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Abstract Attention deficit hyperactivity disorder is a
complex brain disorder which is usually difficult to
diagnose. As a result many literature reports about the
increasing rate of misdiagnosis of ADHD disorder with
other types of brain disorder. There is also a risk of
normal children to be associated with ADHD if prac-
tical diagnostic criteria are not supported. To this end
we propose a decision support system in diagnosing of
ADHD disorder through brain electroencephalogra-
phic signals. Subjects of 10 children participated in this
study, 7 of them were diagnosed with ADHD disorder
and remaining 3 children are normal group. Our main
goal of this sthudy is to present a supporting diagnostic
tool that uses signal processing for feature selection and
machine learning algorithms for diagnosis.Particularly,
for a feature selection we propose information theo-
retic which is based on entropy and mutual information
measure. We propose a maximal discrepancy criterion
for selecting distinct (most distinguishing) features of
two groups as well as a semi-supervised formulation
for efficiently updating the training set. Further, sup-
port vector machine classifier trained and tested for
identification of robust marker of EEG patterns for
accurate diagnosis of ADHD group. We demonstrate
that the applicability of the proposed approach pro-
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vides higher accuracy in diagnostic process of ADHD
disorder than the few currently available methods.
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Introduction

Attention-deficit hyperactivity disorder (ADHD) is
one of the most common neurological disorders that
affect 3–7(%) percent of school-age children, char-
acterized by developmentally inappropriate levels of
inattention, impulsivity, and/or hyperactivity. It is con-
sidered to be a chronic condition with 3 to 5(%) of
individuals diagnosed continuing to have symptoms
into adulthood [1, 2]. It is also considered a develop-
mental disorder accompanied by learning disabilities,
depression, anxiety and conduct disorder. The etiology
of ADHD is still unknown, and the disorder may have
several different causes. Scientists have studied, for
example, the relation of ADHD to the abnormal brain
function, morphologic brain differences, and electroen-
cephalograph (EEG) patterns [3–5]. The diagnosis of
ADHD is based on the presence of particular behav-
ioral symptoms that are judged to causes significant
impairment in an individual’s functioning and not on
the results of a specific task. Unfortunately, there’s
no objective laboratory tests (urine, blood, x-ray or
psychological analysis) that can support the diagnosis
of children as ADHD or not [6]. Therefore, most of-
ten the behavioral symptoms of ADHD can be easily
confused, even by mental professionals with the routine
actions of children. diagnosed as ADHD. Recently, one
study reported that approximately one million children
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in the USA are misdiagnosed when they receive an
ADHD diagnosis [7]. Quantitative EEG studies have
been conducted to address the problems mentioned
and support the diagnosis of ADHD. The studies often
analyze EEG abnormalities such as slow wave activity,
epileptiform or specific EEG frequency bands, event
related potentials and coherence measures. It is mainly
based on finding that individuals with ADHD have
distinctive pattern of brain electrical activity that is
characterized by and change of low/high frequency
waves of EEG. The changes in EEG frequency is later
associated with ADHD diagnosis. Accordingly, many
studies have been published; for example recent re-
search findings reported that ADHD children’s EEG
show fairly consistent difference in their brain electrical
activity when compared to normal children, particularly
regarding frontal and central theta activity, which is as-
sociated with underarousal and indicative of decreased
cortical activity [3, 5]. Most studies find excess slow
brain activity (theta) and a decreased fast brain activity
(beta). Theta EEG activity is often associated with an
“inattentive” or a dreamy state, and beta activity is
often seen when the brain is very busy with for in-
stance solving a cognitive task [8–13]. It was found that
children with ADHD showed increased theta power,
slight elevations in frontal alpha power, and diffuse
decreases in beta mean frequency. Increased power is
the most consistent findings in this ADHD EEG litera-
ture, indicating that cortical hypo-arousal is a common
neuropathological mechanism in ADHD. All of these
studies require long term analysis of EEG signals (e.g.
visual inspection, analysis) and subject to variations.
Although the use of machine learning methods have
been used in the analysis of EEG signals for decades,
there are only few studies reported to support the diag-
nosis of ADHD with practical application. For instance,
Mueller, A. et al. analyzed the event related potentials
(ERP) of EEG signal in the automatic discrimination
of ADHD group from normal group subjects. The
authors proposed an Independent component analysis
based feature extraction method and further support
vector classification algorithm for discrimination. The
study reported the classification accuracy of their ap-
proach reaches in average 92%, with 90%—sensitivity
and 94%—specificity [14]. Another study conducted
by Anduradha, J. et al. also reported of applicability
of SVM method in automatic diagnosis of ADHD.
They used the same classification scheme with different
preprocessing and feature extraction stage [15]. Re-
cently, Ahmadlou, M. et al. proposed a new approach
by using wavelet neural networks approach.The study
demonstrates the efficiency of using wavelet transforms
for feature extraction and artificial neural networks for

