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> Boosting
o I'heory [AdaBoost]

o Statistical point of view [additive models, loss-
functions, LogitBoost]

> Gene Expression Classification
« Characteristics & Challenges

> Applications on DNA data

o Modifications needed for LogitBoost
o StUmMps

o« ROC curves

o Results & Simulations

o BagBoosting




Classification

> Notations:
. X. — an observation (p-dimensional - R")
o V. —class label { -1,1}
e N — NUMber of training samples

> Classification task:

. Build a classifier C : B” -> {-1,1} such that
PIC(x) # y]| Is minimal




Boosting

> (Freund & Schapire)

> ‘Weak learner”

. f:R”->{-1,1}

o A classifier with performance (error on training
data) guaranteed (with high probability) to be better
than random.

> Boosting

» Train a series of weak learners {f....,.f,;}, and
ensemble them (a “committee” vote) to boost
performance.




AdaBoost

Adaptive Boosting

In each AdaBoost iteration m = 1,...,IM :
« The classifier f is trained on a weighted version of the training set
X5 X0} (Welng]tS W,...,w.})
» According to the classification results, the training points are re-
weighted for the next iteration
Increase the weight for misclassified samples

Finally, the combined classifier:

M
» a weighted committee vote of {f;,..,.f,;} Fu(x) = Z Uy fin (X)
(WelghtS {G1 yooay GM}) m=1

By adaptively re-weighting the training samples, we force
classifier fi, to focus on the samples which were difficult to classify
In the previous iterations.




AdaBoost

> Choosing components:
o Weak learner
» Weights for data — {wy,...,W, |
« Weights for aggregating classifiers — {a.,..., Oy}
o NUMber of boosting Iiterations — Vi

> Common choices:

o« Weak learner — decision trees
o M — fixed (uswally: 100) or decided by CV




Discrete AdaBoost Algorithm

Discrete AdaBoost(Freund & Schapire 1996b)
1. Start with weights w; =1/N, i =1

2. Repeat form=1,2,... M:

(a) Tit the classifier f,,(z) € {—1,1} using weights w; on the training data.
(b) Compute erry, = Ey[liy2r. z)))s €m = log((1 — erry, ) ferry,).
(c) Set w;  wiexplem - Ly 2pmmn) = 1,2,... N, and renormalize so that ) ; w; = 1.

3. Qutput the classifier sign[Y"M_, ¢,.fn (2)]

Algorithm 1: E,, represents ezpectation over the training data with weights w = (wy,wy,...wy), and
l(s) is the indicator of the set 5. Al each iteration AdaBoost increases the weights of the observations
misclassified by f,.(x) by a factor that depends on the weighted training error.

(this notation uses {c,..., C\,} Instead of {a,..., a\})

recall that FSEIEEP A= ES N




Statistical View of Boosting

> (work by Friedman, Hastie, Tibshirani)

> Show that
o AdaBoost fits an additive model

o Can be interpreted as stage-wise estimation of
an additive logistic regression model

> Introduce LogitBoost




Additive Models

> Additive regression models

o A separate function f(x;) for each
of the input variables X;.

> Extended additive models

« Each function fi.(x) potentially uses
all of the p Iinput features of x.
V., — parameters set
5,,— multiplier
b(x,y.) — generally called “basis functions”
o E.g., B(X, V) =a(y"%) : single hidden layer neural
network




Additive Models

> lterative optimization

o Fitting criterion:
least squares

2

{ﬁm: »-}e.m} + arg Ll}%}HE [y — Fn—1(z) — Bb(z; 'T]]
7Y

o Forward stepwise algorithm

At each step m, we change the output values y, ., so that the
next iteration will only deal with the “residuals” left from the
previous Iteration

o Only requires an algorithm for fitting a single weak
learner to data

can be viewed as boosting (x) = [ b(x, V), forming a committee
F (%)




Classification Problems

> Using regression for classification:
Use the class probabilities Id{ESENIES] as output values

Problem: regression estimates are not constrained to [0, 1]

Solution:

Isti - Ply = 1lo
Logistic transformation: R&& (v = 1]z)

Py = —1|x)

m=1

Inverting:

Guarantees that for every F(X), p(x) & [0,1]




Loss Functions

> We need to define a loss function J(F) to be
minimized in each iteration

> AdaBoost builds an additive logistic regression
model using the exponential loss function.

