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1 Nearest Neighbor Estimation

2 Series Expansions

EEE 598C: Statistical Pattern Recognition
Lecture Note 6a: More Non-parametric Estimation

Our estimator of the density at point using a training set of size is

where is the number of training vectors in a region that contains and has volume
. The Parzen window approach was to make a given function of , and then count

the number of training vectors in . Another approach, called the nearerst neighbor
estimate, is to make a given function of , and let (and consequently ) grow until

training vectors are contained in .

Another method of estimating a density from training data is to find a series expansion of
the Parzen window :

are the series expansion coefficients. and can be obtained, for example, us-
ing Taylor series expansions or other polynomial approximations. With this expansion for
the Parzen window, the estimator of the density becomes
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3 Estimating Posterior Probabilities
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where

So the information in the training set is summarized in the coefficients .

Given a set of training data , how might we find an estimate of ? One approach
would be to first estimate the joint distribution

and then find the conditional distribution

We could estimate this joint distribution by counting the number of training vectors that
fall in a region that includes and has volume as follows:

Let be the number of training vectors of class that fall in ; an estimate of
is

Thus, an estimate of is

and an estimate of is

2
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4 Dimensionality Reduction

nearest neighbor decision rule

k P !

!

V

n k

n

P ! !

P ! P !

! k k

! !

P P

P P
c

c
P

n n

m
n

y

n

n

c
j j i

i

n

n

n i i

n i n j

i i j n

i i

E E

E E E

T

i

i
i y

i

T

T

i

T
i

Note that is the number of training vectors in . Thus, the estimate of is
the relative frequency of training vectors from state of nature in the region containing

.
We can take either a Parzen window like approach, in which the volume is a fixed

function of and we count the number of training vectors in this volume, or a nearest
neighbor approach in which the number of training vectors is fixed as a function of , and
the volume is increased until this number of training vectors is included.

If the estimate is used in a decision rule, the decision rule is to choose if

Substituting in the above expression for the estimate, we get the following equivalent de-
cision rule: choose if ; in other words, if there are more training vectors in
from class than any other class, choose as the true state of nature.

An approximation to this rule is the : find the training vec-
tor that is nearest , and choose the class of this training vector as the class for . It can be
shown that this nearest neighbor decision rule has the follow upper bounds on the prob-
ability of error:

Non-parametric estimation methods become quite difficult to use with feature vectors of
high dimensionality, particularly when a large number of training vectors is not available.
One method of reducing the dimensionality of the space is to project the training vectors
onto a line chosen to maximize the difference between classes.

For this development, we assume that there are two sets of training data and ,
with and training vectors. We will project the vectors in these two sets onto a line
represented by the vector ; the inner product gives the position of projected onto
the line. By projecting the vectors in and onto , we obtain two sets of scalars
and . Our goal is to choose so as to maximize the distance between these two sets.

One measure of the distance between the sets and is the distance between their
sample means. We denote the sample mean of as

3
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where is the sample mean of . The distance between sample means is

Note that we can make this distance arbitrarily large by scaling . Thus, to find a measure
of distance that is invariant to the magnitude of , we also define the of each set

:

Note that the scatter is the unnormalized sample variance of .
We define a criterion function as the following:

This is a measure of the separation of and that is invariant to the magnitude of .
We wish to find to maximize ; to do so we define the following scatter matricies:

is called the within class scatter, and is called the between class scatter. With these
definitions, we can see that

The criterion function can be written as

This is immediately recognized as a generalized Rayleigh quotient; the that maximizes
must satisfy the following generalized eigenvalue problem:

If has an inverse, this problem can be converted to a conventional eigenvalue problem

Rather than solve this problem directly, we observe that
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where is a scalar. Thus, the minimizing is

Since the magnitude of does not affect the value of , we can ignore the scalar con-
stant and write

For the case where we have training sets through , we project the dimensional
feature vectors onto a dimensional space. This projection can be represented as a

matrix :

The projection can be written as

We begin to find the matrix by defining the following matrices:

where is the sample mean of . We also define a total mean vector and a total scatter
matrix as

We define the between class scatter as

We define the objective function as

To find the columns of the matrix , we must solve for the largest eigenvalues of the
generalized eigenvalue problem

In order to solve for , one can solve the following equation for

and then solve
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