Bipartite cuts and judicious partitions

DRAFT

Noga Alon∗ Michael Krivelevich†

February 22, 2002

Abstract

Theorem 1 Let $G = (V, E)$ be a graph with m edges whose maximal bipartite cut has cardinality $c(G) = m/2 + \delta$. If $\delta \leq m/30$, then there exists a partition $V = V_1 \cup V_2$ of the vertex set of G such that

$$e(V_i) \leq \frac{m}{4} - \frac{\delta}{2} + \frac{10\delta^2}{m} + 3\sqrt{m}, \quad i = 1, 2.$$

Theorem 2 Let $G = (V, E)$ be a graph with m edges whose maximal bipartite cut has cardinality $c(G) = m/2 + \delta$. If $\delta \geq m/30$ and m is large enough, then there exists a partition $V = V_1 \cup V_2$ of the vertex set of G such that

$$e(V_i) \leq \frac{m}{4} - \frac{m}{100}, \quad i = 1, 2.$$

Proof of Theorem 1. The main ingredient of the proof is the following lemma.

Lemma 3 Let $G = (V, E)$ be a graph with m edges and with a maximal bipartite cut of cardinality $c(G) = m/2 + \delta$, where $\delta \leq \frac{m}{30}$. Suppose $V = V_1 \cup V_2$ is a partition of $V(G)$ for which $d(v, V_1) \leq d(v, V_2)$ for every vertex $v \in V_1$. If $e(V_1) \geq \frac{m}{4} - \frac{\delta}{2}$, then there exists a vertex $v \in V_1$ such that $d(v, V_1) \leq 3\sqrt{m}$ and $d(v, V_2) \leq \left(1 + \frac{10\delta}{m}\right)d(v, V_1)$.

∗Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: nogaa@post.tau.ac.il. Research supported in part by a USA Israeli BSF grant, by a grant from the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.

†Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: krivelev@post.tau.ac.il. Research supported in part by a USA-Israel BSF Grant, by a grant from the Israel Science Foundation and by a Bergmann Memorial Grant.
Proof. We prove the lemma by showing that the total degree of vertices of \(V_1 \) violating any of the required conditions does not reach the total degree of vertices in \(V_1 \).

Let first \(T_1 = \{ v \in V_1 : d(v, V_1) > 3\sqrt{m} \} \). Observe that as \(d(v, V_1) \leq d(v, V_2) \) for every vertex \(v \in V_2 \), if follows that

\[
2e(V_1) = \sum_{v \in V_1} d(v, V_1) \leq \sum_{v \in V_1} d(v, V_2) = e(V_1, V_2) ,
\]

implying \(e(V_1) \leq m/3 \). Thus \(|T_1| \leq 2e(V_1)/(3\sqrt{m}) \leq 2\sqrt{m}/9 \). Therefore the set \(T_1 \) spans at most \(2m/81 \) edges. As in the summation \(\sum_{v \in T_1} d(v, V_1) \) the edges spanned by \(T_1 \) are counted twice and every other edge inside \(V_1 \) is counted at most once, we get:

\[
\sum_{v \in T_1} d(v, V_1) \leq e(V_1) + e(T_1) \leq e(V_1) + \frac{2m}{81} . \tag{1}
\]

Define now \(T_2 = \{ v \in V_1 : d(v, V_2) > \left(1 + \frac{10\delta}{m} \right) d(v, V_1) \} \). Then

\[
e(V_1, V_2) = \sum_{v \in T_2} d(v, V_2) + \sum_{v \in V_1 \setminus T_2} d(v, V_2) > \left(1 + \frac{10\delta}{m} \right) \sum_{v \in T_2} d(v, V_1) + \sum_{v \in V_1 \setminus T_2} d(v, V_1) \]

\[
= \sum_{v \in V_1} d(v, V_1) + \frac{10\delta}{m} \sum_{v \in T_2} d(v, V_1) = 2e(V_1) + \frac{10\delta}{m} \sum_{v \in T_2} d(v, V_1) ,
\]

implying:

\[
\sum_{v \in T_2} d(v, V_1) < \frac{m}{10\delta} (e(V_1, V_2) - 2e(V_1)) .
\]

Observe that \(e(V_1, V_2) \leq c(G) = \frac{m}{2} + \delta \) and that by the lemma assumption \(e(V_1) \geq \frac{m}{4} - \frac{\delta}{2} \). Hence

\[
\sum_{v \in T_2} d(v, V_1) < \frac{m}{10\delta} \left(\frac{m}{2} + \delta - 2 \left(\frac{m}{4} - \frac{\delta}{2} \right) \right) = \frac{m}{5} . \tag{2}
\]

From (1) and (2) we derive:

\[
\sum_{v \in T_1 \cup T_2} d(v, V_1) < e(V_1) + \frac{2m}{81} + \frac{m}{5} < e(V_1) + 0.23m . \tag{3}
\]