classification between ADHD and normal group [16].
Most of these studies use fixed number of features
of limited number of ADHD or normal subjects. As
you have noticed the studies in general, employs four
stages in research: (1) data acquisition (2) preprocess-
ing (denoising, filtering, etc) (3) feature extraction and
finally (4) classification. The third step is perhaps the
most significant, since it determines in a high degree
the overall performance of the classifier algorithm. A
feature extraction method can be considered successful
if the resulted features describe the object uniquely
in the analyzed signal. As a result one can achieve
efficiency in classification accuracy. It is usually hard
to find most informative or discriminative features of
ADHD children due to the variability of the disorder
and the limitation of the available subjects in the study.
Besides one should decide the type of features to seek
in the research (such as, EEG abnormal waves, ERP,
Frequency) which is usually done by an expert in the
domain. Sometimes, even a human expert may not be
able to construct the features that describe ADHD
different from normal group. There’s a need for an
adaptive algorithm which partially is informed with the
available information (feature) about ADHD and fur-
ther tries to find the good choice for feature selection
based on the information available. In this paper we
propose a novel adaptive algorithm using information
theoretic and a statistical learning theory in order to
detect the robust EEG features and classify accordingly
to ADHD or normal group. Particularly we use mutual
information measure to extract the dominant features
of ADHD and normal groups further we extend our al-
gorithm for semi-supervised feature selection method.
In semi-supervised algorithm the previously selected
training set can be updated provided if new useful EEG
characteristics are available (which is not included in
the training set). The other advantage is that we try
to reduce the redundant features of EEG that is as-
sociated with both groups and minimize relevance of
ADHD and normal group. In the final step support
vector machines are implemented for classification of
two groups. To our knowledge this our first study to
report in providing such an intelligent algorithm. All
of the EEG recordings were obtained from 10 children
7 of them were diagnosed with ADHD according to
the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM-IV; APA, 1994), and 3 normal children.
Our ultimate goal is to explore the robust predictive
features of EEG that will minimize the misdiagnosis of
ADHD with other types of disorder of normal children.
Specifically, we report good sensitivity and specificity
measures. This is our preliminary attempt to use EEG
to support the diagnosis of ADHD.
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Fig. 1 Flowchart of the
methodology

Methods and materials

The methodology proposed in this work is summa-
rized in Fig. 1. It consists of selecting features and
defining maximal discrepancy subsets of two class data
set; namely ADHD and Normal. Further, a semi-
supervised feature selection is performed from the
data introduced to the training set. In semi-supervised
feature selected we propose a new algorithm which
updates the previously selected training set with new
unknown data set. In the final step, a support vector
machine classifier is implemented to classify the data
into Normal and ADHD groups.

Participants

In this study subjects of 10 children, ages of 7 and 12,
participated. Participants had a full-scale WISC-III IQ
score of 85 or higher. Decision to include children in
the ADHD groups was based on a clinical evaluation
by pediatricians and psychologists and their mutual
agreement on the diagnosis. Clinical interviews incor-
porated information from as many sources as were
available. These included a history given by a parent
or school reports for the past 12 months, reports from
any other health professionals, and behavioral obser-
vations during the assessment. Children were excluded
from the ADHD groups if they had a history of a
problematic prenatal, prenatal or neonatal period, a
disorder of consciousness, a head injury resulting in
cognitive deficits, a history of central nervous system
diseases, convulsions or a history of convulsive disor-
ders, paroxysmal headaches or tics, or an anxiety or
depressive disorder. All children were required to meet
the diagnostic criteria for ADHD of the Diagnostic
and Statistical Manual of Mental Disorders [17], includ-
ing current symptoms and a retrospective diagnosis of

childhood ADHD. In addition we used Korean version
of the Child Behavior Checklist (K-CBCL)[18], WISC-
III evaluation methods [19]. Participants took K-CBCL
for checking externalized behavior problems and in-
ternalized behavior problem. We set cut off score to
‘70T’ in all subtests and we exclude the participants had
over 70T in delinquent rule breaking behavior, somatic
complaints, withdrawn, anxious/depressed subtitles in
K-CBCL. The control group consisted of children from
local schools and community groups. Control partici-
pants took part in a clinical interview and completed
a self-report rating on ADHD and interview with a
parent and teacher similar to that of ADHD group.

Data acquisition

EEG measurements of participants were obtained us-
ing multichannel G-tec. EEG acquisition system. The
sampling rate of the acquired data is 256 Hz and
the data is digitized using the 16-bit A/D converter.
The 9-mm thin disk Ag/AgCl electrodes were mounted
inside the cap with bipolar references behind the ears.
Impedance levels were kept less than 5 kOhm. Each
signal was amplified and filtered using a 1–40 Hz band-
pass filter. A four-pole Butterworth filter was used as
a low-pass filter and as an anti-aliasing scheme. The
recordings were obtained from the frontal region of the
prefrontal cortex according to the 10–20 international
system. The frontal regions were the left frontal (Fp1,
F3, F7), midline frontal (Fpz, Fz), right frontal (Fp2, F4,
F8), midline central (Cz).