> The exponential
loss function:




Loss Functions

> The exponential loss function is similar (2" order
equivalence) to the statistically motivated, well-known:

> Binomial log-likelihood
(transforms [-1,1] to [0,1])

« loss function: = y"log(p(z)) + (1 — y*)log(l — p(z))

—log(1 + e —2vFz) )

> Introduce LogitBoost — an additive logistic regression
model using the binemial log-likelineod criterion.




Loss Functions

Losses as Approximations to Misclassification Error

Misclassification
Ex ponential
Log-likelihood
Squared Ermor (p)
Squared ErmrF)

vF

Figure 2: A variety of loss functions for estimating a function F(z) for classification. The horizontal azis is
yF', which is negative for errors and positive for correct classifications. All the loss functions are monotone
in yF, and are centered and scaled to match e V¥ at F = 0. The curve labeled “Log-likelihood” is the
binomial log-likelihood or cross-entropy y* logp + (1 — y*) log(1 — p). The curve labeled “Squared Error(p)”
is (y* — p)*. The curve labeled “Squared Error(F)” is (y — F)*, and increases once yF exceeds 1, thereby
increasingly penalizing classifications that are “too correct”.




LogitBoost

LogitBoost (2 classes)
1. Start with weights uwy =1/N i=1,2,... ,N, F(z) = 0 and probability estimates p(x;) = %

2. Repeat form=1,2,... M:

(a) Compute the working response and weights

yi — plzi)
plr;) (1 — pl(x;))
w; plz;i) (1 — p(x;))

24

(b) Fit the function fr,(z) by a weighted least-squares regression of z; to x; using weights
.
ef' (=)

(c) Update F(z) «+ F(z) + %fm[-f] and p(z) + eF @) re—F2) "

3. Output the classifier sign[F(z)] = sign[YM_, fin(2)]

Algorithm 3: An adaptive Newton algorithm for fitting an additive logistic regression model.

Fitting f(x) (using
Newiton updates):




Gene Expression Data

> lissue classification using gene-expression data

> Using DNA microarray technology and
computational methods for:
o distinguishing between different cancer types
o Identifying normal / diseased tissues

> Correct classification can assist
o Clinical diagnosis
o Efficient and focused drug-design
o Better understanding of gene functionality.




DNA Microarrays

> Mechanism based on:
o KNnown sequences of genes
o Specifically designed DNA chips
o hybridization experiments
o IMmage processing of the results

> In order to:

o Measure the expression levels ofi the genes in
a given tissue




Gene Expression Data - Visualization

> One Tissue

genel gene2 gene3 dgene4 (gened

> Several labeled tissues class
genes labels




The Classification Problem; -
Definition

> Input:

e /1 0bservations (tissues), each has:
p values (gene expression levels)
a class label

o Formally:
X

i = Nxpmatrix of gene expression data
¥ = class label (7..K) of observation /

> Output:
o a trained classifier




Challenges

> “Curse of Dimensionality”
e P (# genes) >> n (# samples)
o Very high-dimensional data (thousands)
o fEew observations (dozens)

> Noisy data (DNA chips)
o Usually highly-correlated




Applying Boosting on Expression
Data

> (work by Dettling, Buhimann)

> Modifications needed:
Feature selection

_ogitBoost with decision trees (stumps)
Dealing with multi-class problems
> Results

« ROC curves
o Simulations




Feature Selection

> Dimensionality reduction is essential

(p>>n)
> Non-parametric method (Park)
« Equivalent to Wilcoxon's test

> Individual scoring for each gene, then
choosing p~ genes with top scores

> [o° canibe chosen using cross-valioation




Gene Scoring

> Scoring gene g

Score(g) = s(g) =

> For symmetry purposes
q(g) = max(s(g), non; — s(g))

> Choose p~ genes with highest g values




Gene Scoring - Example
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LogitBoost with Tirees

> Boosting reguires choosing a weak learner

> Decision trees are a common choice
o Regression fitting using decision trees

> In this case, stumps are used x D < 0 45
<.

o decision trees with
2 terminal nodes /\

yi=-1 yi=1

o INndeed, a weak learner...
o NO fine-tuning, or sophisticated optimization needed




Multi-Class Problems

> I'he algorithm deals with binary cases

> Enhancing to multi-class (J>2) problems through
one-against-all approach:
» Creating J binary problems
. Each returns an estimate JpERESNIPY
o Normalize to get class probabllities:

e

By — i — P =11X]
1Y =j|X] = m

Lak=1

o lake the largest probability as the final classification




Results

> Employing the algorithm for 6 published
real-world microarray data sets.

