theory. It is therefore natural to start with a problem he raised, together
with Erdős, more than thirty years ago in [8]. A graph is called D-balanced if the ratio between the
maximum degree of a vertex in it and the minimum degree of a vertex in it is at most D. In [8]
Erdős and Simonovits prove that for every fixed α > 0, there exists a finite D = D(α) such that if
n > n0(α), then any graph with n vertices and at least n1+α edges contains a D-balanced subgraph
with m vertices and at least 2

5m1+α edges, where m ≥ nα(1−α)/(1+α). They apply this fact to prove,
among other things, that the maximum number of edges in a graph on n vertices that contains no
copy of the graph of the 3-cube is at most O(n8/5) - a result that is not known to be tight but is still
the best known upper estimate for this question.

They conclude their paper by raising the following question.

Problem (Erdős-Simonovits [8]): Is it true that there are absolute constants ε > 0 and D, such
that the following holds: For every m there is some n0 = n0(m) such that any graph with n > n0

vertices and at least n log2 n edges contains a D-balanced subgraph with m vertices and at least
εm log2 m edges ?

In this section we show that this is not true. The proof is probabilistic, and is based on a
modification of the technique of Pyber, Rödl and Szemerédi, who proved in [15] that there are
graphs with n vertices and Ω(n log log n) edges that contain no 3-regular subgraphs. For simplicity
of presentation, we omit in this section all floor and ceiling signs, whenever these are not crucial. We
make no attempt to optimize the various absolute constants that appear in the proof. All logarithms
in this section are in base 2.

Proposition 2.1 For every D > 1 and every n > 105, there is a graph G with at most 2n vertices
and at least 2n log(2n) edges such that the following holds. For any m and d, if there is a subgraph
H of G with m vertices, average degree at least d, and maximum degree at most Dd, then d <

36(4
√

log m + log(64D) + 18).

Proof: Let G be a random bipartite graph constructed as follows. Let A be a set of n vertices. For
each i satisfying 4 ≤ i ≤ 1

2 log n, and each j satisfying 1 ≤ j ≤ 8, let Bi,j be a set of n
2i vertices,

where all the sets A and Bi,j are pairwise disjoint. Let B = ∪i,jBi,j be the union of all sets Bi,j . The
two classes of vertices of of G are the sets A and B. The edges of G are chosen randomly; for each
i, 4 ≤ i ≤ 1

2 log n, and for each j, 1 ≤ j ≤ 8, each vertex of A is connected to one random, uniformly
chosen vertex of Bi,j , where all choices are independent. Note that |A| = n, |B| = 8

∑log n/2
i=4

n
2i < n

and the degree of each vertex of A is 8(1
2 log n− 3) (which is larger than 2 log(2n) for n > 105).

Claim: The following holds almost surely (that is, with probability that tends to 1 as n tends to
infinity). Let m ≤ n and r be positive integers satisfying r ≥ 4

√
log m + 16 and suppose A′ ⊂ A and

B′ ⊂ B satisfy |A′| ≤ m, |B′| ≤ m. Suppose, further, that B ⊂ ∪i∈I ∪1≤j≤8 Bi,j , where

I = {i : 4 ≤ i ≤ 1
2

log n,
n

2i
≥ m2r}.

Then the number of edges of the induced subgraph of G on A′ ∪B′ is smaller than mr.
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Proof of Claim: It suffices to show that almost surely there are no subsets A′ ⊂ A, B′ ⊂ B of
cardinality precisely m each, that span at least mr edges (since we can always add vertices to these
sets, if needed). There are less than

(n
m

)2 ways to choose two such sets A′, B′. Having chosen these
sets, there are

(m2

mr

)
ways to choose a set of mr edges connecting a vertex of A′ with one of B′. For

each such fixed choice of edges, the probability that all of them are edges of the random graph G is
zero in case two of these edges connect the same vertex of A′ to two distinct members of the same set
Bi,j . In any other case, this probability is at most ( 1

m2r )mr, and also at most ( 1√
n
)mr. Indeed, each

of these edges is chosen as an edge of G with probability 1
|Bi,j | for some i ∈ I, and all these choices

are mutually independent. Since |Bi,j | ≥ max (
√

n, m2r) for each i ∈ I, the above two estimates
indeed hold. It therefore follows that the probability that there are A′, B′ violating the conclusion
of the claim is at most

(

(
n

m

)
)2
(

m2

mr

)
(

1√
n

)mr, (1)

and also at most

(

(
n

m

)
)2
(

m2

mr

)
(

1
m2r

)mr. (2)

Suppose, first, that m ≤ n1/4. Since r ≥ 16 > e2, the quantity in (1) is at most

(
en

m
)2m(

em

r
)mr 1

nmr/2
≤ n2mmmrn−mr/2 ≤ 22m log n−(mr log n)/4 ≤ 2−(mr log n)/8 ≤ 1

n2m
.

For m > n1/4, the quantity in (2) is at most

(
en

m
)2m(

em

r
)mr(

1
m2r

)mr < n2m2−mr2 ≤ 22m log n−4m log n =
1

n2m
,

where here we used the fact that r ≥ 4
√

log m ≥ 2
√

log n. It follows that the probability that the
assertion of the lemma fails is at most ∑

m≥1

1
n2m

<
2
n2

,

which tends to zero as n tends to infinity, completing the proof of the claim. 2

Returning to the proof of the proposition, assume that our randomly constructed G satisfies the
assertion of the claim. We show that this implies that it satisfies the conclusion of the Proposition
as well. Given m and d, let H be a subgraph of G with m vertices, average degree at least d and
maximum degree at most Dd. Let V ′ denote the set of all vertices of H and put A′ = A ∩ V ′.

