Disjoint Simplices and Geometric Hypergraphs

J. AKIYAMA* AND N. ALON*

* Department of Mathematics
Tokai University
Hiratsuka 259-12, Japan

† Department of Mathematics
Tel Aviv University
69978 Tel Aviv, Israel

and

Bell Communications Research
Morristown, New Jersey 07960

INTRODUCTION

Let \(A \) be a set of \(2n \) points in general position in the Euclidean plane \(\mathbb{R}^2 \), and suppose \(n \) of the points are colored red and the remaining \(n \) are colored blue. A celebrated Putnam problem (see [6]) asserts that there are \(n \) pairwise disjoint straight line segments matching the red points to the blue points. To show this, consider the set of all \(n! \) possible matchings and choose one, \(M \), that minimizes the sum of lengths \(l(M) \) of its line segments. It is easy to show that these line segments cannot intersect. Indeed, if the two segments \(v_1, b_1 \) and \(v_2, b_2 \) intersect, where \(v_1, v_2 \) are two red points and \(b_1, b_2 \) are two blue points, the matching \(M' \) obtained from \(M \) by replacing \(v_1, b_1 \) and \(v_2, b_2 \) by \(v_1, b_2 \) and \(v_2, b_1 \) satisfies \(l(M') < l(M) \), contradicting the choice of \(M \). Our first result in this paper is a generalization of this result to higher dimensions.

THEOREM 1. Let \(A \) be a set of \(d \cdot n \) points in general position in \(\mathbb{R}^d \), and let \(A = A_1 \cup A_2 \cup \ldots \cup A_d \) be a partition of \(A \) into \(d \) pairwise disjoint sets, each consisting of \(n \) points. Then there are \(n \) pairwise disjoint \((d - 1)\)-dimensional simplices, each containing precisely one vertex from each \(A_i \), \(1 \leq i \leq d \).

We prove this theorem in the next section. The proof is short but uses a non-elementary tool: the well-known Borsuk-Ulam theorem.

Combining Theorem 1 with an old result of Erdős from extremal graph theory we obtain a corollary dealing with geometric hypergraphs. A geometric \(d \)-hypergraph is a pair \(G = (V, E) \), where \(V \) is a set of points called vertices, in general position in \(\mathbb{R}^d \), and \(E \) is a set of (closed) \((d - 1)\)-dimensional simplices called edges, whose vertices are points of \(V \). If \(d = 2 \), \(G \) is called a geometric graph. It is well known (see [3], [5]) that every geometric graph with \(n \) vertices and \(n + 1 \) edges contains two disjoint edges, two nonintersecting edges, and this result is the best possible. The number of edges that guarantees \(l \) pairwise disjoint edges is not known for \(l > 2 \), although Perles [7] determined the exact number for the case that the set of vertices
V is the set of vertices of a convex polygon. The situation seems much more difficult for geometric d-hypergraphs, when $d > 2$. Even the number of edges that guarantees two disjoint simplices is not known in this case. Clearly this number is greater than $n(d) = \binom{n-1}{d-1}$ (simply take all edges containing a given point) and is at most $\binom{n}{d}$. In the final section we prove the following theorem, that implies that for every fixed d, $l \geq 2$, every geometric d-hypergraph on n vertices that contains no l pairwise nonintersecting edges has $O(n^l)$ edges.

Theorem 2: Every geometric d-hypergraph with n vertices and at least $n^{d-1+(d-1)}$ edges contains 1 pairwise nonintersecting edges.

It is worth noting that the following, much stronger conjecture seems plausible.

Conjecture: For every $l, d \geq 2$ there exists a constant $c = c(l, d)$ such that every geometric d-hypergraph with n vertices and at least $c \cdot n^{d-1}$ edges contains l pairwise nonintersecting edges.

We do not know how to prove this conjecture, even for $d = 2, l = 3$.

Proof of Theorem 1

We need the following lemma, sometimes called the "Ham-Sandwich theorem," which is a well-known consequence of the Borsuk-Ulam theorem (see [1], [2]).

Lemma 1: Let $\mu_1, \mu_2, \ldots, \mu_d$ be d continuous probability measures in \mathbb{R}^d. Then there exists a hyperplane H in \mathbb{R}^d that bisects each of the d measures, that is, $\mu_i(H^+) = \mu_i(H^-)$ for all $1 \leq i \leq d$, where H^+ and H^- denote, respectively, the open positive side and the open negative side of H.

Theorem 1 will be derived from the following lemma.

Lemma 2: Let A_1, A_2, \ldots, A_d be as in Theorem 1. Then there exists a hyperplane H in \mathbb{R}^d such that

$$|H^+ \cap A_i| = \left\lfloor \frac{n}{2} \right\rfloor \quad \text{and} \quad |H^- \cap A_i| = \left\lceil \frac{n}{2} \right\rceil$$

for all $1 \leq i \leq d$. \hfill (1)

(Notice that if n is odd (1) implies that H contains precisely one point from each A_i.)

