Bipartite cuts and judicious partitions

DRAFT

Noga Alon∗ Michael Krivelevich†

February 22, 2002

Abstract

Theorem 1 Let \(G = (V, E) \) be a graph with \(m \) edges whose maximal bipartite cut has cardinality \(c(G) = \frac{m}{2} + \delta \). If \(\delta \leq m/30 \), then there exists a partition \(V = V_1 \cup V_2 \) of the vertex set of \(G \) such that
\[
e(V_i) \leq \frac{m}{4} - \frac{\delta}{2} + \frac{10\delta^2}{m} + 4\sqrt{m}, \quad i = 1, 2.
\]

Proof of Theorem 1. The main instrument of the proof is the following lemma.

Lemma 2 Let \(G = (V, E) \) be a graph with \(m \) edges and with a maximal bipartite cut of cardinality \(c(G) = \frac{m}{2} + \delta \). Let \(\delta \leq m/30 \). Suppose \(V = V_1 \cup V_2 \) is a partition of \(V(G) \) for which \(d(v, V_1) \leq d(v, V_2) \) for every vertex \(v \in V \). If \(e(V_1) \geq \frac{m}{4} - \frac{\delta}{2} \), then there exists a vertex \(v \in V_1 \) such that \(d(v, V_1) \leq 3\sqrt{m} \) and \(d(v, V_2) \leq \left(1 + \frac{10\delta}{m}\right) d(v, V_1) \).

Proof. We prove the lemma by showing that the total degree of vertices of \(V_1 \) violating any of the required conditions does not reach the total degree of vertices in \(V_1 \).

Let first \(T_1 = \{v \in V_1: d(v, V_1) > 3\sqrt{m}\} \). Observe that as \(d(v, V_1) \leq d(v, V_2) \) for every vertex \(v \in V_2 \), if follows that
\[
2e(V_1) = \sum_{v \in V_1} d(v, V_1) \leq \sum_{v \in V_1} d(v, V_2) = e(V_1, V_2),
\]

∗Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: nogaa@post.tau.ac.il. Research supported in part by a USA Israeli BSF grant, by a grant from the Israel Science Foundation and by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University.

†Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: krivelev@post.tau.ac.il. Research supported in part by a USA-Israel BSF Grant, by a grant from the Israel Science Foundation and by a Bergmann Memorial Grant.
implying $e(V_1) \leq m/3$. Then $|T_1| \leq 2e(V_1)/(3\sqrt{m}) \leq 2\sqrt{m}/9$. Therefore the set T_1 spans at most $2m/81$ edges. As in the summation $\sum_{v \in T_1} d(v, V_1)$ the edges spanned by T_1 are counted twice and every other edge inside V_1 is counted at most once, we get:

$$\sum_{v \in T_1} d(v, V_1) \leq e(V_1) + e(T_1) \leq e(V_1) + \frac{2m}{81} . \quad (1)$$

Let now $T_2 = \{ v \in V_1 : d(v, V_2) > \left(1 + \frac{10\delta}{m}\right)d(v, V_1) \}$. Then

$$e(V_1, V_2) = \sum_{v \in T_2} d(v, V_1) + \sum_{v \in V_1 \setminus T_2} d(v, V_2) > \left(1 + \frac{10\delta}{m}\right)\sum_{v \in T_2} d(v, V_1) + \sum_{v \in V_1 \setminus T_2} d(v, V_1)$$

$$= \sum_{v \in V_1} d(v, V_1) + \frac{10\delta}{m} \sum_{v \in T_2} d(v, V_1) = 2e(V_1) + \frac{10\delta}{m} \sum_{v \in T_2} d(v, V_1) ,$$

implying:

$$\sum_{v \in T_2} d(v, V_1) < \frac{m}{10\delta} (e(V_1, V_2) - 2e(V_1)) .$$

Observe that $e(V_1, V_2) \leq c(G) = \frac{m}{2} + \delta$ and that by the lemma assumption $e(V_1) \geq \frac{m}{4} - \frac{\delta}{2}$. Hence

$$\sum_{v \in T_2} d(v, V_1) < \frac{m}{10\delta} \left(\frac{m}{2} + \delta - 2 \left(\frac{m}{4} - \frac{\delta}{2}\right)\right) = \frac{m^2}{5} . \quad (2)$$

From (1) and (2) we derive:

$$\sum_{v \in T_1 \cup T_2} d(v, V_1) < e(V_1) + \frac{2m}{81} + \frac{m}{5} < e(V_1) + 0.23m . \quad (3)$$

On the other hand, recalling our assumption on δ, we can see that

$$\sum_{v \in V_1} d(v, V_1) = 2e(V_1) \geq e(V_1) + \frac{m}{4} - \frac{\delta}{2} \geq e(V_1) + \frac{m}{4} - \frac{m}{60} > e(V_1) + 0.23m . \quad (4)$$