The number of vertices of H in sets Bi,j with n
2i ≤ m

64D is at most the total number of vertices in
all such sets, which is at most m

4D . The total number of edges incident with these vertices is therefore
at most m

4DDd = md
4 .

Define r = 4
√

log m+16. The number of edges of H connecting any single set Bi,j to A′ is at most
|A′|, and hence the total number of edges of H incident with vertices in sets Bi,j with m

64D ≤ n
2i ≤ m2r

is at most 8|A′|(r + log(64D) + 2) ≤ 8m(r + log(64D) + 2).
Finally, the number of edges of H incident with vertices in sets Bi,j with n

2i > m2r is smaller
than mr, by the Claim. As the total number of edges of H is at least md/2, we conclude that

md

2
≤ md

4
+ 8m(r + log(64D) + 2) + mr,
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implying that

d ≤ 32(r + log(64D) + 2) + 4r < 36(r + log(64D) + 2) ≤ 36(4
√

log m + log(64D) + 18).

This completes the proof. 2

Proposition 2.1 clearly supplies a negative answer to the problem of [8] mentioned in the beginning
of the section.

3 Graphs with the Turán Property

A graph G has the Turán Property (or TP, for short), if for every induced subgraph G′ of G and
every integer r > 0, the maximum number of edges in a Kr+1-free subgraph of G′ is equal to the
maximum number of edges in an r-colorable subgraph of it. The reason for the name is the fact that
the famous theorem of Turán [19], which is often considered to be the starting point of Extremal
Graph Theory, can be stated as the assertion that complete graphs satisfy TP.

The definition of graphs that satisfy TP was suggested by Kalai [12], who noticed that if a graph
satisfies the property then it must be perfect, and also noticed that not every perfect graph satisfies
TP; indeed, any graph obtained from an even cycle by adding to it two new vertices joined by edges
to the two ends u, v of an edge of the cycle is perfect, and yet does not satisfy TP. This is because
omitting the edge uv we get a triangle-free subgraph, but at least two edges have to be deleted to
get a bipartite subgraph.

Kalai [12] raised the problem of characterizing all graphs that satisfy the Turán Property. This is
a subclass of the class of all perfect graphs, and its characterization seems interesting. In particular,
he asked if line-graphs of bipartite graphs satisfy the Turán Property. In this section we show that
this is the case.

Theorem 3.1 Let H be the line-graph of a bipartite graph G = (V,E). Then for every integer r > 0,
the maximum number of edges in a Kr+1-free subgraph of H is equal to the maximum number of
edges in an r-colorable subgraph of H.

Since induced subgraphs of line-graphs of bipartite graphs are themselves line-graphs of bipartite
graphs, this shows that indeed line graphs of bipartite graphs satisfy TP. Turán’s Theorem is the
special case of the above theorem obtained by letting G be a star.

Proof of Theorem 3.1: Let G and H be as above, and let r > 0 be an integer.

Claim: It is possible to color the edges of G by r colors {1, 2, . . . , r}, such that for every vertex v
of G, the numbers of edges of each color incident with v are nearly equal. That is, if the degree of
G is d, then for every i ∈ {1, . . . , r}, the number of edges of color i incident with v is either bd/rc or
dd/re.

To prove the claim argue as follows. First split vertices of G, if needed, to make its maximum
degree at most r. This is done as follows. As long as there is a vertex v of G of degree d > r, modify
it using the following procedure. Define k = dd/re and replace v by k new vertices v1, v2, . . . , vk,
called its descendants. Let vu1, vu2, . . . vud be an arbitrary enumeration of all edges of G incident
with v. For each i, 1 ≤ i ≤ k, let the edges incident with the new vertex vi be the edges viuj for all
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j satisfying (i − 1)r < j ≤ min(d, ir). This process terminates with a bipartite graph in which all
degrees are at most r. By König’s Theorem (cf., e.g., [5]) the edges of this graph can be properly
colored by the r colors {1, 2, . . . , r}. By collapsing all descendants of each vertex v back, keeping the
colors of the edges, we obtain a coloring f : E 7→ {1, 2, . . . , r} of the edges of the original graph G
by r colors satisfying the assertion of the claim.

Returning to the proof of the theorem, let H ′ be the spanning subgraph of H consisting of all
edges connecting two adjacent vertices of H (which are edges of G with the same end-point) iff their
f -values differ. That is, for e, e′ ∈ E which have a common end-point in G (and are thus adjacent
in H), ee′ is an edge of H ′ if and only if f(e) 6= f(e′). Obviously H ′ is an r-colorable subgraph
of H. We claim that no Kr+1−free subgraph H ′′ of H can contain more edges than H ′. Indeed,
the line graph H consists of |V | pairwise edge disjoint cliques corresponding to the vertices of the
graph G. In each such clique of d vertices (corresponding to a vertex of degree d of G), the graph
H ′′ cannot contain more edges than the Turán number t(d, r) which is the number of edges in a
complete r-colorable graph on d vertices with nearly equal color classes. This follows from Turán’s
Theorem. However, this is exactly the number of edges of this clique that the graph H ′ contains,
by the construction and the property of the coloring f . As H is a union of edge-disjoint cliques, it
follows that H ′ contains at least as many edges as H”, completing the proof of the theorem. 2

Kalai’s problem of characterizing all graphs with the Turán Property remains open. The recent
proof of the strong Perfect Graph Theorem [7] provides a simple characterization of all perfect graphs
in terms of forbidden induced subgraphs, and it will be interesting to find a similar characterization
of all graphs satisfying the Turán Property.