> Produce Leave-One-Out Cross-Validation
rates

> Different values of p~ (feature selection)
> Compare with other algorithms




Table 1. Test set error rates based on leave one out cross validation for leukemia, colon, estrogen. nodal, lymphoma and NCI data with gene subsets from
feature selection ranging between 10 to all genes for several classifiers. LogitBoost error rates are reported with optimal stopping (minimum cross-validated
error across iterations), after a fixed number of 100 tterations as well as with the estimated stopping parameter. The cross validation with estimated stopping
parameters for the lymphoma and NCI data with all genes was not feasible

Leukemia 10 23 50 75 100 200 3571

LogitBoost, optimal 4.17% 2.78% 4.17% 2.78% 2.78% 2.78% 2.78%
LogitBoost, estimated 6.94% 3.36% 3.56% 4.17% 4.17% 5.56% 3.36%
LogitBoost, 100 iterations 5.56% 2.78% 4.17% 2.78% 2.78% 2.78% 2.78%
AdaBoost, 100 iterations 4.17% 4.17% 4.17% 4.17% 4.17% 2.78% 417%
l-nearest-neighbor 4.17% 1.39% 4.17% 5.56% 4.17% 2.78% 1.39%
Classification tree 22.22% 22.32% 22.22% 22.72% 22 22% 22.22% 23.61%
Colon 10 25 50 75 100 200 2000

LogitBoost, optimal 14.52% 16.13% 16.13% 16.13% 16.13% 14.52% 12.90%
LogitBoost, estimated 22.58% 19.35% 22.58% 20.97% 22 58% 19.35% 19.35%
LogitBoost, 100 iterations 14.52% 22 58% 22.58% 19.35% 17.74% 16.13% 16.13%
AdaBoost, 100 iterations 16.13% 24.19% 24.19% 17.74% 20.97% 17.74% 17.74%
l-nearest-neighbor 17.74% 14.52% 14.52% 20.97% 19.35% 17.74% 25.81%
Classification tree 19.35% 22.58% 29.03% 32.26% 27.42% 14.52% 16.13%
Estrogen 10 23 50 75 100 200 7129

LogitBoost, optimal 4.08% 4.08% 2.04% 2.04% 2.04% 4.08% 2.04%
LogitBoost, estimated 6.12% 6.12% 6.12% 6.12% 6.12% 6.12% 6.12%
LogitBoost, 100 iterations 8.16% 6.12% 6.12% 4.08% 4.08% 8.16% 6.12%
AdaBoost, 100 iterations 8.16% 8.16% 2.04% 2.04% 6.12% 4.08% 4.08%
l-nearest-neighbor 4.08% 8.16% 18.37% 12.24% 14.29% 14.29% 16.33%

Classification tree 4.08% 4.08% 4.08% 4.08% 4.08% 4.08% 4.08%



Results — cont.

Nodal 10 25 50 75 100 200 7129
LogitBoost, optimal 16.33% 18.37% 22.45% 22.45% 22.45% 18.37% 20.41%
LogitBoost, estimated 22.45% 30.61% 30.61% 34.69% 28.57% 26.53% 24 49%
LogitBoost, 100 iterations 18.37% 2041% 26.53% 42.86% 42 86% 18.37% 22 45%
AdaBoost, 100 iterations 18.37% 16.33% 28.57% 40.82% 36.73% 22.45% 28.57%
1-nearest-neighbor 18.37% 30.61% 30.61% 42.86% 36.73% 36.73% 48.98%
Classification tree 22.45% 20.41% 20.41% 20.41% 20.41% 20.41% 20.41%
Lymphoma 10 25 50 75 100 200 4026
LogitBoost, optimal 1.61% 3.23% 1.61% 1.61% 161% 3.23% 8.06%
LogitBoost, estimated 3.23% 3.23% 3.23% 1.61% 3.23% 3.23% %
LogitBoost, 100 iterations 1.61% 3.23% 1.61% 1.61% 161% 3.23% 8.06%
AdaBoost, 100 iterations 4.84% 3.23% 1.61% 1.61% 1.61% 1.61% 3.23%
Nearest neighbor 1.61% 0.00% 0.00% 0.00% 0.00% 1.61% 161%
Classification tree 22.58% 22 .58% 22.58% 22.58% 22.58% 22.58% 25.81%
NCT 10 25 50 75 100 200 5244
LogitBoost, optimal 32.79% 31.15% 27.87% 22.95% 26.23% 24.59% 31.15%
LogitBoost, estimated 36.07% 44.26% 36.07% 39.34% 44.26% 47 54% %
LogitBoost, 100 iterations 37.70% 44.26% 34.43% 29.51% 26.23% 24.59% 36.07%
AdaBoost, 100 iterations 50.82% 37.70% 34.43% 29.51% 32.79% 29.51% 36.07%
Nearest neighbor 36.07% 29.51% 27.87% 24.59% 22.95% 22.95% 27.87%

