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Abstract

A disjoint system of type (∀,∃, k, n) is a collection C = {A1, . . . ,Am}
of pairwise disjoint families of k-subsets of an n-element set satis-

fying the following condition. For every ordered pair Ai and Aj of

distinct members of C and for every A ∈ Ai there exists a B ∈ Aj
that does not intersect A. Let Dn(∀,∃, k) denote the maximum

possible cardinality of a disjoint system of type (∀,∃, k, n). It is

shown that for every fixed k ≥ 2,

limn→∞Dn(∀,∃, k)
(
n

k

)−1

=
1
2
.

This settles a problem of Ahlswede, Cai and Zhang. Several related

problems are considered as well.

1 Introduction

In Extremal Finite Set Theory one is usually interested in determining

or estimating the maximum or minimum possible cardinality of a family

of subsets of an n element set that satisfies certain properties. See [5], [7]
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and [9] for a comprehensive study of problems of this type. In several re-

cent papers (see [3], [1],[2]), Ahlswede, Cai and Zhang considered various

extremal problems that study the maximum or minimum possible cardi-

nality of a collection of families of subsets of an n-set, that satisfies certain

properties. They observed that many of the classical extremal problems

dealing with families of sets suggest numerous intriguing questions when

one replaces the notion of a family of sets by the more complicated one

of a collection of families of sets.

In the present note we consider several problems of this type that deal

with disjoint systems. Let N = {1, 2, . . . , n} be an n element set, and let

C = {A1, . . . ,Am} be a collection of pairwise disjoint families of k-subsets

of N . C is a disjoint system of type (∃,∀, k, n) if for every ordered pair

Ai and Aj of distinct members of C there exists an A ∈ Ai which does

not intersect any member of Aj . Similarly, C is a disjoint system of type

(∀,∃, k, n) if for every ordered pair Ai and Aj of distinct members of C
and for every A ∈ Ai there exists a B ∈ Aj that does not intersect A.

Finally, C is a disjoint system of type (∃,∃, k, n) if for every ordered pair

Ai and Aj of distinct members of C there exists an A ∈ Ai and a B ∈ Aj
that does not intersect A.

Let Dn(∃,∀, k) denote the maximum possible cardinality of a disjoint

system of type (∃,∀, k, n). Let Dn(∀,∃, k) denote the maximum possible

cardinality of a disjoint system of type (∀,∃, k, n) and let Dn(∃,∃, k)

denote the maximum possible cardinality of a disjoint system of type

(∃,∃, k, n). Trivially, for every n,

Dn(∃,∀, 1) = Dn(∀,∃, 1) = Dn(∃,∃, 1) = n.

It is easy to see that every disjoint system of type (∃,∀, k, n) is also a

system of type (∀,∃, k, n), and every system of type (∀,∃, k, n) is also of

type (∃,∃, k, n). Therefore, for every n ≥ k

Dn(∃,∀, k) ≤ Dn(∀,∃, k) ≤ Dn(∃,∃, k).
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In this note we determine the asymptotic behaviour of these three

functions for every fixed k, as n tends to infinity.

Theorem 1.1 For every k ≥ 2

limn→∞Dn(∃,∀, k)

(
n

k

)−1

=
1

k + 1
.

Theorem 1.2 For every k ≥ 2

limn→∞Dn(∀,∃, k)

(
n

k

)−1

=
1
2
.

Corollary 1.3 For every k ≥ 2

limn→∞Dn(∃,∃, k)

(
n

k

)−1

=
1
2
.

Theorem 1.1 settles a conjecture of Ahlswede, Cai and Zhang [2], who

proved it for k = 2 [1]. The main tool in its proof is a result of Frankl

and Füredi [8]. The proof of Theorem 1.2, which settles another question

raised in [2] and proved for k = 2 in [1], is more complicated and combines

combinatorial and probabilistic arguments. A sketch of this proof and

the simple derivation of Corollary 1.3 from its assertion are presented in

Section 2. The proof of Theorem 1.1 and the full proof of Theorem 1.2

will appear in the full version of this paper.

2 Random graphs and disjoint systems

In this section we give a sketch of the proof of Theorem 1.2. We need the

following two probabilistic lemmas.