4 The oriented choice number of a matching

The (oriented) choice number och(G) of a matching G = (V,E) on n directed edges (ui, vi), (1 ≤ i ≤
n), is the minimum number k such that for any assignment of a list S(v) of k colors to each vertex
in V = ∪n

i=1{ui, vi} there is a proper vertex coloring of G, c : V 7→ ∪v∈V S(v) satisfying

c(v) ∈ S(v) for all v ∈ V (3)

and

There are no colors a, b ∈ ∪v∈V S(v) and i, j with c(ui) = c(vj) = a and c(vi) = c(uj) = b. (4)

This notion (which is a special case of a more general one defined for arbitrary graphs) was introduced
by A. Sali and G. Simonyi in [17], where they show, among other things, that for every integer k
there is an integer n such that for a matching G on n edges, och(G) > k. Let g(k) denote the
minimum number n such that this holds. Trivially, g(1) = 1, and Tuza and Voigt [20] proved
that g(2) = 12. Here we consider the asymptotic behaviour of the function g(k) and show that
log2 g(k) = (1 + o(1))k2.

Theorem 4.1 There exists an absolute constant c such that for every k,

2k2−1 < g(k) ≤ 2k2+ck
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Before presenting the proof it is convenient to observe that for a matching of n edges G and for lists
of colors S(v) as above, there is a proper coloring c satisfying conditions (3) and (4) if and only if
there is a tournament T whose set of vertices is the set of all colors ∪v∈V S(v), and a mapping from
the vertices of G to those of T mapping each vertex to a color in its list such that each directed edge
of G is mapped to a directed edge (with the same direction) of T .

Proposition 4.2 For all k ≥ 1, g(k) ≥ 2k2−1.

Proof: Let G = (V,E) be a directed matching with n < 2k2−1 edges (ui, vi), (1 ≤ i ≤ n), where
V = ∪n

i=1{ui, vi}, and let S(v), v ∈ V be lists of k colors each. Put S = ∪v∈V S(v) and let T be a
random tournament on the set of vertices S. To complete the proof it suffices to show that with
positive probability the following holds: for every i between 1 and n there are distinct ai ∈ S(ui)
and bi ∈ S(vi) such that (ai, bi) is a directed edge of T . Fix an index i. If |S(ui) ∩ S(vi)| ≥ 2 there
are always ai, bi as above. Otherwise, the probability there are no such ai, bi is at most 2−(k2−1).
Therefore, the expected number of indices i for which we do not have colors ai, bi as needed is at
most n2−(k2−1) < 1, and hence with positive probability we can map the vertices so that all edges
are mapped as needed, completing the proof. 2

The upper bound is slightly more complicated.

Proposition 4.3 Let N, k and g be positive integers satisfying

N

(
N−1

2

k

)
≥ k

(
N

k

)
(5)

and
2(N

2 )(1− 1(N
k

))g < 1. (6)

Then g(k) ≤ g.

Proof: Let N, k, g be as above, and let S be a set of N colors. Let G = (V,E) be a matching
consisting of g directed edges (ui, vi), (1 ≤ i ≤ g). For each such i, let S(ui) and S(vi) be random
subsets of cardinality k of S, chosen uniformly among all k-subsets, where all 2g choices are mutually
independent. To complete the proof we have to show that with positive probability there is no proper
coloring of G, c : V 7→ S satisfying (3) and (4). As explained after the statement of Theorem 4.1,
this is equivalent to proving that with positive probability the following holds: For every tournament
T on the set of vertices S, there is some i, 1 ≤ i ≤ g, such that all edges connecting a member of
S(ui) with a member of S(vi) are directed from S(vi) to S(ui).

Let T be a fixed tournament on S. Let K denote the bipartite graph with two classes of vertices
of size k each, and all k2 directed edges from a vertex of the first class to one of the second.

Claim: T contains at least
(N

k

)
copies of K.

Proof of Claim: We apply the technique of [13]. Let d1, d2, . . . , dN be the outdegrees of all vertices
of T . Then the average value of di is (N − 1)/2. Let R denote the graph consisting of k edges
emanating from a single vertex, called the apex of R, to k distinct vertices, called the leaves of R.
The number of copies of R in T is

∑N
i=1

(di
k

)
. By convexity it follows that this number is at least

N

(
(N − 1)/2

k

)
≥ k

(
N

k

)
,
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where the last inequality is simply (5). We can now classify the copies of R in T according to their
sets of leaves. For each k-subset B of S, let xB denote the number of copies of R in T whose set
of leaves is B. By the inequality above, the average value of xB is at least k. Note that there are
precisely

(xB
k

)
copies of K in T in which the second vertex class is B. Thus, the total number of

copies of K in T is
∑

B

(xB
k

)
≥
(N

k

)
, where the last inequality follows from the fact that the average

value of xB is at least k. This completes the proof of the claim. 2

Returning to the proof of Proposition 4.3 note that by the claim, for every fixed directed edge of
G, (ui, vi), the probability that all edges of T connecting a vertex of S(ui) and a vertex of S(vi) are
directed from S(vi) to S(ui) is at least 1/

(N
k

)
. Indeed, this is precisely the probability that the two

random sets S(vi), S(ui) form a copy of K in T . As all sets are chosen independently, the probability
that this does not happen for any edge (ui, vi) of G is at most

(1− 1(N
k

))g.