Classification tree 70.49% 68.83% 635.57% 65.57% 60.66% 62.30% 62.30%



Asymmetric Losses

> The algorithm uses equal misclassification costs

o False positive — predicting a normal tissue as
diseased

o False negative — predicting a diseased tissue as
normal
> Clinical implications:
o False negatives are much more dangerous

o Further tests will be performed on false positives and
rule them out




ROC Curves

> Receiver Operator Characteristic
from WW-II (radars distinguishing between ships and Noise)
> Used to evaluate the power of a classifier for
different asymmetric losses

> [5 € [0,1] — a threshold for positive classifications

> We plot the fractions of positive and negative
samples that are classified as positive

> Each point (x,y) represent these fractions for a
specific 6




ROC Curves
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Colon data, pr = 2000
Both boeosting algorithms are closer to the ideal ROC curve




Simulations

> Benefits:
o Limited amount of real data

» Allows more accurate comparisons with other
classifiers

> Requires a “realistic” simulation model
« Multivariate distribution
o Proportion of relevant genes
o Response model (1(x) == V)




Simulations

> X ~ N(0,2) (normal distribution)
o lake X from a real data set (colon, p=2000)

> Response model BRI LA IHVIE),

o Where p(x) Is
determined by:

a random gene sef Cj ofi size ~ U([1/,10])
» Coefficients BV N - N(0,0), 6 = 2,1,0.5




Simulations — Results

> Hypothesis:
LogitBoost
outperforms
benchmark
methods.

Table 2. Percentual improvement and p-values of LogitBoost (stopped
optimally and after a fixed number of 130 iterations) against the genernc
l-nearest-neighbor method and classification trees in 20 independent
realizations from our simulation model. The p-values are from paired two-
sided Wilcoxon signed rank tests for equal test set error and are always 1n
favor of LogitBoost

1-Nearest-Neighbor

LogitBoost, optimal 12.37%,
LogitBoost, 130 iterations 7.54%,

LogitBoost, optimal
LogitBoost, 150 iterations




BagbBoosting

> A recent enhancement (Dettling)

> Adding Bagging into the algorithm

> More simulation models

> Blas / Variance analysis

> Adding a “model recovery” capability.




Bagging

> Bagging — Bootstrapping and Aggregating
> In each boosting Iteration
Instead of using a single base learner,

aggregate several learners generated from

bootstrap samples of the re-weighted data.
> \Motivation:

o Boosting ensemble — reduces bias

o Bagging ensemble — reduces variance




BagbBoosting

training sample weighted sample > ... — | weighted sample

! !
Bagging Bagging
i
fa(x)

e

ﬁ BagBoost (x) — EE: 1 ot [, m (x

Fig. 1. The fundamental 1dea of BagBoosting.

> Aggregation of the B | B
bootstrapped learners is  RECHEE-SINSMCD
done by averaging the B b=1

SIUMPS




Results

Table 1. Misclassification rates for seven classifiers on six microarray data-
sets based on 30 random partitions into learning sets (two-thirds of the data)
and test sets (one-third of the data)

Levkemua Colon Prostate Lymphoma Brain

(%) (%a) (%) (%)
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> Real Data sets

> 50 random splits to train/test (2/3-1/3)
> [pr =200
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Fig. 2. Boxplots and density curves of the misclassification rates for seven classifiers on six microarray datasets based on 50 random splits
mto learning and test sets. The vertical red lines highlight the median (boxplots) and the mean value (density curves).




