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EEE 598C: Statistical Pattern Recognition
Lecture Note 6: Non-parametric Estimation

In this lecture note, we consider ways to estimate the density and the probability
from a training set . We will consider non-parametric approaches,

in which the density functions are not parameterized by an unknown parameter.
Consider the estimation of a density function from the set of training data. Let

be a region in the feature space with volume , and let be the probability that falls in
this region:

where . Let be the number of elements of that fall into region . Then an esti-
mate of is

Combining the two above equations, we get an estimate of :

(1)

As goes to infinity, converges (in probability) to , and converges to the (spatial)
average value of over the region . In order to get an estimate of for a given
value of , we must let the volume of the region go to zero in such a way that is always
contained in . If the number of samples is fixed, then as goes to zero, will either
contain no training points, in which case , or it will contain one or more training
points, in which case . This is not a particularly useful estimate.

Since in practice, we always have a finite number of training samples, we cannot let
approach zero. We will have to accept some variance in the estimate (and thus in ),
as well as some spatial averaging in .

From a theoretical standpoint, we can consider the behavior of the estimate as the
number of training samples goes to infinity. Ideally, we would like to converge to
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. We consider the following way of creating this estimate at . We use a sequence of
regions each containing . is to be used in estimating with one training
sample, is to be used in estimating with two training samples, etc. Let be the
volume of , be the number of training samples falling in , and be the th
estimate of :

In order for to converge to , we need three conditions:

1. ; this ensures that the ratio converges to if is continuous.

2. ; this ensures that the ratio converges in probability to .

3. ; this ensures that the ratio converges.

There are two ways that these conditions might be satisfied. One is to shrink an initial
region by specifying the volume as a decreasing function of . The othe is to specify
as some function of ; the volume is chosen to include neighbors of .

Let be a function that satisfies the two following requirements:

Define as , where is a parameter that represents the width of the window. Define

is a . We can use it to compute an estimate from training samples
through :

This formula is essentially an implementation of Equation (1); the summation term can be
interpreted as counting the number of training vectors that fall within a distance of
to .

The parameter affects both the magnitude and width of . If is large, is broad
and has a small amplitude; in this case, is a slowly changing function of , and is a
highly smoothed version of . On the other hand, if is small, is a narrow sharply
peaked function (as approaches zero, approaches a Dirac delta function), so is
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the superposition of pulses centered at the training vectors. is a “noisy” estimate
of . In practice, the choice of determines the usefullness of the estimate ; if
is too big, the estiamte is too smooth, while if is too small, the estimate is too noisy.

The estimate depends on the values of the training vectors. Since these vectors
are random vectors, the estimate is a random variable. Thus, we can consider its mean
and variance:

Under certain conditions, the estimate can be shown to converge to as ap-
proaches infinity. These conditions are the following:

1. must be continuous at .

2. and

3.

4.

5.

6.

If these conditions hold, then converges to in a mean square sense:

To see convergence of the mean,
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Note that this is a convolution of the density and ; as approaches zero,
approaches a delta function, and the convolution of a delta function with is just .
So insures that .

To see that the variance of the estimator goes to zero, note that the estimator is a sum
of functions of independent random vectors through , so the variance of the sum is
the sum of the variance of these functions:

For the variance to go to zero, we want .
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