As the total number of tournaments on the labelled set S is 2(N
2 ), it follows, by (6), that with

positive probability, for every tournament T on S there is an edge (ui, vi) of G such that all edges of
T connecting a vertex of S(ui) and a vertex of S(vi) are directed from S(vi) to S(ui). This implies
that g(k) ≤ g, completing the proof of the proposition. 2

It is easy to check that for every ε > 0 and all k > k0(ε), N = d(1 + ε)k2ke and

g =

(
N

k

)(
N

2

)
loge 2 < (eN/k)kN2

satisfy (5) and (6), implying that g(k) ≤ 2k2+O(k). This, together with the assertion of Proposition
4.2, complete the proof of Theorem 4.1. 2

5 Extreme points in a model of optimal persuasion rules

Let X = X1 ×X2 where Xi are finite sets. Let A be a subset of X, and define B = X \ A. Let M
be the set of all real functions m : X 7→ R satisfying the following two conditions:
(i) m(x, y) ∈ [0, 1] for all (x, y) ∈ X.
(ii) The 3-path condition: m(a, c) + m(a, b) + m(d, b) ≥ 1 for all triples (a, b) ∈ A, (a, c) ∈ B and
(d, b) ∈ B

Note that this means that M is the set of all fractional covers of the 3-uniform hypergraph
whose vertices are all edges of the complete bipartite graph with vertex classes X1, X2, and whose
(hyper)edges are all edge-sets of paths of length 3 in this bipartite graph in which the edges belong
to B,A and B in this order. An extreme point of M is a member of M which is not a convex
combination of other members of M .

J. Glazer and A. Rubinstein studied in [9] the extreme points of M . The motivation for their
work is a model for optimal persuasion rules. In this model a speaker is trying to persuade a
listener to accept a certain request. The conditions under which it will be accepted depend (in a
way known to both of them) on the values of two aspects, known only to the speaker. In order to
persuade the listener, the speaker is allowed to send him a message in which he states (not necessarily
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truthfully) the values of his two aspects. The listener can then check the value of at most one of
them (possibly chosen randomly) and then he either accepts or rejects the request (again, possibly
using randomization). The speaker is trying to maximize the probability that the listener will accept
the request, while the listener, who only knows the probability distribution over all possible pairs
of values of the two aspects, is trying to minimize the probability of taking a wrong decision, that
is, accepting when he should reject or rejecting when he should accept. Here X1, X2 are the sets
of possible values of the two aspects. A is the set of pairs of aspects on which the listener should
accept, and B the set on which he should reject. The quantity m(x, y) is the probability the listener
takes a wrong action, assuming the actual pair of values of the aspects is (x, y), and assuming the
speaker sends a message that maximizes the probability the request will be accepted. See [9] for
more details.

The authors of [9] raised the following conjecture.

Conjecture 5.1 (Glazer and Rubinstein) If m is an extreme point of M then
m(x, y) ∈ {0, 1} for all (x, y) ∈ A and
m(x, y) ∈ {0, 1/2, 1} for all (x, y) ∈ B

The conjecture as stated is not valid. A counter example is given below. However, the intuition
of Glazer and Rubinstein that the extreme points of M have a simple structure was fully justified,
and a slight variation of the conjecture is true, as stated in the following theorem.

Theorem 5.2 If m ∈ M is an extreme point of M then m is half-integral, that is, m(x, y) ∈
{0, 1/2, 1} for all (x, y) ∈ X.

This implies that in the persuasion game described above,there is always an optimal strategy for
the listener in which all the random choices he makes (accepting or rejecting, and deciding which
aspect to check) are made with probability 0, 1/2 or 1. More details and some interesting examples
can be found in [9].

In the next subsection we describe a counter example to Conjecture 5.1. The subsequent subsec-
tion contains the proof of Theorem 5.2. The proof provides some additional information about the
extreme points of M .

5.1 A counter example

Define X1 = {1, 2, 3, 4}, X2 = {a, b, c, d}, A = {(1, b), (2, c), (3, d), (3, a)}.
Let m be the following member of M : m(1, a) = m(2, b) = m(3, c) = 1/2, m(4, d) = 0, m(3, d) =

1/2, m(1, b) = m(2, c) = m(3, a) = 0, and m(x, y) = 1 for all other x ∈ X.
We claim that this point is an extreme point of M (and as m(3, d) = 1/2 it provides a counter

example to the conjecture above.) Indeed, suppose this is false and m =
∑

v∈V cvv with cv > 0 for
all v, where

∑
v∈V cv = 1 and with V ⊂ M .

Obviously v(1, b) = v(2, c) = v(3, a) = 0 for all v ∈ V . Therefore, by summing over the appropri-
ate paths, v(1, a)+ v(2, b)+ v(3, c) ≥ 3/2 for all v ∈ V . Since, however, m(1, a)+m(2, b)+m(3, c) =
3/2, it follows that in fact v(1, a) + v(2, b) + v(3, c) = 3/2 for all v ∈ V , and hence also, since the
sum of each pair of these three numbers is at least 1, that v(1, a) = v(2, b) = v(3, c) = 1/2 for all
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v ∈ V . In addition, v(4, d) = 0 for all v ∈ V , and by considering the path {(3, c), (3, d), (4, d)} this
implies that v(3, d) ≥ 1/2 for all v ∈ V . As m(3, d) = 1/2 it follows that in fact v(3, d) = 1/2 for
all v ∈ V . As for each (x, y) ∈ X besides the ones considered already, m(x, y) = 1, it follows that
m(x, y) = v(x, y) = 1 for each such x and all v ∈ V , implying that m = v for all v ∈ V . This
completes the proof of the claim and shows that the above conjecture is false.

5.2 Extreme points are half-integral

We need the following lemma.