Lemma 2.1 (Chernoff, see e.g. [4], Appendix A) Let X be a ran-

dom variable with the binomial distribution B(n, p). Then for every a > 0

we have

Pr(|x− np| > a) < 2e−2a2/n. 2
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Let L be a graph-theoretic function. L satisfies the Lipschitz condition if

for any two graphs H,H ′ on the same set of vertices that differ only in

one edge we have |L(H)− L(H ′)| ≤ 1. Let G(n, p) denote, as usual, the

random graph on n labeled vertices in which every pair, randomly and

independently, is chosen to be an edge with probability p. (See, e.g., [6].)

Lemma 2.2 ([4], Chapter 7) Let L be a graph-theoretic function sat-

isfying the Lipschitz condition and let µ = E[L(G)] be the expectation of

L(G), where G = G(n, p). Then for any λ > 0

Pr(|L(G)− µ| > λ
√
m] < 2e−λ

2/2

where m =
(n

2

)
. 2

A Sketch of the proof of Theorem 1.2 Let n1 be the number of fam-

ilies containing only one element in a disjoint system of type (∀,∃, k, n).

Since sets in any two one-element families are disjoint we have n1 ≤ n/k.

This settles the required upper bound for Dn(∀,∃, k), since all other fam-

ilies contain at least 2 sets.

We prove the lower bound using probabilistic arguments. We show

that for any ε > 0 there are at least 1
2(1 − ε)

(n
k

)
families which form a

disjoint system of type (∀,∃, k, n), provided n is sufficiently large (as a

function of ε and k). Let G = G(n, p) be a random graph, where p is

a constant, to be specified later, which is very close to 1. We use this

graph to build another random graph G1, whose vertices are all k-cliques

in G. Two vertices of G1 are adjacent if and only if the induced subgraph

on the corresponding k-cliques in G is the union of two vertex disjoint

k-cliques with no edges between them. We prove that almost surely

(i.e.,with probability that tends to 1 as n tends to infinity) the following

two events happen. First, the number of vertices in G1 is greater than

(1 − ε/2)
(n
k

)
. Second, G1 is almost regular, i.e., for every (small) δ > 0

there exists a (large) number d such that the degree d(x) of any vertex x

of G1 satisfies (1− δ)d < d(x) < (1 + δ)d, provided n is sufficiently large.
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Suppose G1 = (V,E) satisfies these properties. By Vizing’s Theorem

[10], the chromatic index χ′(G1) of G1 satisfies χ′(G1) ≤ (1 + δ)d + 1.

Since for any x ∈ G1 we have d(x) ≥ (1 − δ)d, the number of edges |E|
of G1 is at least (1−δ)d|V |

2 . Hence there exists a matching in G1 which

contains at least (1−δ)d|V |
2 /χ′(G1) ∼ (1−δ)|V |

2(1+δ) edges. This matching covers

almost all vertices of G1, as δ is small, providing a system of pairs of

k-sets covering almost all the
(n
k

)
k-sets. Taking each pair as a family

we have a disjoint system of size at least 1
2(1− ε)

(n
k

)
and ε can be made

arbitrarily small for all n sufficiently large.

We next show that the resulting system is a disjoint system of type

(∀,∃, k, n). Assume this is false and let A = {A1, A2} and B = {B1, B2}
be two pairs where A1 ∩ Bi 6= ∅ for i = 1, 2. Choose x1 ∈ A1 ∩ B1

and x2 ∈ A1 ∩ B2. Since x1 and x2 belong to A1 they are adjacent in

G = G(n, p). However, x1 ∈ B1, x2 ∈ B2 and this contradicts the fact

that the subgraph of G induced on B1∪B2 has no edges between B1 and

B2. Thus the system is indeed of type (∀,∃, k, n) and

Dn(∀,∃, k) >
1
2

(1− ε)
(
n

k

)

for every ε > 0, provided n > n0(k, ε1), as needed.

The proof that indeed G1 has the required properties stated above

almost surely can be established using Lemmas 2.1 and 2.2. We omit the

details. 2

Proof of Corollary 1.3 Let n1 be the number of one element families

in a disjoint system of type (∃,∃, k, n). The trivial argument used in

the proof of Theorem 1.2 shows that n1 ≤ n/k. Since each other family

contains at least two elements

Dn(∃,∃, k) ≤ n

k
+

1
2

(
n

k

)
.

As observed in Section 1, Dn(∀,∃, k) ≤ Dn(∃,∃, k) and hence, by Theo-

rem 1.2, the desired result follows. 2
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