Similarity Search Vision Example

Similarity Search **Formal Definition** Query Space - on-line $q \in Q$ $v \in DB$ • Database Space - dynamic $DB \subseteq Q$ $s(q, v) \rightarrow \{0, 1\}$ Similarity Model Transformation Model $T: Q \rightarrow Q$ $f: Q \times Q \rightarrow [0,1] \subseteq \mathbb{R}$ Similarity Measure Similarity Threshold $s(q,v) = [f(q,T(v)) < \alpha]$ eir cohen 2005

Similarity Model

- Coordinates System Translation
 Amplitude Translation and Scaling
 - Additive Noise
 - Zero Mean
 - Euclidean Unit Hypersphere
- Euclidean Norm

eir cohen 2005

• Angle Threshold (Similarity variance)

 $\min \left\| v^{005} u \right\|_2 = \sqrt{2 \cdot (1 - \cos((\checkmark(v, u))))}$

Exhaustive Exact Search

- *n* database elements.
- *d* possible shifts in a query.
 - Compare all database elements for every shift.
 - Every inner-product costs O(d) operations.
- Time: $O(n d^2)$

eir cohen 2005

• I/O: n - as a sequential scan.

Curse of Dimensionality Exhaustive Win

General Metric

- Discrete Metric
 - Histogram of Distances
- Vector Space

- Cube volume grows exponentially
- Points are sparse

The variance of the distances becomes small

Approximate Nearest Neighbor

- Very close to the most similar element (NN)
 Feature Extraction Domain Specific & no FFT
 - Indexing (inner products)

- Randomized kd-tree Yianilos 2000
- Locally Sensitive Hashing Indyk 2004
 Sum-Synopsis Cohen 2005

Randomized *kd*-Tree Yianilos 2000

- Vector coordinates: i.i.d. random variables
- Uniform distribution (unit vector)
- Binary search tree based on projections
 - Orthogonalized vectors as external pivots
 - Redundancy: *l*-trees

eir cohen 2005

Inner-products ~ $N(0, d^{-1/2})$

Locally Sensitive Hashing Indyk 2004

- No assumptions on the input.
 - External pivots from a p-Stable distribution.
 - N(0,1) is a 2-stable distribution.
 - Hash function or

- Multi way search tree: projections and r bins.
- Redundancy: *l*-trees of depth k

p–Stable Distributions

• p-stable distribution (p, 0): A distribution D over R

n real numbers v_1, \dots, v_n

- i.i.d. variables X_1, \dots, X_n with distribution D, r.v. $\sum_i v_i X_i \sim (\sum_i |v_i|^p)^{1/p} X = l_p(v) X$
- X is a r.v. with distribution D
- Cauchy distr is a 1–Stable distribution
- Gaussian distr is a 2-Stable distribution
- for 0 there is a way to sample from a*p*-stable distribution given two uniform r.v.'s over [0,1]

p-Stable Distribution App. taken from Indyk

Using multiple independent X's

- a X b X can be used to estimate $l_p(a b)$
- Divide the real line into segments of width w
- Each segment defines a hash bucket, i.e. vectors that project onto the same segment belong to the same bucket

Sum-Synopsis

Vector coordinates: i.i.d. random variables.

Synopsis as the sum of annuli subsets.

Synopses as external pivots.

Binary search tree based on projections.

 S_G

Spherical Collars

Empirical Evaluation No standart cost model. Counting Time, I/Os, Inner-products, FFTs. Uniform distribution Maximized entropy The example for the curse of dim. Unrealistics. **Sparsity and Homogeneity.** eir cohen 2005

Bless of Dimensionality?

Time vs. Dimension

Future Research

Low-level operations count.

- Time vs. Database size.
 - Time vs. Space.
 - Insertion phase analysis.
 - Change noise with respect to dimesnion.
 - Time vs. Noise for other dimensions.
- Theoretical Analysis.