Lemma 5.3 Let C = (cij) be a nonsingular square matrix, where ci,j ∈ {0, 1,−1} for all i, j, and
suppose that each row of C contains at most two nonzero entries. Then, for any integral vector b,
the unique solution y of the system of equations Cy = b is half-integral, that is, each entry of 2y is
an integer.

Proof: Let s denote the number of rows of C. Note that by assumption, each row of C contains
either one nonzero entry (which is 1 or −1) or two nonzero entries (in {−1, 1}.) Let G be the graph
on the set of vertices {1, 2, . . . , s} in which for each row i of C there is an edge ei defined as follows:
if there is a unique j such that cij 6= 0, then ei is a loop at the vertex j, and if there are two distinct
indices j, k such that cij , cik 6= 0 then ei is an edge connecting j and k. Obviously, G has s vertices
and s edges. In addition, since C is nonsingular, it follows that in each connected component of G
the number of vertices is equal to the number of edges, and it thus contains precisely one cycle (which
may be a loop). When solving the system Cy = b, we actually solve for the variables corresponding
to the vertices in each connected component separately. In each such component, the determinant
of the coefficients matrix is 1 or −1, in case the unique cycle in the component is a loop, and is 2 or
−2 in case the cycle is longer. The result now follows from Cramer’s rule. 2

Proof of Theorem 5.2: Let m : X 7→ R be an extreme point of M . Since it is an extreme point,
it is the unique solution of a system of |X| linear equations in the |X| unknowns m(x, y), where each
equation is either an equation of the form m(x, y) = 0 or m(x, y) = 1 or m(a, c)+m(a, b)+m(d, b) = 1
with (a, b) ∈ A and (a, c) ∈ B, (d, b) ∈ B. It is convenient to denote the restriction of m to A by
f , and the restriction of m to B by g. Therefore, f = m|A : A 7→ R and g = m|B : B 7→ R, with
f(x, y) = m(x, y) for all (x, y) ∈ A and g(x, y) = m(x, y) for all (x, y) ∈ B. With this notation, the
pair of functions f, g form the unique solution to a system of linear equations in which each equation
is either an equation of the form

f(x, y) = ε with ε ∈ {0, 1} (7)

or of the form
g(x, y) = ε with ε ∈ {0, 1} (8)

or of the form
g(x, u) + f(x, y) + g(v, y) = 1. (9)
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Let Y denote this system of linear equations. Let Y ′ be the system obtained from Y by substituting
the value of each variable f(x, y) for which there is an equation of the form (7) in Y in each equation
it appears. Thus, the system Y ′ has only equations of the form (8) and (9) or equations of the form

g(x, u) + g(v, y) = ε with ε ∈ {0, 1} (10)

(obtained from equations of the form (9) in which the value of f(x, y) ∈ {0, 1} has been substituted.)
It is obvious that this new system still has a unique solution. Let Y ” be the system of equalities
obtained from Y ′ as follows. Each equation of the form (8) or of the form (10) in Y ′ is taken to the
system Y ” as it is. For each pair of edges (a, b), (c, d) ∈ B, if m(a, b) = m(c, d) then we add the
corresponding equality, that is

g(a, b)− g(c, d) = 0. (11)

Finally, for each fixed edge (x, y) ∈ A which participates in some equalities of the form (9), we
include an arbitrarily chosen one of them. Note that since we have added all equalities between
the g-values of B-edges, if this chosen equality holds, then so do all other equalities of the form (9)
involving f(x, y). This is because in all these equalities, g(x, u) must be the smallest g-value of a
B-edge incident with x, and similarly, g(v, y) must be the smallest g-value of a B-edge incident with
y.

Therefore, the solution to the system Y ” is also unique, and supplies immediately a solution to
Y . Observe that in Y ”, for each A-edge (x, y), f(x, y) appears in at most one equality.

We now construct a system Z of equalities and inequalities in the variables g(x, y). This is done
using Y ” as follows. Each equation involving only variables g(x, y) (and not f(x′, y′)) in Y ” is taken
to the system Z as it is. This includes equalities of form (8), (10) and (11). For each equation of the
form (9) of Y ”, we add the inequality

g(x, u) + g(v, y) ≤ 1

to Z. Finally, we also add the inequalities

0 ≤ g(x, y) ≤ 1 (12)

for all (x, y) ∈ B. Note that this system has a solution: in fact, the function g(x, y) = m|B(x, y) as
defined above, where m is our original extreme point, clearly satisfies each constraint in Z. We can
thus take an extreme solution, and call it g. An extreme solution is determined by a subset of the
inequalities, taken as equalities. Note that by Lemma 5.3 this solution is half integral, and hence,
by (12), satisfies g(x, y) ∈ {0, 1/2, 1} for all admissible (x, y). Now define, for each equation of the
form (9) in Y ”,

f(x, y) = 1− g(x, u)− g(v, y).

(Since there is at most one such equation with each f(x, y), we can simply solve it and there will be
no contradictions.) This gives a solution to Y ” in which all g and all f -values lie in {0, 1/2, 1}, and as
this solution is unique, this is the case with our original g and f as well. (Note that this also implies
that the solution to the system Z is unique, and there is no need to take an extreme point in it.
Moreover, there is even no need to include the additional inequalities of the form g(x, u)+g(v, y) ≤ 1,
as the solution would have been unique without them as well. The argument is, however, simpler
with these inequalities)
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The solution to Y ” is a solution to Y ′, by the discussion above, and can be easily extended to a
solution to Y in a unique way, keeping all f and g values in the set {0, 1/2, 1}. This shows that indeed
in the original solution m (described by f and g) all coordinates lie in {0, 1/2, 1}, and completes the
proof. 2

6 A graph coupon collector process

Let G = (V,E) be a graph with n vertices. Consider the following stochastic process executed on G.
Initially all vertices are uncovered. In each step, pick a vertex at random and if it has an uncovered
neighbor, cover a random uncovered neighbor. Else, do nothing. This can be viewed as a coupon
collector process on G. Let cc(G) denote the expected number of steps required to cover all vertices of
G. The authors of [1] proved, motivated by the study of a question on load balancing in peer-to-peer
networks, that if G is the graph of the k-cube, then cc(G) = O(n). Here we give a short proof of the
following.