Proof: Replace each point $p \in A_i$ by a ball of radius ϵ centered in p, where ϵ is small enough to guarantee that no hyperplane intersects more than d balls. Associate each ball with a uniformly distributed measure of $1/n$. For $1 \leq i \leq d$ and a (Lebesgue)-measurable subset T of \mathbb{R}^d, define $\mu_i(T)$ as the total measure of balls centered at a point of A_i captured by T. Clearly $\mu_1, \mu_2, \ldots, \mu_d$ are continuous probability measures. By Lemma 1 there exists a hyperplane H in \mathbb{R}^d such that $\mu_i(H^+) = \mu_i(H^-)$ for all $1 \leq i \leq d$. If n is odd, this implies that H intersects at least one ball centered at a point of A_i. However, H cannot intersect more than d balls altogether, and thus it intersects precisely one ball centered at a point of A_i, and it must bisect these d balls. Hence, for odd n, H satisfies (1). If n is even, H intersects at most d balls, and by slightly rotating H we can divide the centers of these balls between H^+ and H^- as we wish, without respect to H. One can easily satisfy (1). \hfill \Box

We can now prove Theorem 1 assuming the result for the $d-1$-dimensional case. Let H be a hyperplane, guaranteeing that $C_i \cap A_i$ for $1 \leq i \leq n$ contains precisely one vertex from each C_i. Clearly it lies in H.

We thus obtained $2 \cdot \lceil n/2 \rceil$ with the simplex spanned by A_1, \ldots, A_d, and we have proved Theorem 1. \hfill \Box

Proof of Theorem 2

We need the following result.

Lemma 3 [4]: Every d-uniform hypergraph on n vertices contains a complete d-uniform subhypergraph on at least $n \frac{n^{d-1}}{d-1}$ edges.

Now suppose that G is a hypergraph on n vertices. Then G contains a complete d-uniform subhypergraph on at least $n \frac{n^{d-1}}{d-1}$ edges. \hfill \Box

7. PERLES, M. A. Unpublished notes.
CADEMY OF SCIENCES

seems much more difficult
number of edges that guarantees
is greater than
and is at most \(\binom{n}{d} \). In the
and contains no \(l \)-pairwise noninter-
vertices and at least \(n^{d-(1/2)} \)

jecture seems plausible.

constant \(c = c(l, d) \) such that
at least \(c \cdot n^{d-1} \) edges contains \(l \)

for \(d = 2, l = 3 \).

1. Then there exists a hyper-

2. for all \(1 \leq i \leq d \), \(\beta_i \) is

3. \(1/n \). For \(1 \leq i \leq d \) and \(A_i \)

equidistant from every point \(p \) in \(\epsilon \)

4. in \(R^d \) such that \(\mu(H) = 1/2 \)

REFERENCES

2. 20: 177-190.

183-190.

AKIYAMA & ALON: SIMPLICES & HYPERGRAPHS

\(H^+ \) and \(H^- \) as we wish, without changing the position of each other point of \(A \) with
respect to \(H \). One can easily check that this guarantees the existence of an \(H \)
satisfying (1).

We can now prove Theorem 1 by induction on \(n \). For \(n = 1 \) the result is trivial.
Assuming the result for all \(n, n' > n \), let \(A, A_1, A_2, \ldots, A_d \) be as in Theorem 1 and
let \(H \) be a hyperplane, guaranteed by Lemma 2, satisfying (1). Put \(B_i = H^+ \cap A_i \)
and \(C_i = H^- \cap A_i \), for \(1 \leq i \leq d \), \(B = B_1 \cup \cdots \cup B_d \) and \(C = C_1 \cup \cdots \cup C_d \).
By applying the induction hypothesis to \(B, B_1, \ldots, B_d \) and \(C, C_1, \ldots, C_d \), we obtain two
sets \(S_1 \) and \(S_2 \) of \([n/2]\) pairwise disjoint simplices each, where each simplex of \(S_1 \)
contains precisely one vertex from each \(B_i \) and each simplex of \(S_2 \) contains precisely
one vertex from each \(C_i \). Clearly, all the simplices in \(S_1 \) lie in \(H^+ \) and all those in \(S_2 \)
lie in \(H^- \).

We thus obtained \(2 \cdot \lceil n/2 \rceil \) pairwise nonintersecting simplices. These, together
with the simplex spanned by \(A_i \cap H \) if \(n \) is odd, complete the induction and the proof of Theorem 1.

PROOF OF THEOREM 2

We need the following result of Erdös.

Lemma 3 (4): Every \(d \)-uniform hypergraph with \(n \) vertices and at least \(n^{d-(1/2)} \)
edges contains a complete \(d \)-partite subhypergraph on \(d \) classes of \(d \) vertices each.

Now suppose that \(G \) is a geometric \(d \)-hypergraph with \(n \) vertices and at least \(n^{d-(1/2)} \)
edges. By Lemma 3 there is a set \(A \) of \(d \) vertices of \(G \), \(A = A_1 \cup \cdots \cup A_d \),
where \(|A_i| = l \) for each \(i \), and all the \(d \)-simplices consisting of one
vertex from each \(A_i \) are edges of \(G \). The assertion of Theorem 2 now follows from
Theorem 1.