Experimental tasks consisted of performing a cogni-
tive task to evaluate the focused attention. In particu-
lar, each child performed a focused attention to select
one object among multiple choices. Our tasks were
designed to evaluate the ability of the participants to
discriminate relevant from irrelevant information (i.e.,
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the ability to focus attention). The task is considered as
a variant of a widely used CPT. During the task, four
objects are presented on the screen. The objects are the
pictures of fruits, such as apple, watermelon, strawberry
and banana. The tasks are presented in three different
forms as follows: (1) the voice is activated randomly
providing the names of the fruit ( while fruits appear
on the screen) and the participant should select it ac-
cordingly. This task is designed to evaluate the visual
focused attention; (2) the same procedure is performed
but the difference is the figures appear on the screen
after the name of the fruit is asked. (3) This cognitive
task is designed to evaluate the focused selective atten-
tion of participants. Participants hear the names of the
fruit and in four blocks the names of the fruits again
pronounced without providing any particular figure.
Then, a participant should select the correct block of
the given task. The duration of the tasks consists of 12
seconds of pre-task and the task (stimulus) duration
was 1200 ms. Each task was performed 10 times at
different days. This is actually the part of our long term
research which lasted during 6 months. Our cognitive
tasks include other types of tasks such as, focused,
selective and sustained tasks. However, in this research
we have selected the data from focused attention tasks
only in this study.

Feature extraction

For the feature selection, our problem can be formal-
ized as follows. Let {(x1, y1), (x2, y2), ..., (xn, yn)}, be
a set of training patterns, where x is the supervised
selected input feature vector and y—is the random
pattern x, y ∈ X both taken from the nonempty set.
Our goal is to find the maximal relevant (predictive)
features of y-patterns with x-patterns and assign to
the labeled class accordingly. For example, EEG fea-
tures patterns of predefined ADHD/NORMAL chil-
dren with randomly recorded EEG patterns. This will
result in the more classification accuracy of the used
classifier. Our approach for feature selection is based
on power spectrum features since the EEG power
based features are the most informative and common
in use in clinical ADHD diagnosis. Specifically, for
the training set, we defined power spectrum density
features of EEG each channel obtained by Fast Fourier
Transform (FFT) with a Han window using 256 data
points with 50(%) overlap. The EEG signal length is 2
minute epochs from each channel. The resulting power
spectrum density function P(f) is then divided into the
four frequency bands: delta (0.5–3.5 Hz), theta (3.5–7.5
Hz), alpha (7.5–13 Hz) and beta (13–30 Hz), for both

absolute and relative power, as well as the total power
of the EEG (1.5–30 Hz). Ratios were also calculated
between frequency bands by dividing the power of
the slower frequency band by the power of the faster
frequency band. These were calculated for theta/alpha
and theta/beta frequencies. According to the studies
reported in literature the following Table 1 was ex-
tracted. We have selected each frequency band and the
goal is to find the most dominant signal features in
ADHD children or vice versa. Therefore, our analysis
should employ a hybrid method that would extract only
most informative and relevant features with minimum
redundancy with respect to the known dataset.

In the next section, we introduce the proposed mu-
tual information technique to extract important fea-
tures of the EEG signal.

Mutual information feature selection

Mutual information measures the statistical depen-
dency between two random variables [20]. The de-
pendency can be related to the information measure
of relevance of random variables. Here we apply mu-
tual information method for efficient feature selec-
tion.Particularly we aim to build a semi-supervised
algorithm based on the information theoretic approach
that measures the information exchange, dependency
or relevance between EEG patterns.

Shanon’s entropy provides a powerful formalization
of uncertainty of a random variable. Let X be a random
variable and its entropy H(X) is defined as,

H(X) � −
∫

X
p(x)log(x)dx, (1)

whereas the conditional entropy H(X|Y) is defined as

H(X|Y) � −
∫

X

∫
Y

p(x, y)log(x|y)dxdy

= −
∫

Y
p(y)

(∫
X

p(x|y)logp(x|y)dx
)

dy. (2)

Note that here Y is a discrete binary random vari-
able representing the class labels and X is a particular
feature x j corresponding to a dimention of the input
vector. As a result, the conditional entropy H(X|Y) can
be expressed as

H(x j|y) = −
∑

y∈{0,1}
p(y)

∫
z∈range(x j)

p(z|y)logp(z|y)dz

(3)

where P0 and P1 are the class priors. From equation
above we can measure the dependency of two random
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Table 1 Selected predictive power features based on literature and the major differences found between ADHD and normal group

Frequency Delta (0.5–3.5 Hz) Theta (3.5–7.5 Hz) Alpha (7.5–13 Hz) Beta (13–30 Hz) Theta/alpha Theta/beta
band (Hz)

Associated Deep sleep Unfocused Eyes closed, Mental activity, Good indicator Good indicator
cognitive states drowsiness alert restfulness concentration

Findings Increased and Increase Reduced relative Lower relative Barry et al. [3] Increased [9]
in ADHD reduced delta [4] in absolute alpha [8] beta [3]

and relative & increased or
theta [3] reduced [4]

variables X and Y. If X depends on Y, the uncertainty
on X is reduced when Y is known and this formaliza-
tion is obtained through conditional entropy. Then, the
mutual information can be both defined in terms of the
joint and conditional entropy (see also Fig. 2):