Theorem 6.1 For any d-regular graph on n vertices cc(G) ≥ n− n
d + n

d loge(n/d).

We further show that if d >> 1 and G is a sufficiently strong expander (for example, an appropri-
ately defined nearly d-regular random graph), then the above lower estimate is essentially tight. In
particular, if d >> log n then cc(G) = (1 + o(1))n.

More interesting is the fact that the last equality holds for any d-regular expander with a suffi-
ciently small second eigenvalue (and in particular, for the known families of explicit expanders).

An (n, d, λ)−graph is a d-regular graph G = (V,E) on n vertices, such that the absolute value of
every eigenvalue of the adjacency matrix of G, besides the largest one, is at most λ. If λ ≤ 2

√
d− 1,

then G is called Ramanujan.

Theorem 6.2 For any (n, d, λ)−graph G, cc(G) ≤ n + n(λ
d )2(loge n + 1).

In particular, for any Ramanujan d-regular graph G on n vertices, λ ≤ 2
√

d− 1, implying that
cc(G) ≤ n+4n(loge n+1)/d. Therefore, if d >> log n then cc(G) = (1+o(1))n. Explicit constructions
of such graphs are known whenever d− 1 is a prime power, see [14].

Proof of Theorem 6.1: Consider the process on a d-regular graph G. For each i, 1 ≤ i ≤ n, let
Xi be the random variable counting the number of steps the process performs starting from the time
there are exactly i uncovered vertices, until there are (i−1) uncovered vertices. If Ui denotes the set
of uncovered vertices when there are i of them, and N(Ui) denotes the set of all their neighbors in
G, then Xi simply counts the number of random vertices the process chooses until it hits a vertex of
N(Ui). Therefore, Xi is a geometric random variable with success probability pi = |N(Ui)|/n. Since
|N(Ui)| ≤ d|Ui| = di, it follows that the expected value of Xi is 1/pi ≥ n

di . It is also obvious that for
each i, the expectation of Xi is at least 1. By linearity of expectation we conclude that

cc(G) ≥
n/d∑
i=1

n

di
+
∑

i>n/d

1 ≥ n− n

d
+

n

d
loge(n/d).

2

For the proof of Theorem 6.2 we need the following lemma, which follows, for example, from
Lemma 9.2.4 in [3].
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Lemma 6.3 Let C be a set of vertices in an (n, d, λ)-graph G = (V,E), and let B = V − N(C) be
the set of all its non-neighbors, |B| = bn. Then |C|b2d2 ≤ λ2b(1− b)n, and hence

|N(C)| = (1− b)n ≥ |C|
|C|/n + (λ/d)2

.

2

Proof of Theorem 6.2. Let G be an (n, d, λ) graph, and let Xi and Ui be as in the proof of
Theorem 6.1. By Lemma 6.3, |N(Ui)| ≥ i

i/n+(λ/d)2
. Therefore, Xi is a geometric random variable

with success probability pi = |N(Ui)|/n ≥ i
i+n(λ/d)2

.

By linearity of expectation it follows that

cc(G) ≤
n∑

i=1

i + n(λ/d)2

i
= n + n(

λ

d
)2

n∑
i=1

1
i
≤ n + n(

λ

d
)2(loge n + 1).

2

Remarks.
1. The last proof implies that if the expansion in G is stronger (as it is, for example, in random
nearly d-regular graphs), then the expectation is in fact at most n + (1 + o(1))n loge n/d. Therefore,
for such graphs the lower bound in Theorem 6.1 is nearly tight. It may be interesting to decide if it is
also nearly tight for the k-cube, that is, if the expected number of steps there is (1 + loge 2 + o(1))n.
2. The proof of Theorem 6.2 implies that the same upper bound holds even if after each step
an adversary, whose objective is to delay the termination as much as he can, is allowed to shift the
uncovered vertices to any place he wishes, keeping their number. This might be useful in applications.
In particular, the upper bound holds for a modified process in which we always cover the first
uncovered neighbor of the random vertex picked, if there is such a neighbor.
3. It seems plausible to conjecture that the maximum possible value of cc(G), as G ranges over
all d-regular graphs with n vertices, is obtained for the union of pairwise disjoint (d + 1) cliques
(assuming (d + 1) divides n.) This would imply, in particular, that for every d-regular G on n
vertices cc(G) ≤ n + O(n log n/d).
4. It is easy to see that for non-regular graphs G on n vertices, cc(G) may be Ω̃(n2), even if the
minimum degree is at least log n, as shown, for example, by a complete bipartite graph with classes
of vertices of sizes d = log n and n− d.
5. Standard techniques can be used to show that with high probability the process on G does not
take much longer than its expectation, that is, the number of steps is highly concentrated around its
mean.

