
Extended Abstracts of the

Fifth International Workshop

on Termination

(WST '01)

Utrecht, The Netherlands

Nachum Dershowitz, editor

May 20{21, 2001

2

3

Contents

Preface 4

Farhad Arbab, Apparent causality for distributed termination detection 5
Cristina Borralleras & Albert Rubio, A monotonic higher-order se-

mantic path ordering . 8

Julien Forest, Strong normalization by reducibility of the weak �P

calculus . 10

Alfons Geser, Decidability of termination of certain one-rule string

rewriting systems . 12

Silvia Ghilezan, Viktor Kun�cak & Silvia Likavec, Reducibility method

for termination properties of typed lambda terms 14

J�urgen Giesl & Aart Middeldorp, Comparing techniques for automated

termination proofs . 17

Bernhard Gramlich, Knowledge based simpli�cation of termination

proofs . 19

Dieter Hofbauer, On termination of multiple premise ground rewrite

systems . 22

Jean-Pierre Jouannaud & Albert Rubio, Higher-order recursive path

orderings �a la carte . 23

Fairouz Kamareddine & Alejandro Rios, Is the se-calculus strongly

normalising? . 25

Salvador Lucas, On termination of OBJ programs 29

Salvador Lucas, Relating termination and in�nitary normalization . . 31

Aart Middeldorp & Seitaro Yuuki, Approximating dependency graphs

using tree automata techniques 33
Enno Ohlebusch, Semantic labeling meets dependency pairs 36

Mario Schmidt, Heiko Stamer & Johannes Waldmann, Busy beaver

PCPs . 39

Alexander Serebrenik, Inference of termination conditions for numer-

ical loops . 42

Alexander Serebrenik, On the termination of meta-programs 44

Oliver Theel, On a control-theoretic approach for proving termination 47

Xavier Urbain, Proving termination automatically and incrementally . 49

Wim Vanhoof & Maurice Bruynooghe, Binding-time annotations with-

out binding-time analysis . 52

Andreas Weiermann,Mathematical analysis of some termination prin-

ciples . 55

4

Preface

After the successful international workshops on termination held in St. Andrews

(1993), La Bresse (1995), Ede (1997), and Dagstuhl (1999) a �fth workshop was

held in Utrecht, on the campus of Universiteit Utrecht, in conjunction with the

Twelfth International Conference on Rewriting Techniques and Applications

(RTA 2001) and the Fourth International Workshop on Explicit Substitutions:

Theory and Applications to Programs and Proofs (WESTAPP 2001).

This series of workshops delves into all aspects of termination of processes.

Though, the halting of computer programs, for example, is undecidable, meth-

ods of establishing termination play a fundamental role in many applications

and the challenges are both practical and theoretical. From a practical point

of view, proving termination is a central problem in software development and

formal methods for termination analysis are essential for program veri�cation.

From a theoretical point of view, termination is central in mathematical logic

and ordinal theory.

Areas of interest to this workshop, include, but are not limited to, the

following:

Well-quasi-order theory and ordinal notations

Ordinals and termination orderings

Fast and slow growing hierarchies

Strong normalization of lambda calculi

Termination of programs, of rewriting, and of logic programs

Hard termination problems and proofs

Termination methods for theorem provers and veri�cation systems

Implementations and applications of termination methods

The program committee for the �fth workshop consisted of

Nachum Dershowitz, Tel-Aviv (chair)

Danny De Schreye, Leuven

J�urgen Giesl, Aachen

Pierre Lescanne, Lyon
Albert Rubio, Barcelona

Stephen Simpson, Pennsylvania

Hans Zantema, Eindhoven

The local arrangements chair was Vincent van Oostrom. Sponsors of the

events included Centrum voor Wiskunde en Informatica, Instituut voor Pro-

grammatuurkunde en Algoritmiek, Department of Philosophy at Universiteit

Utrecht, International Federation for Information Processing, Leiden-Utrecht

Research Institute, University of Amsterdam Informatics Institute, and Uni-
versity of Tsukuba.

Nachum Dershowitz

Tel Aviv

Apparent Causality for Distributed Termination Detection

Farhad Arbab

email: farhad@cwi.nl

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Termination detection in a system of distributed processes is a classical problem in distributed comput-
ing. Distributed Termination Detection (DTD) has been extensively studied in the past twenty years and
it is known to be a di�cult problem to solve e�ciently, because it involves properties of the global state
of a distributed system. DTD is an especially important basic form of coordination. Appropriately gen-
eral DTD algorithms can also be adapted for certain other coordination tasks in parallel and distributed
systems, such as barrier synchronization, consensus, etc.
Many DTD algorithms exist and a recent survey of 35 of them [1] introduces a taxonomy and identi�es

8 di�erent characteristics for their classi�cation and evaluation. This survey concludes by remarking that
\[an] algorithm [with favorable ranking in all 8 dimensions,] if one exists, would be a huge development
in this �eld." As di�cult as DTD is in its classical setting, considerations for dynamicity and mobility
in a distributed system further complicate the DTD problem and render most existing DTD algorithms
non-applicable.
It is customary to assume that the only means of communication among the processes in a distributed

system is message passing. Furthermore, it is customary to distinguish between normal messages ex-
changed among the processes in a system, and the control messages required by a DTD algorithm. One
of the most interesting properties of a DTD algorithm is the maximum number of control messages it
requires to detect the termination of a (run of a) system in which a total of n normal messages are
exchanged. This measure is sometimes called the message complexity of a DTD algorithm. The message
complexity of reasonably general DTD algorithms for a system consisting of m processes exchanging
n normal messages is typically of the order of m � n. Furthermore, the average performance of such
algorithms is not signi�cantly better than their worst case.
We introduce the notion of Apparent Causality as a relation among the messages in a system of

distributed processes, from which we derive the concepts of message histories and futures. Apparent
causality and message histories are inherently local properties which can be evaluated at the level of each
process, whereas message futures are inherently global system-level properties. Histories and futures of
messages are examples of histories and futures of more general observables in a distributed system. We
propose Back To The Future (BTTF) as a generic method for computing futures from histories, and use
this technique to construct three di�erent symmetric algorithms:

1. BTTF Transitory Quiescence (BTTF-TQ) is a generic, e�cient algorithm that leads a distributed
system to a state containing the distributed knowledge that there are no pending messages;

2. Yet Another Wave Algorithm (YAWA) uses the BTTF technique to implement a generic DTD wave
algorithm with certain interesting properties of its own; and

3. BTTF Wave is our main algorithm, which combines BTTF-TQ and YAWA to obtain a general
symmetric DTD algorithm that is equally suitable for classical settings as for dynamic systems of
distributed mobile processes.

A key concept that underlies all three algorithms is the fact that the real cost of communication in a
distributed computing system is essentially a function of the number of transmitted messages. In other
words, within \reasonable limits" sending a longer message costs the same as sending a shorter one.
Furthermore, the occasion that a message uses the full capacity allowed by those \reasonable limits" for
each transmission in a system is indeed very rare. Intuitively, our algorithms take advantage of this fact
to reduce the number of control messages they need. Our algorithms utilize the unused capacity that is

collectively provided by the transmission of all normal messages in a system to piggy-back and transmit
a good part of the control information they need to run.
Apparent causality is the key relation that creates this control information in terms of message histories.

The BTTF scheme ensures that message histories reach a select subset of message senders, who use this
information to reconstruct the futures of their respective messages. The signi�cance of message futures is
in the fact that they reveal certain global properties of a distributed system. The BTTF-TQ algorithm
uses message futures to extract (partial) information about quiescence in a distributed system. The YAWA
algorithm uses message futures to determine the coverage of the rounds of its token waves. The BTTF
Wave algorithm uses message futures for both of these purposes in order to reduce the number of rounds
of token waves as compared with YAWA.

Messages A message has a unique identity and contains some information. A message is sent by a single
unique process (its producer or sender) to a single unique process (its target or receiver). The most im-
portant information contained in a message is its value, which is what the sender intends to communicate
to the receiver. A message may contain extra information in addition to its value. Speci�cally, we require
each message to also carry its own identi�er and (a part of) its own history.
The value of a message is either normal data or control data. Normal data is the set of all application

data values exchanged through messages. Messages that contain normal data as their values are called
normal messages. Control data is the set of values required by a DTD algorithm to be exchanged through
messages. Messages that contain control data as their values are called control messages. A distinguished
subset of control data is called token values and messages that contain such values are called tokens.

Apparent Causality Consider the externally observable behavior of a process, P , in a parallel or
distributed system. Every message has a unique sender and a unique receiver. We can observe that at
certain points in time P actually reads (i.e., consumes) one of the messages it has received, and we
can also see that at certain other points in time, P sends messages to one (single-cast) or more (multi-
cast) processes in the system. Taking P as a black-box, there is no way for us to know what is the
true relationship between any of its input and output messages, or indeed if they are related at all.
Nevertheless, we can discern a certain apparent causal relationship among the input and output messages
of P , expressed in terms of a formal relation called Apparent Causal Precedence (ACP).
Intuitively, every time a process P produces a message mi, we associate a (possibly empty) set of

messages, mj ; j � 0, that P has read during the period ending with the production of mi, as the
apparent causal precedents of mi. The decisions about the starting point of the relevant period and
exactly which mj messages read during this period are related to mi as its apparent causal precedents,
both depend on the type of mi. If mi is a token, then the period starts at the time when P sent its last
token, or the creation time of P . The messages that are related to mi, in this case, are all the token
messages read during this period. If mi is not a token message, then the period starts at the time when P
sent its last non-token message, the last time P became passive, or the creation time of P . The messages
that are related to mi, in this case, are all normal messages read during this period.
A message that has no apparent causal precedent is called an initial message. A message that is the

apparent causal precedent of only non-token control messages is called a �nal message.