I(X, Y) = H(X) − H(X|Y)

= H(Y) − H(Y|X)

= H(X) + H(Y) − H(X, Y) (4)

Note in order to compute the entropy and mutual
information we need to evaluate the probability dis-
tributions. One can compute the entropy of a random
variable in closed form. In particular, for a Gaussian
random variable X N(X; μ, σ 2 the entropy is H(X) =
1/2(1 + log 2πσ 2). In more general case, even for a
mixture of Gaussians, we can no longer compute the
entropy in closed form. If the p(x) can be calculated
in closed form e.g., if we make a certain assumptions
about the parametric form of the p(x) and estimate the
parameters, the we can still evaluate H(X) fairly easily,

Fig. 2 Mutual information and entropy relationships in Venn
Diagram

by numerically approximating the integral in equation
of the entropy. If no parametric assumption are made
regarding the form of p(x) but we have set of observa-
tion drawn from it, we can estimate the density at any
given value of X using the kernel density estimate as
described in class:

p(x) = 1/N
N∑

i=1

K(x, xi) (5)

where K(x, xi) is the kernel function which itself is a
valid probability density function and xi are observa-
tions drawn from P(X). In this problem, rather than
assuming a parametric form for the class-conditions, we
apply a Gaussian kernel density estimator to model the
distributions directly from the observations, which is
given by,

p(x) = 1

N
√

2πσ

N∑
i=1

exp
(−(x − xi)

2

2σ 2

)
(6)

here σ is user defined standard deviation of the
Gaussian kernel function in our case σ = 0.4.
At this point lets recall that the mutual information
between random variables is given by I(X; Y) and for-
mulate it to our feature selection purpose. The mutual
information measures the reduction in uncertainty on
X resulting from the knowledge of Y. The mutual infor-
mation satisfies the bound 0 ≤ I(X, Y) ≤ H(X). The
lower bound is reached if and only if X and Y are in-
dependent hence H(X|Y) = H(X). The upper bound
is achieved when X and Y are fully dependent, or
P(X|Y) = 1, H(X|Y) = 0 and I(X, Y) = H(X) which
means we can get all information of X from Y. There-
fore we can consider the mutual information measure
as a relevance or dependency measure between two
random variables. Moreover, I(X, Y) can be selected
as a similarity measure or a likelihood function of two
or more random variables, based on the dependency.
We therefore intuitively formalize the applicability of
entropy and mutual information in our feature selec-
tion problem. Let (xi, yi)

n
i=1, be a two random variables

which can be described with p(x, y) and H(x, y) and
where xi is random EEG patterns and yi is known



2680 J Med Syst (2012) 36:2675–2688

features classes for ADHD and NORMAL children. If
x and y have relevant patterns then mutual information
between them tends to be larger value of 0 ≤ I(X, Y) ≤
H(X) and if they are irrelevant (or independent)then
mutual information tend to I(X, Y) ≈ 0. The mutual
information between given random variable and known
variable then can be assumed as an estimation of a simi-
larity measure or relevance. Therefore our formulation
will be as follows, given (xi)

n
i=1 a random EEG signal

and (yi)i∈0,1 where y = 0 is known NORMAL and y =
1 is ADHD signal patterns. The task of MI feature
selection is to find the (xi) which is most relevant to
(yi)i∈0,1 in other words find k j = argmax{I(xi, yi)}.

Maximal discrepancy criterion

We introduce another formulation of mutual infor-
mation in our work where we consider to work on
the training dataset (previously defined set). Given
dataset xi with m features and n instances, where F0,1 =
( f1, ..., fm) and D = (d1, ...dn) are sets of features and
instances, respectively. The F here corresponds to se-
lected features given in Table 1, while D is every
instance in a single feature. We have two classes of
dataset (yi)i∈0,1 as mentioned already. It is necessary
to find subsets of these two class dataset with maxi-
mum discrepancy in order to achieve higher decision
accuracy. As noticed earlier maximizing the mutual in-
formation maximized the relevance between variables,
here we do the reverse of it. We try to extract subset
of F with minimum information measure between F0

and F1 for maximal discrepancy. The set F0 can be
considered as having two parts F ′

0 and F∗
0 where F ′

0 is
the subset relevant to F1 and F∗

0 subset that is irrele-
vant to F1 (non-overlapping part, see Figs. 2c and 3)
then F0 = F ′

0 + F∗
0 . We minimize relevant part (F ′

0) as
follows:

I(F0, F1) = H (F0) + H (F1) − H (F0, F1)

= H
(
F ′

0, F∗
0

) + H (F1) − H
(
F ′

0, F∗
0 , F1

)
= H

(
F ′

0

) + H
(
F∗

0

) + H(F1) − H
(
F ′

0

)
− H

(
F∗

0 , F1
)

= H(F0) + H(F1) − H (F0, F1)

= I
(
F∗

0 , F1
) ≈ 0; (7)

By elimination of F∗
0 we minimize dependence of X ∩

Y ≈ null as the result we reduce the number of feature
instances that are most likely to degrade the classifiers
accuracy.