On the other hand, recalling our assumption on \(\delta \), we can see that

\[
\sum_{v \in V_1} d(v, V_1) = 2e(V_1) \geq e(V_1) + \frac{m}{4} - \frac{\delta}{2} \geq e(V_1) + \frac{m}{4} - \frac{m}{60} > e(V_1) + 0.23m . \tag{4}
\]

Comparing (3) and (4) shows that not all vertices of \(V_1 \) are in the union of \(T_1 \) and \(T_2 \). It follows from the definitions of \(T_1 \) and \(T_2 \) that a vertex in \(V_1 \setminus (T_1 \cup T_2) \) meets the requirements of the lemma. \(\square \)

We now prove Theorem 1. Let \(V = U_1 \cup U_2 \) be a partition of \(V \) satisfying \(e(U_1, U_2) = c(G) = \frac{m}{2} + \delta \) and \(e(U_1) \geq e(U_2) \). Clearly for every vertex \(u \in U_1 \), \(d(u, U_1) \leq d(u, U_2) \), as otherwise
moving \(u \) from \(U_1 \) to \(U_2 \) would create a bipartite cut of size larger than \(e(U_1, U_2) = e(G) \). We will achieve a desired partition by starting from \((U_1, U_2)\) and moving a number of vertices from \(U_1 \) to \(U_2 \) in order to balance the number of edges spanned by those subsets. Lemma 3 will help us to maintain the size of the cut almost unchanged. Formally, we start by assigning \(V_1 = U_1, V_2 = U_2 \).

Then, as long as \(e(V_1) \geq \frac{m}{4} - \frac{\delta}{2} + 3\sqrt{m} \), we find a vertex \(v_i \in V_1 \), for which \(d(v_i, V_1) \leq 3\sqrt{m} \) and \(d(v_i, V_2) \leq \left(1 + \frac{10\delta}{m}\right)d(v_i, V_1) \) and transfer it to \(V_2 \). It is easy to see that the conditions of Lemma 3 still apply and therefore such a vertex indeed can be found. We denote \(d(v_i, V_1) = a_i, d(v_i, V_2) = b_i \). Note that \(b_i \leq \left(1 + \frac{10\delta}{m}\right)a_i \).

Let us look at the final partition \((V_1, V_2)\) after the above described process has terminated. Suppose the vertices moved from \(V_1 \) to \(V_2 \) are \(v_1, \ldots, v_t \). Clearly,

\[
e(V_1) < \frac{m}{4} - \frac{\delta}{2} + 3\sqrt{m}.
\]

We now estimate from above the number of edges in \(V_2 \). To this end, denote \(e(U_1) = m_1 \), then \(e(U_2) = m - e(U_1, U_2) - e(U_1) = \frac{m}{2} - \delta - m_1 \). As \(2e(U_1) \leq e(U_1, U_2) = \frac{m}{2} + \delta \), we get \(m_1 \leq \frac{m}{4} + \frac{\delta}{2} \).

Notice that while moving a vertex \(v_i \) from \(V_1 \) to \(V_2 \) during the process, we deleted \(a_i \) edges from \(V_1 \) and added \(b_i \) edges to \(V_2 \). Therefore for the final partition \((V_1, V_2)\) we get:

\[
e(V_1) = e(U_1) - \sum_{i=1}^{t} a_i = m_1 - \sum_{i=1}^{t} a_i , \tag{6}
\]

\[
e(V_2) = e(U_2) + \sum_{i=1}^{t} b_i = \frac{m}{2} - \delta - m_1 + \sum_{i=1}^{t} b_i \leq \frac{m}{2} - \delta - m_1 + \left(1 + \frac{10\delta}{m}\right) \sum_{i=1}^{t} a_i . \tag{7}
\]

As each time we moved from \(V_1 \) to \(V_2 \) a vertex \(v_i \) with \(d(v_i, V_1) \leq 3\sqrt{m} \), in the final partition \((V_1, V_2)\), \(e(V_1) \geq \frac{m}{4} - \frac{\delta}{2} \). Hence from (6)

\[
\sum_{i=1}^{t} a_i = m_1 - e(V_1) \leq m_1 - \frac{m}{4} + \frac{\delta}{2} .
\]

Therefore it follows from (7) that

\[
e(V_2) \leq \frac{m}{2} - \delta - m_1 + \left(1 + \frac{10\delta}{m}\right) \left(m_1 - \frac{m}{4} + \frac{\delta}{2}\right) \\
= \frac{m}{4} - \frac{\delta}{2} + \frac{10\delta}{m} \left(m_1 - \frac{m}{4} + \frac{\delta}{2}\right) \\
\leq \frac{m}{4} - \frac{\delta}{2} + \frac{10\delta^2}{m} .
\]