Causal Chains A sequence of messages mi, for i � 1, such that mi � mi+1, is called a causal chain (of
m1). A precondition for (proper) termination in a distributed system is that after a certain point in time,
no process sends a message. Thus, we are interested only in systems wherein all causal chains are �nite.
A message can be the apparent causal precedent of more than one other message. Therefore, a single

message can be the head of more than one causal chain of messages. Because a causal chain cannot
contain a cycle, the set of all causal chains of all messages in a system forms a directed acyclic graph.

Histories Consider the set W of the maximal length causal chains of all messages in a run of a system
that end with a particular message, m. Other causal chains that end with m are shorter, are completely
overlapped by the longer chains in W , and contain only redundant information. The set of longest non-
empty proper pre�xes of chains in W is called the history of the message m. In other words, the history
of m consists of all non-empty chains that result from chopping m o� the end of all chains in W . Observe
that (only) initial messages have empty histories and that every chain in the history of a message always
starts with an initial message.
A process that never produces an initial message is called a reactive process. A process that produces

one or more initial messages is called a pro-active process.

2

Futures Consider the set W of the maximal length causal chains of a particular message, m. Other
causal chains of m are shorter, are completely overlapped by the longer chains in W , and contain only
redundant information. The set of longest non-empty proper su�xes of chains in W is called the future of
the messagem. In other words, the future of m consists of all non-empty chains that result from chopping
m o� the beginning of all chains in W . Observe every chain in the future of a message always ends with
a �nal message.

Back To The Future The future of a message contains interesting global information for DTD. For
instance, information about the possibility of pending messages and the coverage of a token wave can
be extracted from message futures. Because the futures of the messages of reactive processes are totally
subsumed by the futures of the messages of pro-active processes, a DTD algorithm needs to be concerned
only with pro-active processes. Furthermore, because the futures of initial messages subsume the futures
of non-initial messages, a DTD algorithm needs to be concerned with the futures of initial messages only.
While apparent causality is a local property and message histories can be computed incrementally and

locally, the futures of initial messages are not readily available to their senders. Back To The Future is a
simple scheme through which the future of an initial message can be derived from the histories of other
messages. This scheme works by ensuring that every chain in the future of an initial message ends with
a (control) message (if necessary) sent to the sender of that initial message.

Reconstruction of the Future The future of a message is represented as a tree. As the relevant chains
in the histories of other messages become available to the sender of an initial message, it dynamically
reconstructs the tree representation of the future of that initial message by grafting those chains onto this
tree. Trees that represent complete futures are easily recognizable in this scheme. When no pro-active
process has an incomplete future tree, there can be no pending messages in the system. When the future
tree of an initial token is complete, the token wave initiated by that token has covered all reachable
processes and its round is complete.

Implementation and Analysis The implementation of the above-mentioned three algorithms provides
an library of interface functions for the computation layer of a distributed application. The primary
functions in this library support (multi-cast) send and receive operations for inter-process communication.
All aspects of the DTD protocol are transparently handled by these high-level functions which isolate the
application code from the details of the DTD algorithm.
The BTTF-TQ algorithm is best regarded as a more control-message-e�cient replacement for the

commonly used explicit acknowledgment scheme. In fact, in a distributed system where n messages are
exchanged asynchronously and their order is not preserved, reaching a state wherein (transient) quiescence
is detectable requires n control messages in the worst case. In the same setup, BTTF-TQ is an optimal
algorithm that requires only nc control messages, where 0 � nc �

f
l
� n; 0 < f

l
� 1; log f � logn

l�1
, f is

the average frequency of a message in history chains, and l is the average length of a history chain in a
�nal message.
While not intended as a general DTD algorithm, in some special cases (that are not so uncommon in

practice) BTTF-TQ is su�cient to detect termination. In these special cases, the message complexity of
BTTF-TQ is dramatically superior to other DTD algorithms.
Because the YAWA algorithm relies only on reconstructed (token) message futures to determine the

progression of its rounds of token waves, it is independent of any assumptions about the topology of a
distributed system. Speci�cally, this topology can even undergo drastic dynamic changes (e.g., due to
mobility) without a�ecting the execution of YAWA.
The BTTF Wave algorithm ranks quite favorably in the characterization scheme of [1]. Furthermore,

it is generic and is suitable for dynamic and mobile systems at no extra cost. The message complexity of
this algorithm is nc �

f
l
� n+ 2� nr, where f and l are as above and nr is the number of wave rounds,

which in the worst case, is of the order of m2 for a system of m processes.

1 References

[1] J. Matocha and T. Camp, \A taxonomy of distributed termination detection algorithms," The Journal
of Systems and Software, pp. 207{221, 1998.

3

A monotonic Higher-Order Semantic Path

Ordering

Cristina Borralleras1 and Albert Rubio2

1 Universitat de Vic, Spain
Email: cristina.borralleras@uvic.es

2 Universitat Polit�ecnica de Catalunya, Barcelona, SPAIN
Email: rubio@lsi.upc.es

There is an increasing use of higher-order rewrite rules in many programming
languages and logical systems. As in the �rst-order case, termination is a fun-
damental property of most applications of higher-order rewriting. Thus, there
exists a need to develop for the higher-order case the kind of semi-automated
termination proof techniques that are available for the �rst-order case.

There have been several attempts at designing methods for proving strong
normalization of higher-order rewrite rules based on ordering comparisons. Re-
cently, in [JR99], Dershowitz's recursive path ordering has been extended to a
higher-order setting by de�ning a higher-order recursive path ordering (HORPO)
on terms of a typed lambda-calculus generated by a signature of polymorphic
higher-order function symbols. This ordering is powerful enough to deal with
many non-trivial examples and can be automated. HORPO is the �rst method
which operates on arbitrary higher-order terms, therefore applying to higher-
order rewriting based on plain pattern matching, where �-reduction is considered
as any other rewrite rule. Furthermore, HORPO can operate as well on terms in
�-long �-normal form, and hence it provides as well a method for provig strong
normalization of higher-order rewriting \�a la Nipkow", based on higher-order
pattern matching modulo ��.

However, HORPO inherits the same weaknesses that RPO has in the �rst-
order case. RPO is a simpli�cation ordering (a monotonic ordering including
the subterm relation), which extends a precedence on function symbols to an
ordering on terms. It is simple and easy to use, but unfortunately, it turns
out, in many cases, to be a weak termination proving tool. First, there are
many term rewrite systems (TRSs) that are terminating but are not contained
in any simpli�cation ordering, i.e. they are not simply terminating. Second, in
many cases the head symbol does not provide enough information to prove the
termination of the TRS. Therefore, since HORPO follows the same structure
and the same use of a precedence as in RPO (in fact, it reduces to RPO when
restricted to �rst-order case), it is easy to expect that similar weaknesses will
appear when proving termination of higher-order rewriting.

To avoid this weakness, in the �rst-order case, many di�erent so-called trans-

formation methods have been developed. By transforming the TRS into a set of
ordering constraints, the Arts and Giesl's dependency pair method has become a
successful general technique for proving termination of (non-simply terminating)
TRSs.

As an alternative to transformation methods, more powerful term orderings,
like Kamin and Levy's semantic path ordering (SPO), can be used. SPO general-
izes RPO by replacing the precedence on function symbols by any (well-founded)
underlying (quasi-)ordering involving the whole term and not only its head sym-
bol. Although the simplicity of the presentation is kept, this makes the ordering
much more powerful. Unfortunately, SPO is not so useful in practice, since, al-
though it is well-founded, it is not, in general, monotonic. Hence, in order to
ensure termination, apart from checking that the rules of the rewrite system are
included in the ordering, in addition the monotonicity for contexts of the rewrite
rules has to be proved.

In a recent work [BFR00], a monotonic version of SPO, called MSPO, has
been presented. MSPO overcomes the weaknesses of RPO, is automatable and
it is shown to generalize other existing transformation methods.

Due to the fact that RPO and SPO share the same \path ordering nature",
our aim is to obtain for SPO and MSPO the same kind of extensions to the
higher-order case as it was done for RPO.

In this work we introduce the higher-order semantic path order (HOSPO),
which generalizes HORPO by replacing the precedence on algebraic function
symbols by any underlying (quasi-)ordering on higher-order terms. Then a mono-
tonic version of HOSPO, called MHOSPO, is obtained, which provides, a pow-
erful method for proving termination of higher-order rewriting. The ingredients
for MHOSPO are still (quasi-)ordering on higher-order terms, but to ensure that
MHOSPO is adequate to prove termination (i.e. it is a higher-order reduction
ordering) several properties on these quasi-orderings have to be required. In or-
der to make MHOSPO useful in practice, and even make it automatable, we
have analyzed possible cadidates for these ingredients. To illustrate the power of
the resulting method several non-trivial examples, which cannot be proved by
any HORPO, are shown to be terminating.