Fig. 3 Feature selection problem: we observe two random vari-
ables trying to maximize the discrepancy of the variables finding
the minimal mutual information measure and in third stage a
semisupervised algorithm updates the training set

Semi-supervised feature selection

After selection set of features with maximum discrep-
ancy we further proceed to semi-supervised feature
selection. The selected features from training dataset
may not have the ideal (marker) informative feature
sets of ADHD group. It is usually the case when the
size of EEG data number of subjects are limited and
in the case when the there is a subject variability con-
straints. In order to make our approach more adaptive
to out of the scope of the available training dataset
(EEG data, subjects 10) we propose the following al-
gorithm. Generally, we provided in our training dataset
initially defined as F0,1 for NORMAL and ADHD case.
However,when a new subjects (probably with different
symptoms) are tested with the proposed method, the
algorithm may fail (or output low accuracy) to analyze
whether the subject belong to ADHD or NORMAL
group. Then the only thing should be done is to up-
date the training set F0,1 by providing new information
(N1,0) related to both group where N ∈ (yi)i∈0,1. When
new information is available there’s a possibility that
subset of N are already in F and in the other case
it is completely new feature set (information) which
is not included in F. Hence we propose the following
formulation which measures the interactions between
previously selected training set and the new input in-
formation. We have now three feature set (variables) as
(F0, F1, N0,1) and we can ask how we learn about N a
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random input feature by observing the related class y0,1

ADHD/NORMAL when we already have the feature
set F0,1, then the answer can be explained by con-
ditional mutual information. If the new input feature
N is independent of F1 and y1 we have I(y1, N|F) =
I(y1, F). In other words, we can ask how much infor-
mation N contains about group y0,1 after we condition
on F:

I (y1, N|F) ≡ H (y1, F) − H (y1|N, F) (8)

Notice that this is the average of

H (y1, F = f ) − H (y1|N, F = f ) ≡ I (y1, N|F = f )(9)

over possible feature values of f . For each f , we
have an ordinary mutual information, which is non-
negative, so the average is also non-negative. In fact,
I(y1, N|F) = 0 if and only if y and N are conditionally
independent given F. Again, the output of I(y1, N|F)

is nonnegative, it can be bigger than, smaller than or
equal to I(y1|N). When it is not equal, we can say
there’s a interaction (relevance) between F and N—
as far as their information about y. It is a positive in-
teraction if I(y1, N|F) > I(y1, |N), and negative when
the inequality goes the other way. If the interaction is
negative ,then we say that some of the information in
N about y is redundant given F. We can see how this
connects to our feature selection: we will select feature
sets containing non-reduandant information about y.

We conclude this section with the following semi-
supervised feature selection formulation:

n(i) = argmaxI
(
y(0,1), Ni

)
(10)

k(i) = argmaxH
(
y(0,1), Fi

) − H
(
y(0,1)|Ni, Fi

)
(11)

Select those features which satisfies the eqality I(y1,

N|F) > I(y1, |N), non redundant and relevant with re-
spect to F and y.

Classification

The final step of our research is to use supervised
learning method to classify ADHD or Normal group,
based on the EEG patterns extracted in the previous
sections. In particular we use a Support vector machine
(SVM) classifier a learning machine that can be used
for classification problems as well as for regression and
novelty detection. Important features of SVMs are the
absence of local minima, the well-controlled capacity of
the solution, and the ability to handle high-dimensional
input data efficiently. It is conceptually quite simple,
but also very powerful: in its infancy, it has performed
well against other popular classifiers and has been ap-
plied to problems in several fields. The EEG patterns

can be thought of as points in an n-dimensional space.
SVM is then trained to classify the data points of several
classes. Particularly, SVM chooses the hyperplane that
provides maximum margin between the plane surface
and the positive and negative points. The separating
hyperplane becomes optimal when the distance, from
the closest data points, is maximized. These data points
are called the support vectors. We briefly review SVM
algorithm here for more detailed information, one can
find it in other literatures such as [21, 22] or elsewhere.
For non-separable case the SVM is constructed by
solving a following dual optimization problem,

argmax{α}

⎛
⎝ N∑

i=1

αi − 1/2
N∑

i=1

N∑
j=1

αiα jyi y jK
(
xi, x j

)
⎞
⎠

(12)

subject to

N∑
i=1

αi yi = 0, 0 ≤ αi ≤ C∀i = 1, ...N.

where the Lagrangian multiplier are given by α =
(α1, ..., αN)T„ the training samples are (xi, yi) and their
respective labels given by y = (y1, ..., yN), and C is the
penalty parameter for slack variable that should be
minimized. In equation above K(xi, x j) is the kernel
function that is used to embed the training samples into
n-dimensional space. The accuracy of SVM classifier
also strongly depends on the type of the Kernel func-
tion used. For example, there are several available ker-
nel function for non-linear mapping of input patterns.
In this research we use radial basis Gaussian kernel
function to train and test the SVM. It is given as

K
(
xi, x j

) = exp
(
1/2σ 2 (−|xi − x j|2

))
(13)

There are free parameters namely sigma, of the SVM
kernel function and margin-loss trade-off C, which
should be determined to find the optimal solution. The
objective is to obtain best C and so that the classifier
can accurately predict unknown data (testing data).In
our case the optimum values of the parameters are
obtained with the 5 − f old cross-validation using grid
search algorithm. Here the data is partitioned into 5
equally sized subsets. Subsequently 5 iterations of train-
ing and validation are performed such that within each
iteration a different subset of the data is held-out for
validation while the remaining 4 subsets are used for
learning. We rearranged the data to ensure that each
subset is good representative of the whole data. In other
words, for a classification of ADHD and Normal each
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subset contains 50% of feature patterns where class
comprises around half the instances.