This together with (5) establishes the theorem. \(\square \)

Proof of Theorem 2. The proof here is quite similar to that of Theorem 1, with parameters tuned so as to guarantee the error term \(m/100 \).
We claim that the desired partition can be obtained using the following procedure. Start with an optimal bipartite cut $V = U_1 \cup U_2$, for which $e(U_1, U_2) = c(G) = \frac{m}{4} + \delta$ and $e(U_1) \geq e(U_2)$. Initialize $V_1 = U_1$, $U_2 = V_2$, and then, as long as V_1 contains a vertex v_i for which
\[
d(v_i, V_1) \leq m/400
\]
and
\[
d(v_i, V_2) \leq \left(1 + \frac{\delta + \frac{m}{100}}{23m/100}\right) d(v_i, V_1),
\]
move v_i to V_2.

Let us show first that the algorithm terminates successfully, i.e. reaches the stage where $e(V_1) \leq \frac{m}{4} - \frac{m}{100}$. To do so we need to show that as long as the last condition is not fulfilled a required vertex $v_i \in V_1$, satisfying conditions (8) and (9) exists. Suppose we are at some intermediate stage and the current partition is (V_1, V_2). Define $T_1 = \{v \in V_1 : d(v, V_1) \geq m/400 \}$. Then $|T_1| \leq 2e(V_1)/(m/400) \leq 2m/(3m/400) = 800/3$, and therefore T spans at most $(800/3)^2/2 \leq 36000$ edges. Hence similarly to the proof of Theorem 1,
\[
\sum_{v \in T_1} d(v, V_1) \leq e(V_1) + e(T_1) < e(V_1) + 36000.
\]
Set now
\[
T_2 = \{v \in V_1 : d(v, V_2) > \left(1 + \frac{\delta + \frac{m}{100}}{23m/100}\right) d(v, V_1)\}.
\]
Then again as in the proof of Theorem 1 we get:
\[
\sum_{v \in T_2} d(v, V_1) < \frac{23m/100}{\delta + \frac{m}{50}} (e(V_1, V_2) - 2e(V_1))
\leq \frac{23m/100}{\delta + \frac{m}{50}} \left(\frac{m}{2} + \delta - 2 \left(\frac{m}{4} - \frac{m}{100}\right)\right) = \frac{23m}{100}.
\]
Therefore from (10) and (11) we get
\[
\sum_{v \in T_1 \cup T_2} d(v, V_1) < e(V_1) + 36000 + \frac{23m}{100} < e(V_1) + 0.24m < 2e(V_1)
\]
for sufficiently large m, and hence $V_1 \setminus (T_1 \cup T_2) \neq \emptyset$, implying the existence of a vertex with the required properties.

Let us now estimate the number of edges spanned by the final sets V_1 and V_2. Obviously,
\[
e(V_1) \leq \frac{m}{4} - \frac{m}{100}.
\]
Denote $e(U_1) = m_1$, then $m_1 \leq e(U_1, U_2)/2 = \frac{m}{4} + \frac{\delta}{2}$. Suppose we transferred from V_1 to V_2 vertices v_1, \ldots, v_t, whose degrees (at the time of movement) were $a_i = d(v_i, V_1)$ and $b_i = d(v_i, V_2)$.

4
As in the end $e(V_1) \geq \frac{m}{4} - \frac{m}{100} - \frac{m}{400} = \frac{19m}{80}$, we get:

$$
\sum_{i=1}^{t} a_i \leq m_1 - \frac{19m}{80},
$$

implying:

$$
\sum_{i=1}^{t} b_i \leq \left(1 + \frac{\delta + \frac{m}{50}}{\frac{23m}{100}}\right) \left(m_1 - \frac{19m}{80}\right).
$$

Therefore:

$$
e(V_2) = \frac{m}{2} - \delta - m_1 + \sum_{i=1}^{t} b_i < \frac{m}{2} - \delta - m_1 + \left(1 + \frac{\delta + \frac{m}{50}}{\frac{23m}{100}}\right) \left(m_1 - \frac{19m}{80}\right)
$$

$$
= \frac{21m}{80} - \delta + \frac{(\delta + \frac{m}{50}) \left(m_1 - \frac{19m}{80}\right)}{\frac{23m}{80}}
$$

$$
\leq \frac{21m}{80} - \delta + \frac{(\delta + \frac{m}{50}) \left(\frac{\delta}{2} + \frac{m}{80}\right)}{\frac{23m}{80}}.
$$

We may assume that $\delta \leq \frac{13m}{50}$, as otherwise the initial partition (U_1, U_2) satisfies the theorem requirements. An easy check shows that for every δ in the interval $[\frac{m}{30}, \frac{13m}{50}]$ the expression in the last display, viewed as a quadratic function of the parameter δ, is strictly less than $0.24m$. This together with (12) completes the proof of Theorem 2. □