EEE 598C: Statistical Pattern Recognition Lecture Note 6: Non-parametric Estimation

Darryl Morrell

October 1, 1996

1 Introduction

In this lecture note, we consider ways to estimate the density $f(\mathbf{x}|\omega_i)$ and the probability $P(\omega_i|\mathbf{x})$ from a training set $\mathcal{X} = {\mathbf{x}_1, \ldots, \mathbf{x}_n}$. We will consider non-parametric approaches, in which the density functions are not parameterized by an unknown parameter.

Consider the estimation of a density function $f(\mathbf{x})$ from the set of training data. Let \mathcal{R} be a region in the feature space with volume V, and let P be the probability that \mathbf{X} falls in this region:

$$P = Prob(\mathbf{X} \in \mathcal{R}) \approx f(\mathbf{x})V$$

where $\mathbf{x} \in \mathcal{R}$. Let *k* be the number of elements of \mathcal{X} that fall into region \mathcal{R} . Then an estimate of *P* is

$$\hat{P} = \frac{k}{n}$$

Combining the two above equations, we get an estimate of $f(\mathbf{x})$:

$$\hat{f}(\mathbf{x}) = \frac{k}{nV} \tag{1}$$

As *n* goes to infinity, \hat{P} converges (in probability) to *P*, and $\hat{f}(\mathbf{x})$ converges to the (spatial) average value of $f(\mathbf{x})$ over the region \mathcal{R} . In order to get an estimate of $f(\mathbf{x})$ for a given value of \mathbf{x} , we must let the volume of the region \mathcal{R} go to zero in such a way that \mathbf{x} is always contained in \mathcal{R} . If the number of samples *n* is fixed, then as *V* goes to zero, \mathcal{R} will either contain no training points, in which case $\hat{f}(\mathbf{x}) = 0$, or it will contain one or more training points, in which case $\hat{f}(\mathbf{x}) = \infty$. This is not a particularly useful estimate.

Since in practice, we always have a finite number of training samples, we cannot let *V* approach zero. We will have to accept some variance in the estimate \hat{P} (and thus in $\hat{f}(\mathbf{x})$), as well as some spatial averaging in $\hat{f}(\mathbf{x})$.

From a theoretical standpoint, we can consider the behavior of the estimate $\hat{f}(\mathbf{x})$ as the number of training samples goes to infinity. Ideally, we would like $\hat{f}(\mathbf{x})$ to converge to

 $f(\mathbf{x})$. We consider the following way of creating this estimate at \mathbf{x} . We use a sequence of regions $\mathcal{R}_1, \mathcal{R}_2, \ldots$, each containing \mathbf{x} . \mathcal{R}_1 is to be used in estimating $f(\mathbf{x})$ with one training sample, \mathcal{R}_2 is to be used in estimating $f(\mathbf{x})$ with two training samples, etc. Let V_n be the volume of \mathcal{R}_n , k_n be the number of training samples falling in \mathcal{R}_n , and $\hat{f}_n(\mathbf{x})$ be the *n*th estimate of $f(\mathbf{x})$:

$$\hat{f}_n(\mathbf{x}) = \frac{k_n}{nV_n}$$

In order for $\hat{f}_n(\mathbf{x})$ to converge to $f(\mathbf{x})$, we need three conditions:

- 1. $\lim_{n\to\infty} V_n = 0$; this ensures that the ratio converges to $f(\mathbf{x})$ if f is continuous.
- 2. $\lim_{n\to\infty} k_n = \infty$; this ensures that the ratio converges in probability to *P*.
- 3. $\lim_{n\to\infty} k_n/n = 0$; this ensures that the ratio converges.

There are two ways that these conditions might be satisfied. One is to shrink an initial region by specifying the volume V_n as a decreasing function of n. The other is to specify k_n as some function of n; the volume V_n is chosen to include k_n neighbors of **x**.

2 Parzen Windows

Let $\varphi(\mathbf{u})$ be a function that satisfies the two following requirements:

$$\varphi(\mathbf{u}) \ge 0$$

$$\int \varphi(\mathbf{u}) d\mathbf{u} = 1$$

Define V_n as h_n^d , where h_n is a parameter that represents the width of the window. Define

$$\delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right)$$

 δ_n is a *Parzen window*. We can use it to compute an estimate $\hat{f}_n(\mathbf{x})$ from *n* training samples \mathbf{x}_1 through \mathbf{x}_n :

$$\hat{f}_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i) = \frac{1}{n V_n} \sum_{i=1}^n \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$

This formula is essentially an implementation of Equation (1); the summation term can be interpreted as counting the number of training vectors that fall within a distance of $h_n/2$ to **x**.

The parameter h_n affects both the magnitude and width of δ_n . If h_n is large, δ_n is broad and has a small amplitude; in this case, $\hat{f}_n(\mathbf{x})$ is a slowly changing function of \mathbf{x} , and is a highly smoothed version of $f(\mathbf{x})$. On the other hand, if h_n is small, δ_n is a narrow sharply peaked function (as h_n approaches zero, δ_n approaches a Dirac delta function), so $\hat{f}_n(\mathbf{x})$ is the superposition of n pulses centered at the training vectors. $\hat{f}_n(\mathbf{x})$ is a "noisy" estimate of $f(\mathbf{x})$. In practice, the choice of h_n determines the usefullness of the estimate $\hat{f}_n(\mathbf{x})$; if h_n is too big, the estimate is too smooth, while if h_n is too small, the estimate is too noisy.

