

	A B C D E F G H I J K L M N O P Q R S T U V	/ X	A B C D E F G H I J K L M N O P Q R S T U V V	
	1 x s nt p f c n k e e s s w w p w o p k s u	P	51 xyntafcbwersywwpwopksg	
	2 x sy tafobkecsswwpwopnng	e e	52 x swtlfcbkecsswwpwopksg	
	3 bswtlfcbnecsswwpwopnnm	e	53 bswtlfcbkecsswwpwopnnm	
	4 xywtpfcnneesswwpwopksu	P	54 xyntpfonkeesswwpwopnvu	
	5 x sgfnfwbktesswwpwoenag	e	55 x swtpfcnkeesswwpwopkvu	
	6 xyytafobneosswwpwopkng	6	56 byytafcbwecsswwpwopksm	
	7 bswtafcbgecsswwpwopknm	6	57 ffgfnfwbntesswwpwoenag	
	8 by wtl fcbnecsswwpwopnsm	6	58 bswtafcbwecsswwpwopnng	
	9 xywtpfcnpeesswwpwopkvg	Р	59 x sy tifc b k e c s s w w p w o p k n g	
	10 bsytafcbgecsswwpwopksm	e	60 xyntafcbpersywwpwopkyp	
	11 xyytifcbgecsswwpwopnng	e	61 sfgfnfcnkeesswwpwopnvu	
	12 xyytał chnecsswy pwopksm	e	62 byytafcbkecsswwpwopnsm	
	13 bsytałcowecsswwpwopnsg	e	63 bsytlfcbgecsswwpwopnsm	
The training	14 xywtpfcnkeesswwpwopnvu	P	64 byytlfcbgecsswwpwopnnm	
ine training	15 x Fn Fn Fwbn tes Fwwpwoekag	e	65 bywtlfcbnecsswwpwopnsg	
data	16 siginicnkeesswwpwopnyu	e	66 fsnfnfwbktesswwpwoekag	
uutu	17 Hwiniwoktesswwpwoenag	e	67 x swtl fcbnecsswwpwopksg	
	18 x sntpicnneesswwpwopksg	P	68 fyytafcbwersywwpwopnsg	
	19 xywtpłonneesswwpwopnsu	P	69 xyytafcbwecsswwpwopkng	
	20 x s n t p i c n k e e s s w w p w o p n s u	P	70 x f g f n f c n p e e s s w w p w o p n v u	
	21 bsytałcokecsswwpwopnsm	e	71 ffytlfwnptbsswwpwopnvd	
	22 xyntpfonneesswwpwopnvg	P	72 bywtlfcbgecsswwpwopnsm	
	23 byytlfcbkecsswwpwopnsm	e	73 ffytlfwnwtbsswwpwopnvd	
	24 bywtafcbwecsswwpwopnnm	6	74 x y n tafo b p e r s y w w p w o p k s p	
	25 bswtlfcbgecsswwpwopksm	6	75 bsytafobkeosswwpwopksg	
	26 Fswtpfcnneesswwpwopnvg	Р	76 fsytlfwnptbsswwpwopnvd	
	27 xyytafcbnecsswwpwopnnm	6	77 x s w t l f w n n t b s s w w p w o p u v d	
	28 xywtifc Dwecsswwpwopnnm	e	78 fyntlfobpersywwpwopnyp	
	29 FFnFnFcnkeesswwpwopkyu	e	79 x y n t p f c n w e e s s w w p w o p n v u	
	30 x sy tarwnn tosswwpwopn vo	e	80 fyntafcbnersywwpwopnyg	
	31 DS y CIFC D g e C S S W W P W O P N N M	e	81 x s n f n f w b k t e f s w w p w o e n s g	
	32 xyw tpronkeesswwpwopnsu	Р	82 xywtpfcnweesswwpwopksg	
	33 xyytirconecsswwpwopnnm	e	83 ffgfnfcnneesswwpwopnyu	
	34 X yn tif copersywwpwopnyp	e	84 x fg fn fwbn tesswwpwoensg	
	30 Dyytirconecsswwpwopnsm	e	85 xyytifcbwersywwpwopksg	
	36 % ry cirwnw cosswwpwopn va	e	86 x s n f n f w b k t e s s w w p w o e k s g	
	37 SFGFNFCNKEESSWWPWOPKVU	e	87 bswtafcbwecsswwpwopksg	
	38 X yn tpronweesswwpwopnsu	P	88 x s w t l f c b n e c s s w w p w o p n s g	
	38 X Fy Carwnp CDSS wwpwopn Vo	e	89 fyntlfcbwersywwpwopkyg	
	4UDSYLIFCDKecsswwpwopksm	e	90 sfnfnfcnneesswwpwopnvu	
	41 by y tarc bnecsswwpwopnsg	6	91 x fn fn fcnneesswwpwopnyu	
	+2 x y y circoners y wwpwopkyp	e	92 bswtlfcbkecsswwpwopksg	
	+3 X F N F N F C N G E E S S W P W O P K Y U		93 xyytafcbgecsswwpwopksg	
	++ xywtpronpeesswwpwopnvg	P	94 xyytifcbgecsswwpwopknm	
	40 x sy tarc bwecs swwpwopknm		95 x snfnfwbntesswwpwoenag	
	46 Xyw Carconecsswy pwopnng		96 x swtafcbgecsswwpwopnsg	
	+r xyytircokecsswwpwopksm		97 fyntlfobpersywwpwopnsg	
	No X SW LI LOUWECSSWWPWOPNNM	e .	98 x sy tafc bnecsswwpwopkng	
© 0000 0000 The	40 X y y tirc uner S y W W D W O D N S D	e .	99 bswtafcbgecsswwpwopnsg	
⊌ ∠002,∠003 I nom	dS of a g this p wells g wwp wopks p	e	100 xywtafcbgecsswwpwopksg	