Simulations

> Take X~N(u,2) according to real data
o Leukemia data set (p=3571)

> 3 response models:
o Additive (a)

« Weighted additive (b)

o Complex interaction
with 25 genes (c)

> Set class labels: px)= — L
o 1+ exp[—F(x)]

v(x) ~ Bemoulli [ p(x)].
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Fig. 3. Misclassification rates for outsample classification on simulated gene expression data with various classifiers and three different
response models. The left panels show boxplots where the median 15 highlighted 1n red. the right panels show density curves where the red
vertical line corresponds to the mean error rate.
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Table 2. Misclassification rates for outsample classification on 100 iid simulation experiments with various classifiers and three different response models, as
well as the number of simulations where each of the classifiers was worse than BagBoosting, and the P-value for the two-sided sign test that the performance

15 equal

Response (a) Response (b) Response (c)

Error (%a) Worse P-value Error (%) Worse P-value Error (%) Worse P-value
BagBoost 17.02 o S 17.57 S o 13.19 S o
Boosting 18.32 89 0.0000 19.09 96 0.0000 1442 97 0.0000
RanFor 18.87 a3 0.0000 19.19 87 0.0000 14.00 65 0.0004
SVM 16.33 36 0.0066 16.94 31 0.0002 11.13 7 0.0000
PAM 20.99 100 0.0000 12.25 99 0.0000 18.61 96 0.0000
DLDA 20.83 99 0.0000 21.15 93 0.0000 17.18 91 0.0000
ENN 24.04 100 0.0000 25.67 100 0.0000 18.90 100 0.0000




Bias — Variance

> IMSE = Integrated  RISIGE fy\f*ar(p"(xnw[ﬁ(x)—p(x)Fdﬂx)
Mean Squared Error "

> Estimations using
simulations and
T=1 OOQ fixed . _ 1 %iﬁk(l’ﬁ) _pk(xj)}
[est points: k=1

— p(xi)]

2

Table 3, Estimates of IMSE, variance and squared bias for conditional class probabilities, obtamned from four different prediction methods on simulated gene
expression data with three different response models

Fesponse (a) Fesponse (b) Fesponse (c)

IMSE Var Bias” IMSE Var Bias" IMSE Vari Bias”
Stumps 0.102 0.041 0.061 0.116 0.040 0.075 0.128 0.037 0.001
Bagging 0.060 0.010 0.050 0.083 0.010 0.073 0.006 0.008 0.088
Boosting 0.076 0.048 0.028 0.086 0.056 0.030 0.090 0.047 0.043

BagBoost 0.045 0.020 0.026 0.050 0.023 0.027 0.056 0.019 0.037




Model Recovery.

> Does BagBoosting recover the true response
model — identifies the affecting genes?

> Note that the BagBoosted
aggregation of stumps can
be represented as an
additive combination:
o N(:) —aggregated step functions
» 6 —“importance coefficient”

» Genes with high 6, values — considered “important
by the classifier




Gene 1, 6= 0,859 Gene 44, B,,= 0,226

/

-2 -3 -2 -1 10

Fig. 4. BagBoosting model fit and true predictors: the black dots represent the linear univanate functions for three genes i the simu-
lation model. Superimposed are the smoothed univaniate step functions and their fitted values (grey circles). obtamed by BagBoosting
with stumps.




Model Recovery — Besults

> Using simulations with the
additive (a) response model
o [Ihe “true” affecting genes are

> Compare top 10 “important”

> Results:

o Intersection:
not Impressive

o Correlation:
guite high

This is the case with
highly correlated data

1,..,10
genes 1o true ones

Table 4. Comparison of the 10 true and the 10 most important BagBoosting
genes: given are their estumated model coefficients 1'1'J . the ranking R ll'"'., ) of
the coefficients according to their magnitude and the maximal correlation of
each gene to 1 of the 10 genes from the other group

Important genes True genes

Gene R{ﬁj:} 8; Correlation  Gene R[Iﬁj‘:} Hj Correlation

0.859 1.000
0450 1.000
0226 0494
0220 0.646
0217 0623
0212 0482
0.204 0.710
0.197 0.582
0.188 0.661
0.183 0.839

1 0.859 1.000
2 0.450 1.000
19 0.129 0.810
61 0.047 0.752
66 0.041 0.864
74 0.033 0.846
88 0.026 0.832
0.012 0779

0.000 0.655

0.008 0694
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Abstract

> This talk presents boosting methods and their application on DNA
microarray classification. We present the theory of boosting from the
computational learning perspective. We then show a statistical point
of view, focusing on the relation to additive models with different loss
functions.
A brief introduction on DNA microarrays is given, followed by 2
modified applications of boosting on gene expression data. We

Covelr the different methods and show real-world and simulation
resuits.

> References
» Additive Logistic Regression: A Statistical View of Boosting
(Friedman, Hastie & Tibshirani, 1999)
« Boosting for tumor classification with' gene expression data
(Dettlingl & Buhlmann, 2002)

» BagBoosting for tumor classification with gene expression data
(Dettling;, 2004)