The estimate $\hat{f}_n(\mathbf{x})$ depends on the values of the *n* training vectors. Since these vectors are random vectors, the estimate is a random variable. Thus, we can consider its mean and variance:

$$\hat{f}_n(\mathbf{x}) = E_{\mathcal{X}} \left[\hat{f}_n(\mathbf{x}) \right]$$
$$\sigma_{\hat{f}_n(\mathbf{x})}^2 = Var \left[\hat{f}_n(\mathbf{x}) \right]$$

Under certain conditions, the estimate $\hat{f}_n(\mathbf{x})$ can be shown to converge to $f(\mathbf{x})$ as n approaches infinity. These conditions are the following:

- 1. $f(\mathbf{x})$ must be continuous at \mathbf{x} .
- **2.** $\varphi(\mathbf{u}) \geq 0$ and $\int \varphi(\mathbf{u}) d\mathbf{u} = 1$
- 3. $\sup_{\mathbf{u}} \varphi(\mathbf{u}) < \infty$
- 4. $\lim_{\|\mathbf{u}\|\to\infty} \varphi(\mathbf{u}) \prod_{i=1}^d u_i = 0$
- 5. $\lim_{n\to\infty} V_n = 0$
- 6. $\lim_{n\to\infty} nV_n = \infty$

If these conditions hold, then $\hat{f}_n(\mathbf{x})$ converges to $f(\mathbf{x})$ in a mean square sense:

$$\lim_{n \to \infty} \overline{\hat{f}_n(\mathbf{x})} = f(\mathbf{x})$$
$$\lim_{n \to \infty} \sigma_{\hat{f}_n(\mathbf{x})}^2 = 0$$

To see convergence of the mean,

$$\hat{f}_{n}(\mathbf{x}) = E_{\mathcal{X}} \left[\hat{f}_{n}(\mathbf{x}) \right]$$

$$= E_{\{\mathbf{X}_{1},...,\mathbf{X}_{n}\}} \left[\frac{1}{nV_{n}} \sum_{i=1}^{n} \varphi \left(\frac{\mathbf{x} - \mathbf{X}_{i}}{h_{n}} \right) \right]$$

$$= E_{\{\mathbf{X}_{1},...,\mathbf{X}_{n}\}} \left[\frac{1}{n} \sum_{i=1}^{n} \delta_{n}(\mathbf{x} - \mathbf{X}_{i}) \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} E_{\mathbf{X}_{i}} \left[\delta_{n}(\mathbf{x} - \mathbf{X}_{i}) \right]$$

$$= E_{\mathbf{X}} \left[\delta_{n}(\mathbf{x} - \mathbf{X}) \right]$$

$$= \int \delta_{n}(\mathbf{x} - \mathbf{v}) f(\mathbf{v}) d\mathbf{v}$$

Note that this is a convolution of the density $f(\mathbf{x})$ and $\delta_n(\mathbf{x})$; as V_n approaches zero, $\delta_n(\mathbf{x})$ approaches a delta function, and the convolution of a delta function with $f(\mathbf{x})$ is just $f(\mathbf{x})$. So $\lim_{n\to\infty} V_n = 0$ insures that $\overline{\hat{f}_n(\mathbf{x})} \to f(\mathbf{x})$.

To see that the variance of the estimator goes to zero, note that the estimator is a sum of functions of independent random vectors \mathbf{X}_1 through \mathbf{X}_n , so the variance of the sum is the sum of the variance of these functions:

$$\sigma_{\hat{f}_n(\mathbf{X})}^2 = \sum_{i=1}^n Var \left[\frac{1}{nV_n} \varphi \left(\frac{\mathbf{x} - \mathbf{X}_i}{h_n} \right) \right]$$

$$= n \left(E_{\mathbf{X}} \left[\frac{1}{n^2 V_n^2} \varphi^2 \left(\frac{\mathbf{x} - \mathbf{X}}{h_n} \right) \right] - \overline{\frac{1}{nV_n}} \varphi \left(\frac{\mathbf{x} - \mathbf{X}}{h_n} \right)^2 \right)$$

$$\leq \frac{1}{nV_n} E_{\mathbf{X}} \left[\frac{1}{V_n} \varphi^2 \left(\frac{\mathbf{x} - \mathbf{X}}{h_n} \right) \right]$$

$$\leq \frac{\sup \varphi}{nV_n} \int \varphi \left(\frac{\mathbf{x} - \mathbf{v}}{h_n} \right) f(\mathbf{v}) d\mathbf{v}$$

$$= \frac{\sup \varphi \overline{f_n(\mathbf{x})}}{nV_n}$$

For the variance to go to zero, we want $nV_n \rightarrow \infty$.