After finding the optimal parameters, the classifi-
cation performance of SVMs was measured using stan-
dard criteria as follows: where a true positive (T P)

outcome was registered when both SVM and physi-
cians classified a EEG pattern as ADHD. False posi-
tive (F P), true negative (T P) and false negative (F N)

outcomes were similarly defined [Ref]. Using these
definitions, True Positive Rate (T Prate) and False Pos-
itive Rates (F Prate) were calculated using formulas
below,

1. True positive rate (also referred to as sensitivity)
is the percentage of positive examples which are
correctly classified

T Prate = T P
T P + F N

(14)

2. False positive rate—is the percentage of negative
examples which are misclassified

F Prate = F P
T N + F P

(15)

We analyzed the classification performance using
a Receiver Operating Characteristic (ROC) curves,
which plots as sensitivity (true positive rate) versus one
minus specificity (false positive rate). The area under
the ROC curve (AUC) as a measure of the discrim-
inatory power of a classifier, which is insensitive to
class distributions and the costs of misclassifications; for
instance AUC = 1 indicates perfect classification, while
AUC = 0.5 means that the classifier does not perform
better then random guessing.

Experimental results

For the feature selection we have tried various com-
binations of feature sets mainly given in Table 1
and compared the robustness of each feature type
for our problem. As stated earlier our feature se-
lection steps are given by: (1) finding maximal mu-
tual information (see Section “Mutual information
feature selection”); (2) maximizing discrepancy of
two group (Section “Maximal discrepancy criterion”)
and finally (3) semi-supervised feature selection (in
Section “Semi-supervised feature selection”). The goal

Fig. 4 Comparison of mutual
information measure of the
whole data from all
participants for the following
specific frequency bands,
a delta, b theta, c alpha and
d beta. Theta and beta
frequency bands are found to
provide more predicting
features for ADHD or
normal
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is to find the most predictive or the most distingushing
and robust features that is used to recognize ADHD
group. We organized the data of 10 children from all 8
channels and computed its respective power spectrum
densities. Further the power spectrum were divided to
specific frequency band. We applied proposed mutual
information to the each frequency band to explore how
good predictor is each band for all children. Figure 4
demonstrates the obtained results and the comparative
view of the Delta, Theta, Alpha and Beta frequency
bands. It was noticed that Theta features were more
consistent among all children (see Fig. 4b), which
means the more mutual information the more better
feature for the specific problem. In contrast, Delta and
Alpha frequency bands are found to be less informa-
tive than the remaining bands. One can notice that
Delta features show absence in some children which
achieves the minimum of mutual information value.
Similarly Alpha features have less mutual information
measure in most cases. However, in average Theta
feature sets are good indicator of both class ADHD and
NORMAL.

In our next step, we demonstrate the comparative
results of power ratio features for each children. As

shown in Fig. 5, we have evaluated 4-types of power
ratios such as Theta/alpha, Theta/Beta and Relative −
Theta finally Relative − Beta. Many studies have re-
ported that power ratio features are the best indicators
of ADHD by finding variability of a selected power
ratios. In our study, we don’t analyze the variability but
to explore the most robust features for both groups.
First, it has been found that Relative − Theta provide
maximal mutual information in average among all chil-
dren, compared to other ratio features (see, Fig. 5a).
Second, Relative − Beta features as shown in (b) plane
of Fig. 5 were slightly better than Theta/Beta but in
both cases some children has shown the less features
in these ratios. The information measure in last feature
set, namely Theta/Alpha is less relevant but common
in all children. Here, feature index represents the num-
ber of children while in Fig. 4 it represents the number
of features in rows (8 channels × 10 children).

Significant findings were obtained when evaluating
three different approach in feature selection. For exam-
ple, Fig. 6 shows the results of selected features when
using mutual information of power features, the power
ratios when with maximal discrepancy features and
semi-supervisedly selected features of the same power

