EEE 598C: Statistical Pattern Recognition Lecture Note 6: Non-parametric Estimation

Darryl Morrell

October 1, 1996

1 Introduction

In this lecture note, we consider ways to estimate the density $f\left(\mathbf{x} \mid \omega_{i}\right)$ and the probability $P\left(\omega_{i} \mid \mathbf{x}\right)$ from a training set $\mathcal{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$. We will consider non-parametric approaches, in which the density functions are not parameterized by an unknown parameter.

Consider the estimation of a density function $f(\mathbf{x})$ from the set of training data. Let \mathcal{R} be a region in the feature space with volume V, and let P be the probability that \mathbf{X} falls in this region:

$$
P=\operatorname{Prob}(\mathbf{X} \in \mathcal{R}) \approx f(\mathbf{x}) V
$$

where $\mathbf{x} \in \mathcal{R}$. Let k be the number of elements of \mathcal{X} that fall into region \mathcal{R}. Then an estimate of P is

$$
\hat{P}=\frac{k}{n}
$$

Combining the two above equations, we get an estimate of $f(\mathbf{x})$:

$$
\begin{equation*}
\hat{f}(\mathbf{x})=\frac{k}{n V} \tag{1}
\end{equation*}
$$

As n goes to infinity, \hat{P} converges (in probability) to P, and $\hat{f}(\mathbf{x})$ converges to the (spatial) average value of $f(\mathbf{x})$ over the region \mathcal{R}. In order to get an estimate of $f(\mathbf{x})$ for a given value of \mathbf{x}, we must let the volume of the region \mathcal{R} go to zero in such a way that \mathbf{x} is always contained in \mathcal{R}. If the number of samples n is fixed, then as V goes to zero, \mathcal{R} will either contain no training points, in which case $\hat{f}(\mathbf{x})=0$, or it will contain one or more training points, in which case $\hat{f}(\mathbf{x})=\infty$. This is not a particularly useful estimate.

Since in practice, we always have a finite number of training samples, we cannot let V approach zero. We will have to accept some variance in the estimate \hat{P} (and thus in $\hat{f}(\mathbf{x})$), as well as some spatial averaging in $\hat{f}(\mathbf{x})$.

From a theoretical standpoint, we can consider the behavior of the estimate $\hat{f}(\mathbf{x})$ as the number of training samples goes to infinity. Ideally, we would like $\hat{f}(\mathbf{x})$ to converge to
$f(\mathbf{x})$. We consider the following way of creating this estimate at \mathbf{x}. We use a sequence of regions $\mathcal{R}_{1}, \mathcal{R}_{2}, \ldots$, each containing \mathbf{x}. \mathcal{R}_{1} is to be used in estimating $f(\mathbf{x})$ with one training sample, \mathcal{R}_{2} is to be used in estimating $f(\mathbf{x})$ with two training samples, etc. Let V_{n} be the volume of \mathcal{R}_{n}, k_{n} be the number of training samples falling in \mathcal{R}_{n}, and $\hat{f}_{n}(\mathbf{x})$ be the nth estimate of $f(\mathbf{x})$:

$$
\hat{f}_{n}(\mathbf{x})=\frac{k_{n}}{n V_{n}}
$$

In order for $\hat{f}_{n}(\mathbf{x})$ to converge to $f(\mathbf{x})$, we need three conditions:

1. $\lim _{n \rightarrow \infty} V_{n}=0$; this ensures that the ratio converges to $f(\mathbf{x})$ if f is continuous.
2. $\lim _{n \rightarrow \infty} k_{n}=\infty$; this ensures that the ratio converges in probability to P.
3. $\lim _{n \rightarrow \infty} k_{n} / n=0$; this ensures that the ratio converges.

There are two ways that these conditions might be satisfied. One is to shrink an initial region by specifying the volume V_{n} as a decreasing function of n. The othe is to specify k_{n} as some function of n; the volume V_{n} is chosen to include k_{n} neighbors of \mathbf{x}.

2 Parzen Windows

Let $\varphi(\mathbf{u})$ be a function that satisfies the two following requirements:

$$
\begin{gathered}
\varphi(\mathbf{u}) \geq 0 \\
\int \varphi(\mathbf{u}) d \mathbf{u}=1
\end{gathered}
$$

Define V_{n} as h_{n}^{d}, where h_{n} is a parameter that represents the width of the window. Define

$$
\delta_{n}(\mathbf{x})=\frac{1}{V_{n}} \varphi\left(\frac{\mathbf{x}}{h_{n}}\right)
$$

δ_{n} is a Parzen window. We can use it to compute an estimate $\hat{f}_{n}(\mathbf{x})$ from n training samples \mathbf{x}_{1} through \mathbf{x}_{n} :

$$
\hat{f}_{n}(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \delta_{n}\left(\mathbf{x}-\mathbf{x}_{i}\right)=\frac{1}{n V_{n}} \sum_{i=1}^{n} \varphi\left(\frac{\mathbf{x}-\mathbf{x}_{i}}{h_{n}}\right)
$$

This formula is essentially an implementation of Equation (1); the summation term can be interpreted as counting the number of training vectors that fall within a distance of $h_{n} / 2$ to \mathbf{x}.