References

[BFR00] C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic
path orderings. In David McAllester, ed., Proc. of the 17th Int. Conf. on
Automated Deduction (CADE-17), LNAI 1831, pp. 346{364, Springer-Verlag,
2000.

[JR99] J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In
14th IEEE Symposium on Logic in Computer Science (LICS), pp. 402{411,
1999.

Strong normalization by reducibility of
the weak �P calculus

Julien FOREST
LRI (CNRS UMR 8623)

Bât 490, Universit�e Paris-Sud
91405 Orsay Cedex

France
e-mail:forest@lri.fr

Pattern calculi [2, 3] were proposed as a theoretical modelization of program-
ming languages with function de�nitions by cases using pattern matching such
as CAML [1], Haskell [6], ML [7], etc.
In this paper we study strong normalization of a new pattern calculus called
�P . The main di�erences between terms of �P and those of classical �-calculus
are:

� The construction �x:M of the �-calculus is replaced by �P:M where P is
a pattern which belongs to a given grammar including a notion of choice
between two di�erent patterns to denote patterns of sum types. Thus for
example one can write terms such as A = �(nil j� cons(h; t)):[nilj�t] which
denotes a function which takes a list and returns another list: when the
argument is an empty list nil then the function A returns an empty list
nil, and when A is applied to a non-empty list cons(h; t), it returns the
tail t of this list cons(h; t).

� A set of variables (called choice variables) dealing with the notion of choice
between two patterns is added. For example, the variable � of the previous
example A belongs to this new set.

The main di�erences between the pattern calculi in [2, 3] and �P are:

� �P treats explicitly both pattern matching and substitutions (including
substitutions generated by the choice of patterns).

� Our grammar is much more in the classical lambda calculus style.

� A system of substitution with concatenation (such as the one used in
�� [4]) is introduced to preserve con
uence.

The calculus �P is weak (i.e. substitutions can not cross lambdas [5]) and is a
typed calculus which veri�es subject reduction and con
uence.
The �P calculus can be seen as a generalization of the well-known weak ��
calculus (but in named notation) denoted here ��w . For this reason we �rst

1

give a proof of strong normalization for ��w, which is then extended to deal
with patterns, thus obtaining a proof of strong normalization for �P .
The proof for ��w is inspired by the proof of termination of Ritter [8] which is
based on the reducibility technique and which can be summarized as follows:
We �rst de�ne a congruence � on the ��w term. We then de�ne a reduction
relation, denoted !�, on the quotient of the set of terms. We then prove that
the relation !� is strong normalizing as follows:

1. We de�ne reducible terms and reducible substitutions for a given environ-
ment.

2. We prove that if a term or a substitution is reducible in an environment
then it is !�-strong normalizing.

3. We prove that every term or substitution which is typable in an environ-
ment is also reducible.

Finally, we show by a technical Lemma that strong normalization of!� implies
strong normalization of ��w .
We extend the proof of strong normalization for ��w to �P using the same
ideas. We rede�ne the previous notions in the new context of both pattern and
multiple sorts of variables (usual and choice variables). This proof is much more
technical that the ��w but follows the same scheme than the one for ��w .

References

[1] The Objective Caml language. http://caml.inria.fr/.

[2] Val Breazu-Tannen, Delia Kesner, and Laurence Puel. A typed pattern
calculus. In Proceedings of the Eigth Annual IEEE Symposium on Logic in

Computer Science, pages 262{274. IEEE Comp. Soc. Press, 1993.

[3] Serenella Cerrito and Delia Kesner. Pattern matching as cut elimination. In
Giuseppe Longo, editor, Fourteenth Annual IEEE Symposium on Logic in

Computer Science, Trento, Italy, July 1999. IEEE Comp. Soc. Press.

[4] Pierre-Louis Curien, Th�er�ese Hardin, and Jean-Jacques L�evy. Con
uence
properties of weak and strong calculi of explicit substitutions. Journal of

the ACM, 43(2):362{397, March 1996.

[5] Therese Hardin, Luc Maranget, and Bruno Pagano. Functional back-ends
within the lambda-sigma calculus. Technical Report RR-3034, Inria, Institut
National de Recherche en Informatique et en Automatique.

[6] P. Hudak, S. Peyton-Jones, and P. Wadler (editors). Report on the program-
ming language haskell, a non-strict, purely functional language (version 1.2).
Sigplan Notices, 1992.

[7] Lawrence C. Paulson. ML for the Working Programmer. Cambridge Uni-
versity Press, 1991.

[8] E. Ritter. Normalisation for typed lambda calculi with explicit substitution.
Lecture Notes in Computer Science, 832:295{??, 1994.

2

Decidability of Termination of Certain

One-Rule String Rewriting Systems

Extended Abstract

Alfons GESER�

ICASE, NASA Langley Research Center, Hampton, VA.

February 20, 2001

Despite its simple appearance, the termination problem of single string
rewriting rules (given a string rewriting rule `! r, do all `! r derivations
terminate?) is neither known solvable nor known unsolvable. This is so even
in the case of rules ` ! r where ` has no self-overlap. The �rst promising
approach for decidability has been introduced by McNaughton.

First one determines the sets A = OVL(`; r) and B = OVL(r; `) of left
and right overlaps, respectively, between ` and r. For any � 2 A let `� and
r� be de�ned by �`� = ` and r = r��. Symmetrically one de�nes strings
`� and r� for every � 2 B. Now the absence of certain rewrite steps can be
expressed by the absence of certain patterns of decompositions of ` and r.
For instance r = �`�1 : : : `�nw`�1 : : : `�m� is a decomposition which indicates
that r may be consumed, up to a trunk w, by n + 1 rewriting steps at the
left and m + 1 rewriting steps to the right.

McNaughton and later Kobayashi et al. distinguish ascending levels of
complication that may be encountered during rewriting:

well-behaved (gentle (tame (arbitrary one-rule SRS

�This work has been carried out at the Arbeitsbereich Symbolisches Rechnen, Univer-
sity of T�ubingen. Partially supported by grant Ku 966/3-1 of the Deutsche Forschungs-
gemeinschaft (DFG) within the Schwerpunkt Deduktion at the University of T�ubingen.
Current address: ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA
23681. E-mail: geser@icase.edu Phone: +1 757 864-8003.

1

In a well-behaved rewriting derivation, any occurrence of the right hand side
r of the rule cannot be totally consumed by rewriting steps. In other words,
the trunk w cannot occur in a rewrite redex. Consequently the domains of
rewriting within a string are separated by \dead" strings. Using this property
McNaughton solved the termination problem in the class of well-behaved
rules (even for the overlapping case).

For the next level in the hierarchy, gentle rules, there is as yet no deci-
sion procedure. In a gentle derivation, r may indeed by consumed, but in a
strongly restricted way. First a left portion and a right portion of r is con-
sumed, which leaves a trunk w. Then a rewrite step applies to the occurrence
` = �0w� 0 of ` where �0 2 A and � 0 2 B. This slight change accounts for a
substantial complication.

Kobayashi et al. introduce a translation from non-overlapping gentle rules
into di�erent string rewriting systems with the aim that (non-)termination
of the latter is easier to prove.

We present a decidability result for non-overlapping, gentle rules with one
left overlap and only regular right overlaps. Regular right overlaps means
that the set of right overlaps is of the form B = f�(v�)j�1 j 1 � j � ng for
some nonempty string �, string v, and n � 1.

We prove that every such rule is either left or right barren, or is well-
behaved (in which cases termination is known to be decidable), or it has one
of �ve forms that can e�ectively be checked. For each of the �ve forms we
apply Kobayashi et al.'s transformation. Each of the �ve resulting string
rewriting systems is either proven terminating by a recursive path order or
proven non-terminating by a loop argument.

2

Reducibility method for termination properties of

typed lambda terms

Silvia Ghilezan

Faculty of Engineering, University of Novi Sad, Novi Sad, Yugoslavia

Computing Science Department, Catholic University, Nijmegen, The Netherlands

e-mail: silviagh@cs.kun.nl

Viktor Kun�cak

Laboratory of Computer Science, MIT, Cambridge, USA

e-mail: vkuncak@mit.edu

Silvia Likavec

Faculty of Engineering, University of Novi Sad, Novi Sad, Yugoslavia

e-mail: likavec@uns.ns.ac.yu

The reducibility method is a generally accepted way for proving the strong normalization prop-
erty of various type systems. The substantial idea of the reducibility method is to interpret types
by suitable sets of lambda terms which satisfy certain realizability properties and then to develop
semantics in order to obtain the soundness of the type assignment. A consequence of soundness,
the fact that every term typeable by a type in the type system belongs to the interpretations of
that type, leads to the fact that terms typeable in the type system satisfy the required property,
since the type interpretations are built up in that way.

This method was introduced by Tait for proving the strong normalization property for the
simply typed lambda calculus and further developed by Girard and Tait for proving the strong
normalization property for polymorphic lambda calculus.

This method is also refered to as the logical relations and it is discussed by Mitchell that apart
from the strong normalization this method can be used for the proof of the con
uence of (Church-
Rosser property) and other basic results of the simply typed lambda calculus. The original proof
of the Church-Rosser property of the simply typed lambda calculus using logical relations and the
reducibility method is due to Statman and Koletsos.

