
Similarity Search
Vision Example

Have we met ?

Similarity Search
Formal Definition

Query Space - on-line

Database Space - dynamic

Similarity Model

Transformation Model

Similarity Measure

Similarity Threshold

Q
DB⊆Q

T :QQ
f :Q×Q [0,1]⊆ℝ

s q , v =[f q ,T v ]

s q , v  {0,1}
v∈DB

q∈Q

Similarity Model

Coordinates System Translation

Amplitude Translation and Scaling

Additive Noise

Zero Mean

Euclidean Unit Hypersphere

Euclidean Norm

Angle Threshold (Similarity variance)

Geometry

Euclidean Norm

〈v ,u 〉=∑
i=1

d

v i⋅ui=cos ∢v ,u

∥v−u∥2
2=〈v−u , v−u 〉=∥v∥2

2∥v∥2
2−2⋅〈v ,u 〉

∥v−u∥2=2⋅1−cos ∢v ,u

Unit Vector

Inner Product

E u⋅v −Eu⋅Ev
Var u⋅Var v 

Cross-Correlation

Inner Product using
Fast Fourier Transform

x=v∗q✶=ifft  fft v  .∗conj ifft q

x j=〈v ,u j 〉=∑
i=1

d

v i⋅q ji

u j=q j , , q jd 

q

v

u j
q j q jd

x= x1, , xd '−d1

Exhaustive Exact Search

n database elements.

d possible shifts in a query.

Compare all database elements for every shift.

Every inner-product costs O(d) operations.

Time: O(n d2)

I/O: n - as a sequential scan.

kd-Tree

Voronoi Diag: best for exact search when n=exp(d)

Curse of Dimensionality
Exhaustive Win

General Metric

Discrete Metric

Histogram of Distances

Vector Space

Cube volume grows exponentially

Points are sparse

The variance of the distances becomes small

Approximate Nearest Neighbor

Very close to the most similar element (NN)

Feature Extraction – Domain Specific & no FFT

Indexing (inner products)

Randomized kd-tree - Yianilos 2000

Locally Sensitive Hashing – Indyk 2004

Sum-Synopsis – Cohen 2005

Randomized kd-Tree
Yianilos 2000

Vector coordinates: i.i.d. random variables

Uniform distribution (unit vector)

Binary search tree based on projections

Orthogonalized vectors as external pivots

Redundancy: l-trees

Inner-products ~ N(0,d-½)
both

left

right

Locally Sensitive Hashing
Indyk 2004

No assumptions on the input.

External pivots from a p-Stable distribution.

N(0,1) is a 2-stable distribution.

Hash function or

Multi way search tree: projections and r bins.

Redundancy: l-trees of depth k

p–Stable Distributions
p–stable distribution (p ¸ 0): A distribution D over R

n real numbers v
1
,...,v

n

i.i.d. variables X
1
,...,X

n
 with distribution D,

r.v. Σ
i
 v

i
 X

i
 ~ (Σ

i
|v

i
|p)1/pX=l

p
(v)X

X is a r.v. with distribution D

Cauchy distr is a 1–Stable distribution

Gaussian distr is a 2-Stable distribution

for 0 < p < 2 there is a way to sample from a p–stable

distribution given two uniform r.v.’s over [0,1]

p-Stable Distribution App.
taken from Indyk

Using multiple independent X’s

a X - b X can be used to estimate lp(a – b)

Divide the real line into segments of width w

Each segment defines a hash bucket, i.e. vectors that project onto

the same segment belong to the same bucket

Sum-Synopsis
Vector coordinates: i.i.d. random variables.

Synopsis as the sum of annuli subsets.

Synopses as external pivots.

Binary search tree based on projections.

bothnone

sG

v
∥v∥

q
∥q∥

The
Unit

Sphere



Spherical Collars

● Toroidal
● Annuli
● Annulus
● Ring

Empirical Evaluation

No standart cost model.

Counting Time, I/Os, Inner-products, FFTs.

Uniform distribution
Maximized entropy
The example for the curse of dim.
Unrealistics.

Sparsity and Homogeneity.

LSH & kd-Tree
Time vs. n (d=100)

∣q∣=d

LSH & kd-Tree
Time vs. Dimension (n=105)

∣q∣=d

Bless of Dimensionality ?

SNR = 8db, Database size = 104, Accuracy level = 99.0

Methods parameters were selected to optimized speed.

∣q∣=2⋅d

Bless of Dimensionality ?

Dimension = 128, Database size = 104, Accuracy level = 99.0
SNR = 20.0 (α=0.1), 14, 10.5, 8.0, 6.1, 4.5, 3.2 and 2.1 (α=0.8) [db]

Methods parameters were selected to optimized speed.

∣q∣=2⋅d

Future Research
Low-level operations count.

Time vs. Database size.

Time vs. Space.

Insertion phase analysis.

Change noise with respect to dimesnion.

Time vs. Noise for other dimensions.

Theoretical Analysis.

Var Proof

Var v i=
1
3

Var 
v i

∥v∥
= 1

d

Var v i⋅ui=
1
9

Var 
v i

∥v∥
⋅ui=

1
3⋅d

Var 
v i

∥v∥
⋅

ui

∥u∥
= 1

d 2

Var 〈v ,u〉= d
9

Var 〈 v
∥v∥

, u〉=1
3

Var 〈 v
∥v∥

, u
∥u∥

〉= 1
d

Var ∑
i=1

∣G∣

〈 v
∥v∥

, u
∥u∥

〉=
∣G∣
d