7 A hats game puzzle and generalized covers

In this section we consider a version of a hats game puzzle that has first been considered in [4] and
has also been the subject of an article in the Science section of the NY Times [16]. The game is
played by a team of n players, and (say) a TV host. After the team enters the game room, the host
places either a green hat or a red hat on each player’s head. Every player can see the other players’
hats, but not his own. Shortly after getting the hat, each player has to declare ”my hat is green”,
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”my hat is red”, or ”I pass”. These declarations have to be simultaneous, and no communication is
allowed between the players after the game starts. They are allowed, however, to coordinate their
strategies beforehand. The team wins a big prize if at least one player guesses his hat color right, and
none guesses it wrong. Otherwise, they lose. Assuming a uniform distribution of hat combinations,
a trivial strategy gives the team a 1/2 probability of winning; simply let the first player guess, and
let everybody else pass. Can they do better ? The results in [4] imply that they can do much better.
Using the properties of the Hamming code, they can in fact ensure that the probability of losing
will only be (1 + o(1))/n. The situation is more complicated when the number of possible colors of
the hats, denoted by q, is larger than 2. Here, too, there is a strategy for which the probability of
losing tends to zero as the number of players, n, tends to infinity and q is fixed, but the asymptotic
behaviour of the probability of losing for the optimal strategy is not known.

Lenstra and Seroussi [18] showed that this probability is at most O(n−1/e log q). Here we improve
this estimate and show that it is at most O((q log n)/n). It is not difficult to see that this probability
is at least Ω(q/n), and it will be interesting to close the gap between the upper and lower bound.
All logarithms in this section are in the natural basis e.

It is convenient to formulate the problem in terms of the existence of a certain code. Let Q =
{1, 2, . . . , q} denote the set of possible colors of a hat, and let Qn denote the set of all possible
assignments of hats to the n players. Fix a strategy for the players, let W ⊂ Qn be the set of all
winning configurations under this strategy, and let C = Qn\W be the set of all losing configurations.

Claim: For every vector w = (w1, w2, . . . , wn) ∈ W there is an i, 1 ≤ i ≤ n, such that for every
u ∈ Q− {wi} the vector wu = (w1, w2, . . . , wi−1, u, wi+1, . . . , wn) lies in C.

Note that for q = 2 this simply means that C is a binary code of covering radius 1, that is, each
binary n-vector lies within Hamming distance 1 of C.

To prove the claim note that if w ∈ W then there is at least one player, say, player number i,
that guesses wi when the configuration is w, and as his guess will be the same for all the modified
vectors wu, all these vectors must represent losing configurations, as claimed.

The converse of the above claim also holds, that is, if W ⊂ Qn satisfies the condition in the
claim, then there is a strategy in which all configurations in W are winning configurations; indeed,
if player number i, who knows the value of wj for all j 6= i, sees that there is some a ∈ Q such that
wu as defined above is not in W for all u 6= a, then he guesses that wi = a. It is easy to see that all
guessing players will indeed guess correctly on members of W . It thus follows that the problems of
estimating the probability of losing in the optimal strategy is equivalent to the problem of minimizing
the cardinality of C in a partition Qn = W ∪ C of Qn into two disjoint sets, satisfying the property
of the claim. The following theorem shows that there is a strategy ensuring a losing probability of
at most (q−1) log n+1

n + ( q−1
q )n.

Theorem 7.1 Let q > 1 be an integer, and put Q = {1, 2, . . . , q}. Then there is a partition of Qn

into two disjoint sets W and C such that

|C| ≤ (q − 1) log n + 1
n

qn + (q − 1)n

and such that for every vector (w1, w2, . . . , wn) ∈ W there is an i, 1 ≤ i ≤ n, such that for every
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u ∈ Q− {wi} the vector (w1, w2, . . . , wi−1, u, wi+1, . . . , wn) ∈ C.

Proof: We apply a probabilistic argument illustrating the so called alteration method, see, e.g., [3],
Chapter 3. Define

m = d qn log n

(q − 1)n−1n
e.

For a vector (x1, x2, . . . , xn) ∈ Qn, let B(x) denote the set of all vectors (y1, . . . , yn) ∈ Qn for which
yi 6= xi for every i. Let x(1), . . . , x(m) be m random, independent (not necessarily distinct) members
of Qn. For a fixed vector (y1, y2, . . . , yn) ∈ Qn and a vector z ∈ Qn, we say that z covers y if the
Hamming distance between z and y is precisely n − 1. Notice that if this is the case then there
exists an index i such that for every u ∈ Q − {yi}, the vector (y1, . . . , yi−1, u, yi+1, . . . , yn) lies in
B(z). Note also that for every fixed vector y, if z is chosen randomly and uniformly in Qn, then the
probability that z covers y is precisely p = n(q−1)n−1

qn . It follows that the probability that no vector
among the vectors x(1), . . . , x(m) covers y is (1 − p)m ≤ e−pm ≤ 1/n. By linearity of expectation,
the expected number of vectors y which are not covered by at least one vector x(i) is at most qn/n.
Therefore, there exists at least one choice for the vectors x(1), . . . , x(m) such that the set Z of all
vectors y ∈ Qn which are not covered by any x(i) satisfies |Z| ≤ qn/n. Fixing such vectors x(i), define
C = ∪m

i=1B(x(i))∪Z, W = Qn −C, and observe that C and W satisfy the assertion of the theorem,
and that

|C| ≤ m(q − 1)n + qn/n ≤ (q − 1) log n + 1
n

qn + (q − 1)n,

completing the proof. 2

Remark: By an easy counting argument it follows that the minimum possible cardinality of a set
C satisfying the properties in Theorem 7.1 is at least qn(q−1)

n+q−1 . For fixed q and large n, the upper
bound here exceeds this lower bound by a factor of roughly log n. For q = 2 it is known that the
lower bound gives the correct asymototic behaviour, and it will be interesting to decide if this is the
case for every fixed q, and in particular, for q = 3.