The reducibility method is applied by Krivine and later by Ghilezan in order to characterize all
and only the strongly normalizing lambda terms in lambda calculus with intersection types. The
reducibility method is also used by Gallier for characterizing some special classes of lambda terms
such as strongly normalizing terms, normalizing terms, head normalizing terms, and weak head
normalizing terms by their typeability in the intersection type systems. Dezani et al. applied this
method for characterizing both the mentioned terms and their persistent versions.

This work presents the reducibility method as a general framework for proving reduction proper-
ties of simply typed lambda terms and lambda terms typeable by intersection types. We distinguish
two di�erent kinds of type interpretation with respect to a given set P � �. and two di�erent types
of conditions which the given set P � � has to satisfy. By combining di�erent type interpretations
with di�erent conditions on P � � we build up semantics and prove soundness in both cases.
The method with weaker conditions on P and the corresponding stronger type interpretation leads
to uniform proofs of the con
uence of �-reduction on typed lambda terms, the standardization
property, and the unique (�-)normal form property of typed lambda terms. The method with
stronger conditions on P and the corresponding type interpretation leads to uniform proofs of the
concluence of ��-reduction on typed lambda terms, the unique normal ��-form property, the ter-

1

mination of the leftmost reduction, and some other properties of typed lambda terms. The strong
normalization of typed lambda terms can be proved by both combinations.

Lambda term, types and type systems are de�ned in the following way.

De�nition 1 � The set � of lambda terms is de�ned by the following abstract syntax.

� = var j �� j �var:�
var = x j var0

� The set type of types is de�ned as follows.

type = atom j type! type j type \ type

atom = � j atom0

� � ` P : ' is derivable in �\, if � ` P : ' can be generated by the following axiom-scheme
and rules.

�; x : � ` x : � (ax)

� `M : � ! � � ` N : �

� `MN : �
(! E)

�; x : � `M : �

� ` (�x:M) : � ! �
(! I)

� `M : � \ �

� `M : � � `M : �
(\E)

� `M : � � `M : �

� `M : � \ �
(\I)

The simply typed lambda caluclus �! is generated by (ax), (! E), and (! I).
In order to develop the reducibility method we consider � as the applicative structure whose

domain are the lambda terms and where the application is just the application of terms. Let us
de�ne the interpretation of types with respect to a �xed subset P � � in the following way.

De�nition 2 Let P � �. The map [[�]]P : type! 2� is de�ned by:

(I1) [[�]]P = P, � is an atom;

(I2) [[� \ �]]P = [[�]]P \ [[�]]P ;

(I3) [[� ! �]]P = [[�]]P ! [[�]]P = fM j 8N 2 [[�]]P MN 2 [[�]]Pg;

(I3+) [[� ! �]]P = ([[�]]P ! [[�]]P) \ P.

The type interpretation de�ned by (I1); (I2) and (I3) will be denoted by [[�]], whereas the
type interpretation de�ned by (I1); (I2) and (I3+) will be denoted by [[�]]P and called the strong
interpretation.

Let us further de�ne the valuation of terms [[�]]� : � ! � and the semantic satis�ability
relations j= and j=P which connects the type interpretations and the term valuations as follows.

De�nition 3 Let [[�]](P) : type ! 2� be the (strong) type interpretation for a given P � � and
let � : var! � be a valuation of term variables in �. Then

1. [[�]]� : �! � is de�ned by
[[M]]� =M [x1 := �(x1); : : : ; xn := �(xn)], where FV(M) = fx1; : : : ; xng;

2. � j=(P) M : ' i� [[M]]� 2 [[']](P);

3. � j=(P) � i� (8(x : ') 2 �) � j=(P) x : ';

4. � j=(P) M : � i� (8� j=(P) �) � j=(P) M : �.

Let us consider the following conditions on P � �.

2

De�nition 4 Let P � � be given. Then we de�ne:

(P1) (8' 2 type) var � [[']];

(P2) (8' 2 type) (8N 2 P) M [x :=N] 2 [[']]) (�x:M)N 2 [[']];

(P3) M 2 P) �x:M 2 P;

(P3+) Mx 2 P) M 2 P.

Now we can prove the following realizability property, which is refered to as the soundness or
the adequacy.

Proposition 5 (Soundness)

(i) If P � � satis�es (P1), (P2), and (P3+), then � ` Q : ') � j= Q : ':

(ii) If P � � satis�es (P1), (P2), and (P3), then � ` Q : ') � j=P Q : ':

An immediate consequence of soundness is the following statement.

Proposition 6 (i) Let P satisfy (P1), (P2) and (P3+). Then � `M : ')M 2 P :

(ii) Let P satisfy (P1), (P2) and (P3). Then � `M : ')M 2 P :

In order to prove that for a given P � � the properties (P1) and (P2) hold, we proceed by
induction on the construction of a type, but then we need stronger induction hypotheses which
are easier to prove. These stronger conditions actually unify the conditions for saturated and P-
saturated sets which are considered in reducibility methods by Krivine, Barendregt, Gallier, and
Koletsos and Stavrinos.

De�nition 7 Let P, X � � be given. Then

(i) PVAR(X) means (8x 2 var) (8n � 0) (8M1; : : : ;Mn 2 P) xM1 : : :Mn 2 X:

(ii) PSAT(X) means (8M;N 2 P) (8n � 0) (8M1; : : : ;Mn 2 P) M [x :=N]M1 : : :Mn 2 X)
(�x:M)NM1 : : :Mn 2 X:

We prove that PVAR(P)) (P1) and PSAT(P)) (P2).
The following statement presents the general reducibility method which will be applied in order

to prove various reduction properties of the lambda terms typeable in �\ and �!.

Proposition 8 (i) Let P � � be such that PVAR(P), PSAT(P) and (P3+) hold. Then
� `M : ')M 2 P :

(ii) Let P � � be such that PVAR(P), PSAT(P) and (P3) hold. Then � `M : ')M 2 P :

Proposition 8 (i) is applicable when P is:

P = CE = fM 2 � j ��-reduction is con
uent on Mg,

P = UE = fM 2 � jM has a unique ��-normal formg,

P = N = fM 2 � jM is normalizingg,

P = L = fM 2 � j the leftmost reduction of M terminatesg.

Proposition 8 (ii) is applicable when P is:

P = C = fM 2 � j �-reduction is con
uent on Mg,

P = U = fM 2 � jM has a unique (�-)normal formg,

P = ST = fM j every reduction of M can be done in a standard wayg.

Both Proposition 8 (i) and (ii) can be applied in case that P = SN = fM 2 � j M is strongly
normalizingg.

3

Comparing Techniques for Automated Termination

Proofs

J�urgen Giesl1 and Aart Middeldorp2

1 LuFG Informatik II
RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany

giesl@informatik.rwth-aachen.de

2 Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8573, Japan

ami@is.tsukuba.ac.jp

We evaluate and compare three recent transformational techniques for automated
termination proofs of term rewrite systems, viz. the dependency pair technique of
Arts and Giesl [1{3], the dummy elimination method of Ferreira and Zantema [5],
and the argument �ltering transformation of Kusakari, Nakamura, and Toyama [11].

Traditional methods to prove termination of term rewrite systems are based on
simpli�cation orders [4, 13]. However, the restriction to simpli�cation orders represents
a signi�cant limitation on the class of rewrite systems that can be proved terminat-
ing. Indeed, there are numerous important and interesting rewrite systems which are
not simply terminating, i.e., their termination cannot be proved by simpli�cation or-
ders. Transformation methods aim to prove termination by transforming a given term
rewrite system into a term rewrite system whose termination is easier to prove. The
success of such methods has been measured by how well they transform non-simply
terminating rewrite systems into simply terminating rewrite systems, since simply
terminating systems were the only ones where termination could be established au-
tomatically.

In recent years, the dependency pair technique of Arts and Giesl [1{3] emerged
as the most powerful automatic method for proving termination of rewrite systems.
For any given rewrite system, this technique generates a set of constraints which may
then be solved by standard simpli�cation orders. In this way, the power of traditional
termination proving methods has been increased signi�cantly, i.e., the class of systems
where termination is provable mechanically by the dependency pair technique is much
larger than the class of simply terminating systems. In light of this development, it
is no longer suÆcient to base the claim that a particular transformation method is
successful on the fact that it may transform non-simply terminating rewrite systems
into simply terminating ones. We compare two transformation methods, dummy elim-
ination [5] and the argument �ltering transformation [11], with the dependency pair
technique. With respect to dummy elimination we obtain the following results:

(1) If dummy elimination transforms a given rewrite system R into a simply termi-
nating rewrite system R

0, then the termination of R can also be proved by the
most basic version of the dependency pair technique.

(2) If dummy elimination transforms a given rewrite system R into a DP simply

terminating rewrite system R
0, i.e., the termination of R0 can be proved by a

simpli�cation order in combination with the dependency pair technique, then R
is also DP simply terminating.