Fig. 5 Mutual information
measures of power ratios
a theta/alpha, b theta/beta,
c relative theta and d relative
beta. Most of the children
showed similar distinguishing
features relative theta and
relative beta
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features. The power features consists of all combination
of the features and the results show us the best candi-
date feature among the selected features. Particularly,
as shown in (b) plot of Fig. 6, the features consists
of following sets [α, β, θ, θ/α, θ/β, relativeθ, relativeβ].
The results are actually different from the ones which
we analyzed in Figs. 4, and 5. Here, for example in (a)
plane one can notice the minimum value of delta and
theta in contrast to the results when they were found
to be good features in in Fig. 4. It is due to the fact
that mutual information changes as the number infor-
mation about the feature increases, because the mutual
information measures interaction information between
random variable. Then from Fig. 6a we can conclude
when all information are considered the most relevant
feature sets to both group are ratio coefficients such as
{θ/beta, Rel.θ, Rel.β}. Subsequently the same feature
sets are selected by with maximal discrepancy criterion
between each feature subset. The output is shown in
Fig. 6b, in this case it can be noticed that appearance of
{β, δ, θ} feature sets. However the most predicting ones
are found as the power ratios including the β feature set
when using this criterion. The final case demonstrates
more promising approach by semi-supervised feature
selection. In this step, we analyze the same data with
maximal discrepancy criterion and randomly provide
various subsets of the features. Then, as explained ear-

lier, the semi-supervised algorithm updates the feature
set based on the available information. In addition to
the dataset of 10 children we provided other data col-
lection which were obtained from the same children but
from different EEG recording sessions. It is noticable
that in this feature selection method the relative power
ratios remain stable in other words there’s no update
in the subset. However, the other specific bands also
increase in mutual information measure. One thing to
notice here is that this result have some information
relation with the results obtained in Fig. 4 earlier where
we assumed that good predictive features are theta, beta
followed by delta. Compared to (b) plane of Fig. 6 we
exactly notice the update of feature set in these fre-
quency bands. However, the question is why alpha set
increases (or updates)?; the cognitive state associated
with alertness which is usually less in ADHD children.
One of the answer would be the reference [8] where
authors reported the difference in alpha state between
ADHD and normal group. In addition our goal is not to
analyze the difference, increase or decrease of powers
instead we are trying to find the most distinguishing
features of ADHD from normal children (or viceversa)
for the classification purposes.

Subsequently, the performance of the proposed clas-
sification method is validated for selected data fea-
ture set. The dataset contains a variety of feature sets

Fig. 6 Overall findings and
comparison of the most
predictive power among
8-analyzed features (see
Table 1) and relative powers.
Three types of feature
selection methods are used
and compared where a raw
power features, b maximal
discrepancy criterion based,
and c semi-supervised
selected features
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Table 2 Types of input features provided to the SVM classifier

Input features No. of features

ADHD NORMAL

Raw power spectrum 223,560 3,160
Maximal discrepancy 120,246 4,620
Semi-supervised 902,462 11,354
Theta/alpha 2,530 365
Theta/beta 3,105 201
Relative powers 5,462 232

(considered as predictive powers). We tested the SVM
on various combinations of input features (training set)
which are organized as follows (also shown in Table 2);
(1) Raw power spectrum feature sets of each class
(ADHD or not); (2) Mutual information based feature
maximum discrepancy feature sets; (3) Semi-supervised
selected feature sets; (4) Power ratios and; (5) Relative
powers. The performance of SVM were obtained con-
sidering all frequency features and their combinations.

Our first step is the exhaustive search of optimal
parameter of the classifier, particularly C and σ . For
each types of the feature set we performed a grid-search
on C and σ using cross-validation. Various pairs of
(C;σ ) values are tried and the one with the best cross-
validation accuracy is selected. We noticed that trying
growing sequences of C and sigma is a practical method
to identify good parameters. Experimental results show
that the minimum test error rate for the classification
is acquired with the following parameters given in
Table 3.

One can analyze that the training errors rates are
minimized in some parameters but they vary. For in-
stance the difference in the test error among selected
four features can be seen. Especially, if you notice when
using semi-supervised features that performance of the
classifier achieves minimum error rate for the test data.
Conversely raw power features provide less accuracy or
higher error rate while trying to classify the two groups.

It was also found that Theta/alpha ratios demonstrate
more stable features however, the accuracy is degraded.
Though our approach we achieved best minimum error
rate of (5.2%) when using a semi-supervised algorithm.

Figure 7 demonstrates the overall classification re-
sults in terms of cross validation error, minimum cross
validation error and most importantly minimum test
error. However, using maximal discrepancy criterion
the minimum test error rate (5.2%) was relatively good
compared to using raw power features. Specific features
sets such as theta/alpha and theta/beta ratios provided
in average 8% of test error while the minimum training
error was less 8%. Many studies report that relative
theta ratios are best marker of the ADHD children. In
this study we obtained best cross validation error using
the raw relative theta features with 4.6%, however the
minimum training error was comparatively less than the
one obtained through other features. Since our goal is
to find such a features that minimizes the cross vali-
dation error along with equally test error. In our next
step we demonstrate the classification performance un-
der the ROC curve for various types of input features
to SVM.