The parameter h_{n} affects both the magnitude and width of δ_{n}. If h_{n} is large, δ_{n} is broad and has a small amplitude; in this case, $\hat{f}_{n}(\mathbf{x})$ is a slowly changing function of \mathbf{x}, and is a highly smoothed version of $f(\mathbf{x})$. On the other hand, if h_{n} is small, δ_{n} is a narrow sharply peaked function (as h_{n} approaches zero, δ_{n} approaches a Dirac delta function), so $\hat{f}_{n}(\mathbf{x})$ is
the superposition of n pulses centered at the training vectors. $\hat{f}_{n}(\mathbf{x})$ is a "noisy" estimate of $f(\mathbf{x})$. In practice, the choice of h_{n} determines the usefullness of the estimate $\hat{f}_{n}(\mathbf{x})$; if h_{n} is too big, the estiamte is too smooth, while if h_{n} is too small, the estimate is too noisy.

The estimate $\hat{f}_{n}(\mathbf{x})$ depends on the values of the n training vectors. Since these vectors are random vectors, the estimate is a random variable. Thus, we can consider its mean and variance:

$$
\begin{aligned}
\overline{\hat{f}_{n}(\mathbf{x})} & =E_{\mathcal{X}}\left[\hat{f}_{n}(\mathbf{x})\right] \\
\sigma_{\hat{f}_{n}(\mathbf{x})}^{2} & =\operatorname{Var}\left[\hat{f}_{n}(\mathbf{x})\right]
\end{aligned}
$$

Under certain conditions, the estimate $\hat{f}_{n}(\mathbf{x})$ can be shown to converge to $f(\mathbf{x})$ as n approaches infinity. These conditions are the following:

1. $f(\mathbf{x})$ must be continuous at \mathbf{x}.
2. $\varphi(\mathbf{u}) \geq 0$ and $\int \varphi(\mathbf{u}) d \mathbf{u}=1$
3. $\sup _{\mathbf{u}} \varphi(\mathbf{u})<\infty$
4. $\lim _{\|\mathbf{u}\| \rightarrow \infty} \varphi(\mathbf{u}) \prod_{i=1}^{d} u_{i}=0$
5. $\lim _{n \rightarrow \infty} V_{n}=0$
6. $\lim _{n \rightarrow \infty} n V_{n}=\infty$

If these conditions hold, then $\hat{f}_{n}(\mathbf{x})$ converges to $f(\mathbf{x})$ in a mean square sense:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \overline{\hat{f}_{n}(\mathbf{x})}=f(\mathbf{x}) \\
\lim _{n \rightarrow \infty} \sigma_{\hat{f}_{n}(\mathbf{x})}^{2}=0
\end{gathered}
$$

To see convergence of the mean,

$$
\begin{aligned}
\overline{\hat{f}_{n}(\mathbf{x})} & =E_{\mathcal{X}}\left[\hat{f}_{n}(\mathbf{x})\right] \\
& =E_{\left\{\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right\}}\left[\frac{1}{n V_{n}} \sum_{i=1}^{n} \varphi\left(\frac{\mathbf{x}-\mathbf{X}_{i}}{h_{n}}\right)\right] \\
& =E_{\left\{\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right\}}\left[\frac{1}{n} \sum_{i=1}^{n} \delta_{n}\left(\mathbf{x}-\mathbf{X}_{i}\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} E_{\mathbf{X}_{i}}\left[\delta_{n}\left(\mathbf{x}-\mathbf{X}_{i}\right)\right] \\
& =E_{\mathbf{X}}\left[\delta_{n}(\mathbf{x}-\mathbf{X})\right] \\
& =\int \delta_{n}(\mathbf{x}-\mathbf{v}) f(\mathbf{v}) d \mathbf{v}
\end{aligned}
$$

Note that this is a convolution of the density $f(\mathbf{x})$ and $\delta_{n}(\mathbf{x})$; as V_{n} approaches zero, $\delta_{n}(\mathbf{x})$ approaches a delta function, and the convolution of a delta function with $f(\mathbf{x})$ is just $f(\mathbf{x})$. So $\lim _{n \rightarrow \infty} V_{n}=0$ insures that $\overline{\hat{f}_{n}(\mathbf{x})} \rightarrow f(\mathbf{x})$.

To see that the variance of the estimator goes to zero, note that the estimator is a sum of functions of independent random vectors \mathbf{X}_{1} through \mathbf{X}_{n}, so the variance of the sum is the sum of the variance of these functions:

$$
\begin{aligned}
\sigma_{\hat{f}_{n}(\mathbf{X})}^{2} & =\sum_{i=1}^{n} \operatorname{Var}\left[\frac{1}{n V_{n}} \varphi\left(\frac{\mathbf{x}-\mathbf{X}_{i}}{h_{n}}\right)\right] \\
& =n\left(E \mathbf{X}\left[\frac{1}{n^{2} V_{n}^{2}} \varphi^{2}\left(\frac{\mathbf{x - X}}{h_{n}}\right)\right]-\frac{1}{n V_{n}} \varphi\left(\frac{\mathbf{x}-\mathbf{X}}{h_{n}}\right)^{2}\right) \\
& \leq \frac{1}{n V_{n}} E \mathbf{X}\left[\frac{1}{V_{n}} \varphi^{2}\left(\frac{\mathbf{x}-\mathbf{X}}{h_{n}}\right)\right] \\
& \leq \frac{\sup \varphi}{n V_{n}} \int \varphi\left(\frac{\mathbf{x}-\mathbf{v}}{h_{n}}\right) f(\mathbf{v}) d \mathbf{v} \\
& =\frac{\sup \varphi \hat{f}_{n}(\mathbf{x})}{n V_{n}}
\end{aligned}
$$

For the variance to go to zero, we want $n V_{n} \rightarrow \infty$.