These results are constructive in the sense that the constructions in the proofs are
solely based on the termination proof of R0. This shows that proving termination

of R directly by dependency pairs is never more diÆcult than proving termination
of R via dummy elimination. The second result states that dummy elimination is
useless as a preprocessing step to the dependency pair technique. Not surprisingly,
the reverse statements do not hold. In other words, as far as automatic termination
proofs are concerned, dummy elimination is no longer needed. (One should however
remark that this observation only holds for ordinary term rewriting. There are also
interesting extensions of both dummy elimination and dependency pairs to rewriting
modulo equations (see [6, 7] and [9, 10, 12], respectively) and it remains to be seen
how these extensions are related.)

The recent argument �ltering transformation of Kusakari, Nakamura, and Toyama
[11] can be viewed as an improvement of dummy elimination by incorporating ideas
of the dependency pair technique. We show that the �rst result (1) above also holds
for the argument �ltering transformation. The second result (2) does not extend in its
full generality, but we show that under a suitable restriction on the argument �ltering
applied in the transformation of R to R0, DP simple termination of R0 also implies
DP simple termination of R. For further details the reader is referred to [8].

Acknowledgements. J�urgen Giesl was partially supported by the DFG under grant

GI 274/4-1 and by the JSPS under grant S-00236. Aart Middeldorp is partially supported

by the Grant-in-Aid for Scienti�c Research C(2) 11680338 of the Ministry of Education,

Science, Sports and Culture of Japan.

References

1. T. Arts and J. Giesl, Automatically Proving Termination where Simpli�cation Orderings

Fail, Proc. 7th TAPSOFT, Lille, France, LNCS 1214, pp. 261{273, 1997.
2. T. Arts and J. Giesl, Modularity of Termination Using Dependency Pairs, Proc. 9th

RTA, Tsukuba, Japan, LNCS 1379, pp. 226{240, 1998.
3. T. Arts and J. Giesl, Termination of Term Rewriting Using Dependency Pairs, Theoret-

ical Computer Science 236, pp. 133{178, 2000.
4. N. Dershowitz, Termination of Rewriting, Journal of Symbolic Computation 3, pp. 69{

116, 1987.
5. M. C. F. Ferreira and H. Zantema, Dummy Elimination: Making Termination Easier,

Proc. 10th FCT, Dresden, Germany, LNCS 965, pp. 243{252, 1995.
6. M. C. F. Ferreira, Dummy Elimination in Equational Rewriting, Proc. 7th RTA, New

Brunswick, NJ, USA, LNCS 1103, pp. 78{92, 1996.
7. M. C. F. Ferreira, D. Kesner, and L. Puel, Reducing AC-Termination to Termination,

Proc. 23rd MFCS, Brno, Czech Republic, LNCS 1450, pp. 239{247, 1998.
8. J. Giesl and A. Middeldorp, Eliminating Dummy Elimination, Proc. 17th CADE, Pitts-

burgh, PA, USA, LNAI 1831, pp. 309{323, 2000.
9. J. Giesl and D. Kapur, Dependency Pairs for Equational Rewriting, Proc. 12th RTA,

Utrecht, The Netherlands, LNCS, 2001. To appear.
10. K. Kusakari and Y. Toyama, On Proving AC-Termination by AC-Dependency Pairs,

Research Report IS-RR-98-0026F, School of Information Science, JAIST, Japan, 1998.
Revised version in K. Kusakari, Termination, AC-Termination and Dependency Pairs of

Term Rewriting Systems, PhD Thesis, JAIST, Japan, 2000.
11. K. Kusakari, M. Nakamura, and Y. Toyama, Argument Filtering Transformation, Proc.

1st PPDP, Paris, France, LNCS 1702, pp. 48{62, 1999.
12. C. March�e and X. Urbain, Termination of Associative-Commutative Rewriting by De-

pendency Pairs, Proc. 9th RTA, Tsukuba, Japan, LNCS 1379, pp. 241{255, 1998.
13. J. Steinbach, Simpli�cation Orderings: History of Results, Fundamenta Informaticae 24,

pp. 47{87, 1995.

2

Knowledge Based Simpli�cation

of Termination Proofs

Bernhard Gramlich�

Institut f�ur Computersprachen, TU Wien

Favoritenstr. 9, E185-2, A-1040 Wien, Austria

February 2, 2001

Extended Abstract

There are many known approaches, methods and techniques to tackle termi-
nation proofs of rewrite systems. One of the less frequently used (abstract)
approaches is to systematically investigate which knowledge can be used a pri-
ori to simplify the given termination proof task (before actually trying to prove
termination) without sacri�cing, of course, the essential logical and operational
properties of the rewrite system under consideration. To this end, there exist
at least two di�erent approaches:1

(1) Using known general / abstract / structural results that reduce termina-
tion of a given system to a simpler termination property of (subsystems
of) the same system.

(2) Transformational techniques that reduce termination of a given system to
termination of a transformed (usually simpler) one.

These two abstract approaches as well as combinations thereof are particularly
useful in the sense that one may use them as optional preprocessing steps that
simplify the given termination proof tasks, and potentially render certain prob-
lems tractable that would have been intractable with the used underlying ter-
mination proof approach (e.g., using some class of precedence-based reduction
orderings like rpos, recursive path ordering with status).

In previous works we had already obtained various results of type (1), includ-
ing in particular several criteria which guarantee the equivalence of (general)
termination and weakened termination properties like innermost or weak termi-
nation, cf. e.g. [5, 7, 6]. The underlying abstract and structural results2 of [5, 7]

�email: gramlich@logic.at www: http://www.logic.at/staff/gramlich/
1Of course, the whole �eld of (non-)modularity analysis of termination properties of rewrite

systems could explicitly be mentioned here, too. In fact, it is subsumed by (1).
2It seems that the �rst signi�cant results of type (1) date back to A. Church [3] and

M.H.A. Newman [12].

1

have turned out to be very powerful and useful, also in other contexts (cf. e.g.
[10], [4], [1, 2], [11]).

Partially based on these results, more recent results along the line of (2)
are presented in [9, 8]. These latter results provide the theoretical basis for
sound (and automatic) preprocessing steps when proving termination (semi-
completeness) of (orthogonal) non-overlapping rewrite systems and equational
programs de�ned by such systems. Here, soundness means that the relevant
logical and operational properties are preserved.

In this paper we investigate to what extent and how (some of) the above men-
tioned results of [5, 6, 7, 9] can be extended and generalized. In particular we
focus on the following extensions / generalizations:

� Regarding the criteria for equivalence of termination and innermost (weak)
termination in [5, 7, 6], we study the conditional case, i.e., consider 2-
CTRSs and also the more general { and practically very important { case
of 3-CTRSs (cf. e.g. [13],[14]) in which extra variables are allowed not only
in conditions, but also in right-hand sides.

� Concerning the transformational approach of [9], where certain simpli�ca-
tions of right-hand sides and conditions were allowed, we show how to relax
the conditions for simplifying right-hand sides, and moreover, instead of
only 2-CTRSs we also consider 3-CTRSs.

In the talk we shall concentrate on the most signi�cant progress made in the
directions sketched above, as well as on substantial diÆculties encountered.

References

[1] T. Arts and J. Giesl. Proving innermost normalisation automatically. In
H. Comon, editor, Proc. 8th Int. Conf. on Rewriting Techniques and Ap-
plications (RTA'97), LNCS 1232, pages 157{171, Sitges, Spain, June 1997.
Springer-Verlag.

[2] T. Arts and J. Giesl. Applying rewriting techniques to the veri�cation of
Erlang processes. In Proc. Computer Science Logic (CSL'99), 8th Annual
Conference of the EACSL, LNCS 1683, pages 96{110, Madrid, Spain, Sept.
1999. Springer-Verlag.

[3] A. Church. The calculi of lambda conversion. In Annals of Mathematical
Studies, volume 6. Princeton University Press, 1941.

[4] N. Dershowitz. Hierarchical termination. In N. Dershowitz and N. Lin-
denstrauss, editors, Proc. 4th Int. Workshop on Conditional and Typed
Rewriting Systems (CTRS'94), Jerusalem, Israel (1994), LNCS 968, pages
89{105. Springer-Verlag, 1995.

2

[5] B. Gramlich. Abstract relations between restricted termination and con-

uence properties of rewrite systems. Fundamenta Informaticae, 24:3{23,
1995.

[6] B. Gramlich. On proving termination by innermost termination. In
H. Ganzinger, editor, Proc. 7th Int. Conf. on Rewriting Techniques and
Applications (RTA'96), LNCS 1103, pages 93{107. Springer-Verlag, July
1996.

[7] B. Gramlich. Termination and Con
uence Properties of Structured Rewrite
Systems. PhD thesis, Fachbereich Informatik, Universit�at Kaiserslautern,
Jan. 1996.

[8] B. Gramlich. On interreduction of semi-complete term rewriting systems.
Theoretical Computer Science. 20 pages, accepted in June 1999, to appear
in 2001.

[9] B. Gramlich. Simplifying termination proofs for rewrite systems by pre-
processing. In M. Gabrielli and F. Pfenning, editors, Proc. 2nd Int. ACM
SIGPLAN Conf. on Principles and Practice of Declarative Programming
(PPDP 2000), pages 139{150, Montreal, Canada, Sept. 2000. ACM Press.
September 20 - 23, 2000, Montreal Canada,.