Figure 8 shows the ROC curves of the SVM classifier
together with the area under the ROC curve (AUC)
measure. For the optimal classification we should ob-
tain maximal T Prate and minimum F Prate that oc-
curs at various instances of the threshold. Moreover
classification power of a classifier is measured by the
area under the ROC curve; AUC = 1 indicates perfect
classification, while AUC = 0.5 means that the clas-
sifier does not perform better then random classifier.
Figure 8a shows the SVM peformance for the test set
with two types of feature selection method as well as
raw sets consisting of power spectral features sets. We
note that maximal classification performance obtained
when using semi-supervisedly selected features AUC =
0.954. Since it is easy to see that the curve here stretches
almost into the top left corner that represents the

Table 3 Cross validation
results with the optimal
parameters of SVM for
5—types of feature data set

Input features SVM parameter Kernel function Min train error Test error
C, σ

Raw power spectrum C = 8.20 σ = 0.2727 0.1096 0.1163
C = 10.0 σ = 0.1194 0.1194 0.1163

Maximal discrepancy C = 0.10 σ = 0.4010 0.4233 0.5104
C = 0.63 σ = 0.6589 0.1656 0.5768

Semi-supervised C = 4.98 σ = 2.8070 0.0532 0.05104
C = 10.9 σ = 0.8369 0.0459 0.5268

Theta/alpha C = 6.72 σ = 0.3340 0.0813 0.0856
C = 100 σ = 0.3340 0.4452 0.8063

Relative ratio C = 55.0 σ = 0.4503 0.05785 0.0747
C = 70.0 σ = 0.4503 0.03254 0.0456
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Fig. 7 SVM cross validation
results using four types of
EEG input features. a Raw
power spectral features,
b maximal discrepancy,
c theta/alpha ratios and
d theta/beta ratios, e relative
theta, and f semi-supervisedly
selected features consisting of
all power spectral and ratio
features
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performance of the superior model (this model com-
mits virtually no false positives). One can compare the
TPrate in (x=0.13,y=1) achieves 100% classification
but with the tradeoff 13% of the times FPrates. The
ideal case would be to obtain (x=0,y=1) for perfect
classification. When using raw features without any
feature selection method we noted the classification
performance is equal to AUC = 0.7 which is better
than any random classifier. Lastly, maximal discrepancy
feature selection approach results superior in AUC =
0.90 compared to selecting raw features.The remaining
parts of the figure analyzes the power ratio input fea-
tures and the effects of the classifier performance. For
instance, Fig. 8b when using only power ratio features
to the SVM one can find better features by analyzing
the ROC curve and AUC. In this case, Relative beta

found to be more robust in discrimination between
ADHD and Normal than other features plotted in the
figure. Simply, if a classifier has greater area (AUC
value) it has a better average performance. SVM with
Theta/alpha features becomes inferior to the remain-
ing input features. Going further to the Fig. 8c results
in more liberal performance by using maximally dis-
crepant features. In this case we noted that all of the
curves are virtually identical illustrating no big discrep-
ancy in classifier performance. However, the maximum
AUC value is obtained using again using Relative beta
input features as in the previous Fig. 8b. Finally in
Fig. 8d we can observe the classifier performance when
using semi-supervisedly selected features. It’s interest-
ing to observe that the performance better given power
ratio features where the maximal AUC = 0.97 achieved
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Fig. 8 ROC curve of the SVM performance when the input
instances consisted of different combinations of EEG features
such as: a power spectral features using three methods, b raw

power ratio features, c power ratio features obtained through
maximal discrepancy criterion, d power ratio features using semi-
supervised method

using relative theta. This means that the classification
rate is almost 97% times true. Besides, we see that
the SVM only begins to commit no false positive er-
rors after it has almost reached a true positive rate of
30–50%. The curve is in a near perfect classification
model however this will not happen until the curve has
almost reached the ‘perfect performancepoint. Com-
pared to other methods (Fig. 8a, b, c), the model
in Fig. 8d is not only superior because its curve is
the closest to the ‘perfect performance curve but we
can observe that for large ranges of the ranking val-
ues the model commits more true positive rates than
it provides false positive classifications. We tried to

demonstrated a classifier perfomance assessment de-
pending on types of the input featues, that is, given
two or more input features, we need to pick one in
order to be deployed. The following criterion to val-
idate one classifier with random features sets over
the other(s) is considered: (a) our classifier should
be general enough to describe its performance over a
broad range of possible feature set and (b) it should
be able to discern whether the performance difference
between input features are statistically significant. It
turns out that ROC curve analysis provides the val-
idation for both of these criteria in a highly visual
manner.
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Conclusion

We demonstrated a decision support system in diagno-
sis of ADHD disorder. The contributions of the current
study include developing an adaptive feature selection
method in particular, a semi-supervised feature selec-
tion algorithm which is based on mutual information
theory. We have shown the potential use of the al-
gorithm is when the input available data is limited
and one can define new features, based on which the
algorithm updates its training set features. Compared
to other studies that use a learning algorithm, this
study is the first step in formulating the semi-supervised
approach for ADHD feature selection. Through this
approach it was possible to define new features of
EEG signal which provide important information in
discriminating between ADHD and normal group. The
maximal accuracy of the SVM classifier was above 97%
when when using a semi-supervisedly selected features.
Particularly, we found that power ratio features are
dominant features of EEG signal for ADHD, though
other features provided relatively good accuracies. We
believe the current method would assist the physicians
in diagnostic process of ADHD disorder as well as
lessen their workload. In our further work, we plan
to increase the computational efficacy of the algorithm
and test it on large numbers of datasets.
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