Comparing (3) and (4) shows that not all vertices of V_1 are in the union of T_1 and T_2. It follows from the definitions of T_1 and T_2 that a vertex in $V_1 \setminus (T_1 \cup T_2)$ meets the requirements of the lemma. \hfill \Box

We now prove Theorem 1. Let $V = U_1 \cup U_2$ be a partition of V satisfying $e(U_1, U_2) = c(G) = \frac{m}{2} + \delta$ and $e(U_1) \geq e(U_2)$. Clearly for every vertex $u \in U_1$, $d(u, U_1) \leq d(u, U_2)$, as otherwise moving u from U_1 to U_2 would create a bipartite cut of size larger than $e(U_1, U_2) = c(G)$. We will achieve a desired partition by starting from (U_1, U_2) and moving a number of vertices from U_1 to U_2 in order to balance the number of edges spanned by those subsets. Lemma 2 will help us to maintain the size of the cut almost unchanged. Formally, we start by assigning $V_1 = U_1$, $V_2 = U_2$. Then, as long as $e(V_1) \geq \frac{m}{4} - \frac{\delta}{2}$, we find a vertex $v_i \in V_1$, for which $d(v_i, V_1) \leq 3\sqrt{m}$.
and \(d(v_i, V_2) \leq \left(1 + \frac{10\delta}{m} \right) d(v_i, V_1) \) and transfer it to \(V_2 \). It is easy to see that the conditions of Lemma 2 still apply and therefore such a vertex indeed can be found. We denote \(d(v_i, V_1) = a_i \), \(d(v_i, V_2) = b_i \). Note that \(b_i \leq \left(1 + \frac{10\delta}{m} \right) a_i \).

Let us look at the final partition \((V_1, V_2)\) after the above described process has terminated. Suppose the vertices moved from \(V_1 \) to \(V_2 \) are \(v_1, \ldots, v_t \). Clearly,

\[
e(V_1) < \frac{m}{4} - \frac{\delta}{2}.
\]

We now estimate from above the number of edges in \(V_2 \). To this end, denote \(e(U_1, U_2) = m \), then

\[
e(U_2) = m - e(U_1, U_2) - e(U_1) = \frac{m}{2} - \delta - m_1.
\]

As \(2e(U_1) \leq e(U_1, U_2) = \frac{m}{2} + \delta \), we get \(m_1 \leq \frac{m}{4} + \frac{\delta}{2} \).

Notice that while moving a vertex \(v_i \) from \(V_1 \) to \(V_2 \) during the process, we deleted \(a_i \) edges from \(V_1 \) and added \(b_i \) edges to \(V_2 \). Therefore for the final partition \((V_1, V_2)\) we get:

\[
e(V_1) = e(U_1) - \sum_{i=1}^{t} a_i = m_1 - \sum_{i=1}^{t} a_i,
\]

\[
e(V_2) = e(U_2) - \sum_{i=1}^{t} b_i = m_1 - \delta - m_1 + \sum_{i=1}^{t} b_i \leq \frac{m}{2} - \delta - m_1 + \left(1 + \frac{10\delta}{m} \right) \sum_{i=1}^{t} a_i.
\]

As each time we moved from \(V_1 \) to \(V_2 \) a vertex \(v_i \) with \(d(v_i, V_1) \leq 3\sqrt{m} \), in the final partition \((V_1, V_2)\), \(|V_1| \geq \frac{m}{4} - \frac{\delta}{2} - 3\sqrt{m}\). Hence from (6)

\[
\sum_{i=1}^{t} a_i = m_1 - e(V_1) \leq m_1 - \frac{m}{4} + \frac{\delta}{2} + 3\sqrt{m}.
\]

Therefore it follows from (7) that

\[
e(V_2) \leq \frac{m}{2} - \delta - m_1 + \left(1 + \frac{10\delta}{m} \right) \left(\frac{m}{4} - \frac{m}{4} + \frac{\delta}{2} + 3\sqrt{m} \right)
\]

\[
= \frac{m}{4} - \frac{\delta}{2} + 3\sqrt{m} + \frac{10\delta}{m} \left(\frac{m}{4} - \frac{\delta}{2} + 3\sqrt{m} \right)
\]

\[
\leq \frac{m}{4} - \frac{\delta}{2} + 3\sqrt{m} + \frac{10\delta}{m} \left(\delta + 3\sqrt{m} \right)
\]

\[
= \frac{m}{4} - \frac{\delta}{2} + \frac{10\delta^2}{m} + 3\sqrt{m} + \frac{30\delta}{\sqrt{m}}
\]

\[
= \frac{m}{4} - \frac{\delta}{2} + \frac{10\delta^2}{m} + 4\sqrt{m}.
\]

This together with (5) establishes the theorem. \(\square \)