[10] M. Krishna Rao. Semi-completeness of hierarchical and super-hierarchical
combinations of term rewriting systems. In P. Mosses, M. Nielsen, and
M. Schwartzbach, editors, Proc. 6th Int. Joint Conf. on Theory and Prac-
tice of Software Development, LNCS 915, pages 379{393. Springer-Verlag,
Aug. 1995.

[11] T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewrit-
ing systems. In M. Rusinowitch and P. Narendran, editors, Proc. 10th
Int. Conf. on Rewriting Techniques and Applications (RTA'99), LNCS
1631, pages 256{270, Springer-Verlag, Trento, Italy, July 1999.

[12] M. Newman. On theories with a combinatorial de�nition of equivalence.
Annals of Mathematics, 43(2):223{242, 1942.

[13] T. Suzuki, A. Middeldorp, and T. Ida. Level-con
uence of conditional
rewrite systems with extra variables in right-hand sides. In J. Hsiang,
editor, Proc. 6th Int. Conf. on Rewriting Techniques and Applications
(RTA'95), LNCS 914, pages 179{193, Kaiserslautern, Germany, Apr. 1995.
Springer-Verlag.

[14] T. Yamada, J. Avenhaus, C. Lor��a-S�aenz, and A. Middeldorp. Logicality of
conditional rewrite systems. Theoretical Computer Science, 236(1,2):209{
232, 2000.

3

On Termination of Multiple Premise

Ground Rewrite Systems

Dieter Hofbauer

Universit�at Gh Kassel
Fachbereich 17 Mathematik/Informatik

D{34109 Kassel, Germany
dieter@theory.informatik.uni-kassel.de

String rewrite rules with an arbitrary number of premises have been studied by
Post [7], and he has shown that any recursively enumerable language can be gen-
erated by such a Post system. Later B�uchi proved that a syntactically restricted
class of one-premise Post systems that corresponds to pre�x string rewrite sys-
tems generates only regular languages [2], see also [3]. This fundamental result
was then extended in various directions.

That it also holds for pre�x string rules with an arbitrary number of premises
was conjectured by B�uchi [2] and later con�rmed by B�uchi and Hosken [4] and
independently by Kratko [6], cf [3]. The natural extension of B�uchi's result from
strings to trees was considered by Brainerd [1]; he proved that one-premise
ground term rewrite systems can only generate regular tree languages.

In this talk, I treat multiple premise ground term rewrite systems. It is shown
that also this rather general class (e�ectively) preserves regularity of tree lan-
guages. The proof, however, is not based on B�uchi's technique but uses a gen-
eralization of Engelfriet's derivation trees [5]. This result is then used to obtain
decidability of termination and weak termination for multiple premise ground
term rewrite systems.

References

1. W. S. Brainerd. Tree generating regular systems. Information and Control,
14(2):217{231, 1969.

2. J. R. B�uchi. Regular canonical systems. Archiv Math. Logik und Grundlagen-

forschung, 6:91{111, 1964.
3. J. R. B�uchi. Finite Automata, Their Algebras and Grammars { Towards a Theory

of Formal Expressions. D. Siefkes, editor. Springer-Verlag, Berlin, 1989.
4. J. R. B�uchi and W. H. Hosken. Canonical systems which produce periodic sets.

Math. Systems Theory, 4:81{90, 1970.
5. J. Engelfriet. Derivation trees of ground term rewriting systems. Information and

Computation, 152(1):1{15, 1999.
6. M. I. Kratko. A class of Post calculi. Soviet Mathematics Doklady, 6(6):1544{1545,

1965.
7. E. L. Post. Formal reductions of the general combinatorial decision problem. Am.

J. Math., 65:197{215, 1943.

Higher-Order Recursive Path Orderings

�a la carte�

Jean-Pierre Jouannaud

LRI, Bat. 490
CNRS/Univ. de Paris Sud
91405 Orsay, FRANCE

Jean-Pierre.Jouannaud@lri.fr
and

LIX, �Ecole Polytechnique
91400 Palaiseau, FRANCE

Albert Rubio

Edif. C6-219,
Univ. Polit�ecnica de Catalunya

Pau Gargallo 5
08028 Barcelona, SPAIN

rubio@lsi.upc.es

Rewrite rules are increasingly used in programming languages and logical
systems, with two main goals: de�ning functions by pattern matching; de-
scribing rule-based decision procedures. The use of rules in logical systems is
subjected to three main meta-theoretic properties : subject reduction, local con-

uence, and strong normalization. The �rst two are usually easy. The last one
is di�cult, requiring the use of sophisticated proof techniques based, for exam-
ple, on Tait and Girard's reducibility predicate technique. Our ambition is to
remedy this situation by developping for the higher-order case the kind of semi-
automated termination proof techniques that are available for the �rst-order
case, of which the most popular one is Dershowitz's recursive path ordering.

Our contribution to this program is a reduction ordering for typed higher-
order terms following a typing discipline including ML-like polymorphism and
sort constructors, which conservatively extends �-reductions for higher-order
terms on the one hand, and on the other hand Dershowitz's recursive path
ordering for �rst-order unisorted terms. In the latter, the precedence rule allows
to decrease from the term s = f(s1; : : : ; sn) to the term g(t1; : : : ; tn), provided
that (i) f is bigger than g in the given precedence on function symbols, and (ii)
s is bigger than every ti. For typing reasons, in our ordering the latter condition
becomes: (ii) for every ti, either s is bigger than ti or some sj is bigger than or
equal to ti. Indeed, we can instead allow ti to be obtained from the subterms
of s by computability preserving operations. Here, computability refers to Tait
and Girard's strong normalization proof technique which we have used to show
that our ordering is well-founded.

In a preliminary version of this work presented at the Federated Logic Con-
ference in Trento, our ordering could only compare terms of equal types (after

�This work was partly supported by the RNRT project CALIFE and the CICYT project

HEMOSS ref. TIC98-0949-C02-01.

identifying sorts such as Nat or List). In the present version, our ordering is
capable of ordering terms of decreasing types, the ordering on types being simply
a slightly weakened form of Dershowitz's recursive path ordering. This yields a
very elegant presentation of the whole machinery by integrating both orderings
into a single one operating on terms and types as well. This presentation should
in turn be considered as the key missing stone on the way towards the de�nition
of a recursive path ordering for dependent type calculi.

Several other improvements have been made to the preliminar version, which
allow to prove a great variety of practical examples. To hint at the strength of
our ordering, let us mention that the polymorphic version of G�odel's recursor for
the natural numbers is easily oriented. And indeed, our ordering is polymorphic
in the sense that a single comparison allows to prove the termination property
of all monomorphic instances of a polymorphic rewrite rule. Many non-trivial
examples can be carried out which examplify the expressive power of these
orderings.

In the litterature, one can �nd several attempts at designing methods for
proving strong normalization of higher-order rewrite rules based on ordering
comparisons. These orderings are either quite weak, or need an important user
interaction. Besides, they operate on terms in �-long �-normal form, hence
apply only to the higher-order rewriting \�a la Nipkow", based on higher-order
pattern matching modulo ��. To our knowledge, our ordering is the �rst to
operate on arbitrary higher-order terms, therefore applying to the other kind
of rewriting, based on plain pattern matching and having �-reduction as an
additional rule. On the other hand, a very simple modi�cation of the ordering
can be used to prove strong normalization of higher-order rewrite rules operating
on terms in �-long �-normal forms, and indeed we show that this is true for any
well-founded higher-order rewrite ordering containing �-reductions.

2

Is the se-calculus strongly normalising??

Fairouz Kamareddine1, and Alejandro R��os2

1 Computing and Electrical Engineering, Heriot-Watt Univ., Riccarton, Edinburgh EH14 4AS, Scotland,
fairouz@cee.hw.ac.uk

2 Department of Computer Science, University of Buenos Aires, Pabell�on I - Ciudad Universitaria (1428) Buenos
Aires, Argentina, rios@dc.uba.ar

Abstract. The ��-calculus (cf. [1]) re
ects in its choice of operators and rules the calculus of cate-
gorical combinators (cf. [3]). The main innovation of the ��-calculus is the division of terms in two
sorts: sort term and sort substitution. �se departs from this style of explicit substitutions in two
ways. First, it keeps the classical and unique sort term of the �-calculus. Second, it does not use some
of the categorical operators, especially those which are not present in the classical �-calculus. The
�se introduces two new operators which re
ect the substitution and updating that are present in the
meta-language of the �-calculus, and so it can be said to be closer to the �-calculus from an intuitive
point of view, rather than a categorical one.

The �se-calculus, like the ��-calculus, simulates �-reduction, is con
uent (on open terms1) [9] and does
not preserve PSN [6]. However, although strong normalisation (SN) of the �-calculus (the substitution
calculus associated with the ��-calculus) has been established, it is still unkown whether strong nor-
malisation of the se-calculus (the substitution calculus associated with the �se-calculus) holds. Only
weak normalisation of the se-calculus is known so far. This note, is a discussion of the status of strong
normalisation of the se-calculus. Basically we show that the set of rules se is the union of two disjoint
sets of rules A and B which are both SN but this does not lead us anywhere as commutation does not
hold and hence modularity cannot be used to obtain SN of se. In addition, the distribution elimina-
tion [13] and recursive path ordering methods are not applicable and we remain unsure whether se is
actually SN or not.