8 Monotone broadcast digraphs

Let D = (V,E) be an acyclic directed graph on the set V = {0, 1, 2, . . . , n− 1} of n vertices, where
for every directed edge (i, j) of D, i < j. Suppose, further, that if (i, j) is in E, then so is (i, k) for
all k between i and j, and that for every two vertices a, b with a < b, there is a directed path of
length at most d from a to b.

Motivated by an attempt to prove the optimality of a certain broadcast encryption scheme, Dani
Halevy and Adi Shamir [10] conjectured that for every fixed d, there is some c(d) > 0 such that the
minimum possible number of edges in such a digraph on n vertices is at least c(d)n1+1/d. This is
proved in the following theorem.

Theorem 8.1 There is an absolute positive constant b such that in the notation above, D must have
at least bn1+1/d

d2 directed edges.

We note that there are simple examples of digraphs D with the above property and at most
O(dn1+1/d) edges.
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Proof of Theorem 8.1: To simplify the presentation, we omit all floor and ceiling signs whenever
these are not crucial. Let D = (V,E) be as above, without loss of generality assume that n = td, and
write every vertex of D in base t; therefore each vertex is represented by a vector (x1, x2, . . . , xd),
with 0 ≤ xi < t for all i, where here x1 is the most significant digit. To prove the theorem, we assume
that the number of edges of D is at most, say, n1+1/d

4e2d2 = td+1

4e2d2 , and show that in this case D cannot
satisfy the assumptions.

Claim: There exists a vector x = (x1, x2, . . . , xd) satisfying the following conditions:
(i) xj ≤ t(1− 2

d) for all j.
(ii) For every vertex y = (y1, y2, . . . , yd) for which yj = xj for all j = 1, 2, . . . , i, the outdegree of y is
at most td−i+1

2d .

Proof of Claim: There are td(1− 2
d)d vectors that satisfy (i). Among those, the number of vertices

y that violate (ii) for i is at most

|E|
td−i+1

2d

· td−i(1− 2
d
)d−i <

td

2de2
.

Summing over all possible values of i we conclude that there is a vertex satisfying (i) that does not
violate (ii) for any i. 2

Let x satisfy the conclusion of the claim. We show that there is no directed path of length at
most d starting at x and ending at n. To do so we first show, by induction on j ≤ d − 1, that any
directed path of length j starting at x, ends at a vertex (z1, z2, . . . , zd) such that zk = xk for all
k ≤ d − j. For j = 1 this follows from the fact that xd ≤ t(1 − 2

d) together with the fact that the
outdegree of x is at most t

2d , implying that the first edge cannot increase the value of x by more
than t

2d , and hence (as there is no carry), implying the required assertion for j = 1.
Assuming the assertion holds for j < d − 1, we prove it for j + 1. By assumption, the first j

edges of any path starting at x end at a vertex z = (z1, . . . , zd) for which zk = xk for all k ≤ d− j.
As x satisfies the conclusions of the claim, the outdegree of z is a most td−(d−j)+1

2d = tj+1

2d . As
zd−j = xd−j ≤ t(1 − 2

d) this implies that after adding to z a number that does not exceed tj+1

2d all
digits z1, z2, . . . , zd−j−1 stay the same. This completes the proof of the induction. In particular,
every path of length d− 1 starting at x ends at a vertex z whose first digit is x1 < t(1− 2

d). As the
outdegree of z is at most td

2d this implies that no path of length at most d starting at x can end at a
vertex whose most significant digit exceeds, say, t(1− 1

d). In particular, there is no directed path of
length at most d from x to n, contradicting the assumption and hence showing that the number of
edges exceeds n1+1/d

4e2d2 .
This completes the proof. 2

Acknowledgment: I would like to thank Gil Kalai, Ariel Runbinstein and Gadiel Seroussi for
helpful discussions and useful comments on various parts of this article.

15



References

[1] M. Adler, E. Halperin, R. Karp and V. Vazirani, A stochastic process on the hypercube with
applications to peer-to-peer networks, STOC 2003, 575-584.

[2] N. Alon, Problems and results in extremal combinatorics- I, Discrete Math. 273 (2003), 31-53.

[3] N. Alon and J. H. Spencer, The Probabilistic Method, Second Edition, Wiley, New York, 2000.

[4] J. Aspnes, R. Beigel, M. Furst and S. Rudich, The expressive power of voting polynomials,
Combinatorica 14 (1994), no. 2, 135–148.

[5] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.

[6] B. Bollobás, Random Graphs, Academic Press (1986).

[7] M. Chudnovsky, N. Robertson, P.D. Seymour and R. Thomas, The Strong Perfect Graph The-
orem, to appear.
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[15] L. Pyber, V. Rödl and E. Szemerédi, Dense Graphs without 3-regular Subgraphs , J. Combina-
torial Theory Ser. B 63 (1995), 41-54.

[16] S. Robinson, Why mathematicians now care about their hat color, New York Times, Science
Section, April 10, 2001.

[17] A. Sali and G. Simonyi, Oriented list colorings of undirected graphs, Contemporary trends in
discrete mathematics , DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 49, Amer. Math.
Soc., Providence, RI, 1999, 307–316.

[18] G. Seroussi, Private communication, 2001.

[19] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz Lapok 48 (1941), 436–452.

[20] Zs. Tuza and M. Voigt, Oriented list colorings of graphs, J. Graph Theory 36 (2001), 217–229.

16