The Representation

• Multi-valued attributes are mapped to binary representation (also known as *orthogonal encoding*)

© 2002,2003 Thomas Hofmann

CS195-5-2003-01-13

Matlab	1 Reading in a matlab data file.
% load load 'm	data ushroom';
% get d [dim nu pos neg	<pre>imensions m] = size(features); = length(find(labels==1)); = num - pos ;</pre>
% print fprintf fprintf fprintf	<pre>some info ('Number of training data = %d\n',num); ('Pos/neg examples = %d / %d \n', pos, neg); ('Number of input features = %d\n'.dim):</pre>

	Matlab (2)		
	Matlab 2 Perceptron algorithm, primal form.		
	% Initialize parameters		
Creating zero	<pre>w = zeros(dim,1);</pre>		
vectors, no variable	<pre>b = zeros(1,1);</pre>		
declaration	% Perceptron learning, main loop		
	<pre>max_iter = 100;</pre>		
forloop	for iter=1:max_iter		
<u>101</u> 100p	errors = 0;		
	for i=1:num		
	if (labels(i) * (w' * features(:,i) + b) <= 0)		
Matrix indexing,	<pre>w = w + labels(i) * features(:,i);</pre>		
transposing,	b = b + labels(i);		
multiplications	errors = errors + 1;		
	end		
	end		
	<pre>fprintf('Iteration %d, errors = %d\n', iter, errors);</pre>		
fprintf	if (errors=0)		
	break;		
	end		
	end		
© 2002,2003 Thomas Hofr	nann CS195-5-2003-01-21		

Estimating Generalization Performance

• Statistical learning theory: derive bounds of the type

 $J(f^*) \leq J_{emp}(f^*)$ + some function of n and \mathcal{H}

- Empirical estimate via hold out data
 - Leave out some random subset of the examples during training (e.g. 20%)
 - Test of these hold-out examples after training

© 2002,2003 Thomas Hofmann

CS195-5-2003-01-24

Applications of Pattern Recognition

- Optical character recognition
 - Recognize hand written characters
 - Zip code recognition in mail sorting facailities
 - Reading numbers on checks
- Object recognition
 - Recognize object types in images
 - Face detection, recognizing animals, cars, etc.
 - Image annotation for content-based retrieval

© 2002,2003 Thomas Hofmann

CS195-5-2003-01-25

Applications of Pattern Recognition

Automatic speech recognition

- Transcribing speech signals into written text
- Usually: mapping windows (10ms) of speech to phonemes (approx. 20 different sound classes in English)
- Use in voice computer interfaces, calling centers, etc.
- Text Categorization
 - Annotating documents with content descriptors (topics, categories, taxonomies)
 - Content management, filtering, routing

© 2002,2003 Thomas Hofmann

CS195-5-2003-01-26

Applications of Regression

- Financial forecasting
 - Given the past values, observe the next value in a series
 - Stock market prediction
 - Time series prediction
- Optimal Control
 - Given direct or indirect observations of the state of a system and a desired state or trajectory: compute optimal control output
 - Robot arms, Space crafts, etc.

© 2002,2003 Thomas Hofmann

CS195-5-2003-01-29

Applications of Regression

- Drug Design
 - Predict chemical and biological properties of new compounds

Game Heuristics

- Evaluate game positions (approximately) for use in a heuristic search procedure
- Map positions to a score

CS195-5-2003-01-30

© 2002,2003 Thomas Hofmann

Unsupervised Learning

• Structure detection

- Data clustering
 - finding groups of similar patterns
 - Document clustering, protein clustering, texture-based image segmentation
- Dimension reduction
 - Finding low-dimensional subspaces or data manifolds
- Data mining
 - Discovering unexpected regularities

Unsupervised Learning

- Probabilistic modeling (density estimation)
 - Medical diagnosis:
 - learn about dependencies between symptoms and diseases
 - E.g. Bayesian networks
 - Data compression
 - Shannon: optimal expected codeword length E[-log p(x)] = entropy
 - For example: image compression

CS195-5-2003-01-33

© 2002,2003 Thomas Hofmann