Strong normalisation of subcalculi of se

The last 15 years have seen an explosion in explicit substitution calculi (see [10] for a survey). As far as we
know, almost all of them satisfy the property that the underlying calculus of substitutions terminate. For
the �se-calculus [9], this property remains unsolved. This paper is to pose this problem in the hope that it
can generate interest as a termination problem which at least for curiosity, needs to be settled. The answer
can go either way. On the one hand, although the ��-calculus does not have PSN, the �-calculus itself is
SN. On the other hand, could the loss of PSN in the �se-calculus be due to the non-SN of the se-calculus?
Are there termination techniques that we still have not explored and that could help us settle this problem?
We would like to �nd out.

Let us summarize �rst the main problems that we face when trying to establish SN for se.

Problem 1: Unable to use recursive path ordering By taking a quick look at the se-rules (see De�ni-
tion 22), it becomes obvious that the unfriendly rules, with respect to SN, are �-�-transition and to a lesser
extent '-�-transition. These rules prevent us from establishing an order on the set of operators in order to
solve the normalisation problem with a recursive path ordering.

Problem 2: Unable to use Zantema's distribution elimination lemma The se-rules \look like"
associative rules but unfortunately they are not; e.g. in �-�-transition one could think of the �j-operator
distributing over the �i-operator, but it is not a \true" distribution: �j changes to �j+1 when acting on
the �rst term and to �j�i+1 when acting on the second. This prevents us from using Zantema's distribution
elimination method [13] to obtain SN.

? This work was carried out under EPSRC grants GR/K25014, GR/L15685 and GR/L36963.
1 The �se-calculus is con
uent on the whole set of open terms whereas �� is con
uent on the open terms without
metavariables of sort substitution as is shown in [12].

2 Fairouz Kamareddine, and Alejandro R��os

Problem 3: Unable to use modularity Another technique to show SN is modularity, i.e. establish SN for
certain subcalculi and afterwards prove that these subcalculi satisfy a commutation property to conclude SN
for the whole calculus. At the end of this note we will come back to this point and show that the necessary
commutation results do not hold.

Let us say here that, even if �-�-transition seems responsible for the diÆculties in establishing SN,
Zantema succeded in establishing that the �-�-transition scheme on its own is SN (personal communication
cited in [9]). Here we shall go a step further: we shall prove that �-�-tr.+'-�-tr. is SN and also that the
calculus obtained with the rest of the rules is SN as well.

In this note we shall frequently use the following nomenclature:

De�nition 1 We de�ne the following sets of rules:
�' = f�-'-tr.1; �-'-tr.2; '-'-tr.1; '-'-tr.2g,
�� = f�-�-tr.; '-�-tr.g;
�'� = f�-'-tr.1; '-'-tr.2g, �'�� = f�-'-tr.2; '-'-tr.1g.

Note that se = (s + �') + ��. We shall prove in this note that both calculi generated by the set of rules
s+ �' (Theorem 4) and �� (Theorem 11) are SN. Unfortunately, these calculi do not possess the property
of commutation needed to ensure that their union se is SN (see Example 14).

It is not diÆcult to prove that s + �' is SN by giving a weight that decreases through reduction. We
begin by de�ning two weight functions we will need for the �nal weight:

De�nition 2 Let P : �sop ! IN and W : �sop ! IN be de�ned inductively by:

P (X) = P (n) = 2 W (X) = W (n) = 1
P (a b) = P (a) + P (b) W (a b) = W (a) +W (b) + 1
P (�a) = P (a) W (�a) = W (a) + 1
P (a �jb) = j � P (a) � P (b) W (a �jb) = 2 �W (a) � (W (b) + 1)
P ('ika) = (k + 1) � (P (a) + 1) W ('ika) = 2 �W (a)

Lemma 3 For a; b 2 �sop the following hold:
1. If a!s+�' b then W (a) �W (b).
2. If a!s+�'� b then W (a) > W (b).
3. If a!�'�� b then P (a) > P (b).

Proof: By induction on a: if the reduction is internal, the IH applies; otherwise, the theorem must be
checked for each rule. �

An immediate consequence of the previous lemma is:

Theorem 4 The s+ �'-calculus is SN.

Proof: The previous lemma ensures that the ordinal (W (a); P (a)) decreases with the lexicographical order
for each s+ �'-reduction. �

Now, to prove SN for �� we are going to use the isomorphism presented in the appendix and the technique
that Zantema used to prove SN for the calculus whose only rule is �-�-transition (cf. [9]). Following this
isomorphism, the schemes �-�-tr. and '-�-tr. of �se both translate into the same scheme of �!e, namely
�-=-transition of De�nition 28.

Zantema uses the following lemma (cf. [11]):

Lemma 5 Any reduction relation ! on a set T satisfying 1,2, and 3 is strongly normalising:
1. ! is weakly normalising.
2. ! is locally con
uent.
3. ! is increasing, i.e., 9 a function f : T �! IN where a! b) f(a) < f(b).

We use the previous lemma to prove that the calculus whose only rule is �-=-transition, let us call it �-
=-calculus, is strongly normalising. For the �-= � calculus, 2 follows from a simple critical pair analysis
and 3 can be easily established by choosing f(a) to be the size of a. To show weak normalisation of the
�-=� calculus the technique used by Zantema (cf. [9]) can be adapted here:

Is the se-calculus strongly normalising? 3

De�nition 6 We say that c 2 �!t is an external normal form if c = a[s1]i1 � � � [sn]in where a 6= c[d=]k and
if sk = bk= then ik > ik+1. We denote the set of external normal forms ENF .

Lemma 7 Let c = a[s1]i1 � � � [sn]in 2 ENF and let in � in+1 and sn = bn= then there exists a �-=-derivation
c !+ a[t1]j1 � � � [tn+1]jn+1 2 ENF such that jn+1 = in and for every r with 1 � r � n + 1 we have either
tr = sk for some k � n+ 1 or tr = (ap[sn+1])= for some sp = ap= with 1 � p � n.

Proof: By induction on n. �

Lemma 8 Let c = a[s1]i1 � � � [sn]in such that a 6= c[d=]k. There exists a �-=-derivation c!! a[t1]j1 � � � [tn]jn 2
ENF such that for every r with 1 � r � n + 1 we have either tr = sk for some k � n or tr =
(apr 1 [spr 2]k2 � � � [spr n]kn)= with 1 � pr 1 � � � � � pr n � n and with some sp = apr 1= (1 � p � n).

Proof: By induction on n, using the previous lemma. �

Lemma 9 The �-=-calculus is weakly normalising.

Proof: Suppose there is a term c not having a normal form for which every term smaller (in size) than
c admits a normal form. Let c = a[s1]i1 � � � [sn]in such that a 6= c[d=]k. Applying Lemma 8, we get c !
! a[t1]j1 � � � [tn]jn 2 ENF . Note that a; t1; � � � tn are all smaller than c and hence admit a normal form.
Now replacing each of them by its normal form in a[t1]j1 � � � [tn]jn we have a normal form for c which is a
contradiction. �

Therefore we can �nally apply Lemma 5 to conclude:

Theorem 10 The �-=-calculus is strongly normalising on �!t.

Now, using the isomorphism, since, as we mentioned before, both rule schemes in �� translate into the
single �-= rule scheme, we have:

Theorem 11 The ��-calculus is strongly normalising.

Now that s+�' and �� have been proved SN the question arises whether the whole system can be proved
SN using a modularity result. The answer is negative for the classical modularity theorem of Bachmair-
Dershowitz, which we recall here:

De�nition 12 A rewrite relation R commutes over S if whenever a !S b !R c, there is an alternative
derivation a!R d!R[S c.

Theorem 13 (Bachmair-Dershowitz-85) Let R commute over S. The combined system R [S is SN i�
R and S both are SN.

The following example shows that no commutation is possible between s + �' and �� and therefore the
Bachmair-Dershowitz's Theorem cannot be applied to get SN for se.

Example 14 Now, here is an example which shows that �� does not commute over s + �': Let k + i � j,
h � j � i+ 1 and h > k + 1. Let us consider the following derivation:

('ik(a �
hb))�jc!�' 'ik((a �

hb)�j�i+1c)!����tr '
i
k((a �

j�i+2c)�h(b �j�i�h+2c))

But it is easy to see that ('ik(a �
hb))�jc does not contain any ��-redex.

On the other hand, s+ �' does not commute over �� either: Let i � j and let us consider the following
derivation:

((�a)�ib)�jc)!����tr ((�a)�
j+1c)�i(b �j�i+1c)!s (�(a �

j+2c))�i(b �j�i+1c)

But reducing the only s-redex in ((�a)�ib)�jc) we get (�(a �i+1b))�jc which also has a unique s-redex.
Reducing it we get �((a �i+1b)�j+1c) and now there is only the �-�-transition redex, whose reduction gives
us �((a �j+2c)�i+1(b �j�i+1c)) which has no further redexes. Therefore, (�(a �j+2c))�i(b �j�i+1c) cannot be
reached from ((�a)�ib)�ic) with an se-derivation beginning with an s-step.

4 Fairouz Kamareddine, and Alejandro R��os

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit Substitutions. Journal of Functional Programming,
1(4):375{416, 1991.

2. Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. ��, a calculus of explicit substitutions which preserves
strong normalisation. Functional Programming, 6(5), 1996.

3. P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming. Pitman, 1986.
Revised edition : Birkh�auser (1993).

4. P.-L. Curien, T. Hardin, and J.-J. L�evy. Con
uence properties of weak and strong calculi of explicit substitutions.
Technical Report RR 1617, INRIA, Rocquencourt, 1992.

5. N. de Bruijn. Lambda-Calculus notation with nameless dummies, a tool for automatic formula manipulation,
with application to the Church-Rosser Theorem. Indag. Mat., 34(5):381{392, 1972.

6. B. Guillaume. Un calcul des substitutions avec etiquettes. PhD thesis, Universit�e de Savoie, Chamb�ery, France,
1999.

7. T. Hardin and A. Laville. Proof of Termination of the Rewriting System SUBST on CCL. Theoretical Computer

Science, 46:305{312, 1986.
8. F. Kamareddine and A. R��os. A �-calculus �a la de Bruijn with explicit substitutions. Proceedings of PLILP'95.

LNCS, 982:45{62, 1995.
9. F. Kamareddine and A. R��os. Extending a �-calculus with explicit substitution which preserves strong normali-

sation into a con
uent calculus on open terms. Journal of Functional Programming, 7(4):395{420, 1997.
10. F. Kamareddine and Alejandro R��os. Relating the ��- and �s-styles of explicit substitutions. Logic and Compu-

tation, 10(3):349{380, 2000.
11. J.-W. Klop. Term rewriting systems. Handbook of Logic in Computer Science, II, 1992.
12. A. R��os. Contribution �a l'�etude des �-calculs avec substitutions explicites. PhD thesis, Universit�e de Paris 7, 1993.
13. H. Zantema. Termination of term rewriting: interpretation and type elimination. J. Symbolic Computation,

17(1):23{50, 1994.

On termination of OBJ programs?

Salvador Lucas

Departamento de Sistemas Inform�aticos y Computaci�on
Universidad Polit�ecnica de Valencia

Camino de Vera s/n, E-46022 Valencia, Spain
e.mail: slucas@dsic.upv.es

Eager rewriting-based languages such as Lisp, OBJ*, CafeOBJ, ELAN, or Maude use innermost
rewriting to evaluate initial expressions. A frequent problem here is nontermination. Syntactic
annotations (i.e., associated to the arguments of symbols) have been used in OBJ2 [FGJM85],
OBJ3 [GWMFJ00], CafeOBJ [FN97], or Maude [CELM96] as replacement restrictions to (hope-
fully) avoid nontermination.Within the program text, they are speci�ed as sequences of integers
in parentheses called local strategies. For instance, the following OBJ3 program:

obj EXAMPLE is

sorts Sort .

op 0 : -> Sort .

op s : Nat -> Sort .

op cons : Sort Sort -> Sort [strat: (1 0)] .

op from : Sort -> Sort .

op sel : Sort Sort -> Sort .

var X Y L : Sort .

eq sel(s(X),cons(Y,L)) = sel(X,L) .

eq sel(0,cons(X,L)) = X .

eq from(X) = cons(X,from(s(X)) .

endo

speci�es a explicit local strategy for the list constructor cons. Symbols with no explicit strategy
obtain a default strategy which is associated by the system (see [GWMFJ00]).

Local strategies serve to completely guide the evaluation strategy of OBJ programs1: when
considering a function call f(t1; : : : ; tk), only the arguments whose indices are present as positive
integers in the list associated to the local strategy of f are evaluated (following the ordering
which has been speci�ed in the list). If an index 0 is found, then the reduction of the external
function call is attempted. Negative indices indicate that the corresponding argument is to be
evaluated `on-demand', where a `demand' is an attempt to match a pattern to the term that
occurs in such an argument position [GWMFJ00,OF00].

According to this, the second argument of the list constructor cons will never be evaluated
within a call to cons. The presence of such `true' replacement restrictions is often invoked
to justify that, even though the underlying execution mechanism is innermost rewriting, OBJ
programs are able to achieve a lazy behavior thus avoiding nontermination [GWMFJ00]. For
instance, with our OBJ3 program, the evaluation of sel(s(s(0)),from(0)) should produce
s(s(0)), even though the `in�nite list' from(0) is a part of the expression. The question is: can
we (maybe automatically) ensure this? i.e., will the evaluation terminate? Unfortunately, no
formal analysis about how a particular choice of replacement restrictions modify termination
of OBJ (like) programs is available.

Term rewriting systems (TRSs) provide a suitable computational model for programs writ-
ten in more sophisticated programming languages. Syntactic replacement restrictions can be
associated to symbols f of a signature � by means of a replacement map � : � ! P(N) [Luc98]
that discriminates the argument positions �(f) � f1; : : : ; ar(f)g on which we can perform
replacements. For instance, the previous OBJ3 program can be associated to TRS

? This work has been partially supported by CICYT TIC 98-0445-C03-01.
1 As in [GWMFJ00], by OBJ we mean OBJ2, OBJ3, or CafeOBJ.

sel(s(x),y:l) ! sel(x,l)

sel(0,x:l) ! x

from(x) ! x:from(s(x))

and replacement map � given by �(:) = f1g and �(f) = f1; : : : ; ar(f)g for all other symbol f .
Negative integers in local strategies (allowed in OBJ3 or CafeOBJ programs) can be managed

using an additional replacement map �D containing their absolute values. Context-sensitive
rewriting (CSR) [Luc98] and lazy (graph) rewriting (LR) [FKW00,KW95] provide operational
models for using replacement restrictions speci�ed by a single replacement map �. We de�ne
on-demand rewriting (using two replacement maps � and �D) as a generalization of LR that also
includes CSR. Termination of CSR has been studied in some extent in [GM99,Luc96,Zan97].
We connect termination of on-demand rewriting (ODR) and termination of CSR.

Semantics of OBJ programs is usually given as a recursive evaluation function eval (mapping
terms into their computed values, if any) rather than specifying the concrete rewrite steps
leading to computed values (see [OF00]). Expressing OBJ computations as rewritings enables the
use of the theory of Term Rewriting to analyze termination. We show that CSR and ODR can
be used to model computations of OBJ programs thus giving a tool for analyzing termination.
For instance, by using the results of [Zan97], we can show that context-sensitive reductions with
the previous TRS under the replacement map � are terminating. Thus, our OBJ3 program is
terminating.

References

[CELM96] M. Claver, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In Proc. 1st Interna-

tional Workshop on Rewriting Logic and its Applications, Electronic Notes in Theoretical
Computer Science, Elsevier Sciences, 1996.

[FGJM85] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2. In
Conference Record of the 12th Annual ACM Symposium on Principles of Programming

Languages, POPL'85, pages 52-66, ACM Press, 1985.
[FKW00] W. Fokkink, J. Kamperman and P. Walters. Lazy Rewriting and Eager Machinery. ACM

Transactions on Programming Languages and Systems, 22(1):45-86, 2000.
[FN97] K. Futatsugi and A. Nakagawa. An Overview of CAFE Speci�cation Environment { An

algebraic approach for creating, verifying, and maintaining formal speci�cation over net-
works {. In Proc. of 1st International Conference on Formal Engineering Methods, 1997.

[GM99] J. Giesl and A. Middeldorp. Transforming Context-Sensitive Rewrite Systems. In P.
Narendran and M. Rusinowitch, editors, Proc. of 10th International Conference on Rewrit-

ing Techniques and Applications, RTA'99, LNCS 1631:271-285, Springer-Verlag, Berlin,
1999.

[GWMFJ00] J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducig
OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering with OBJ: algebraic

speci�cation in action, Kluwer, 2000.
[KW95] J.F.Th. Kamperman and H.R. Walters. Lazy Rewriting and Eager Machinery. In J.

Hsiang, editor, Proc. of the 6th International Conference on Rewriting Techniques and

Applications, RTA'95, LNCS 914:147-162, Springer-Verlag, Berlin, 1995.
[Luc96] S. Lucas. Termination of context-sensitive rewriting by rewriting. In F. Meyer auf der

Heide and B. Monien, editors, Proc. of 23rd. International Colloquium on Automata,

Languages and Programming, ICALP'96, LNCS 1099:122-133, Springer-Verlag, Berlin,
1996.

[Luc98] S. Lucas. Context-sensitive computations in functional and functional logic programs.
Journal of Functional and Logic Programming, 1998(1):1-61, January 1998.

[OF00] K. Ogata and K. Futatsugi. Operational Semantics of Rewriting with the On-demand
Evaluation Strategy. In Proc of 2000 International Symposium on Applied Computing,

SAC'00, pages 756-763, ACM Press, 2000.
[Zan97] H. Zantema. Termination of Context-Sensitive Rewriting. In H. Comon, editor, Proc. of

8th International Conference on Rewriting Techniques and Applications, RTA'97, LNCS
1232:172-186, Springer-Verlag, Berlin, 1997.

2

Relating termination and in�nitary normalization?

Salvador Lucas

Departamento de Sistemas Inform�aticos y Computaci�on
Universidad Polit�ecnica de Valencia

Camino de Vera s/n, E-46022 Valencia, Spain
e.mail: slucas@dsic.upv.es

Lazy languages admit giving in�nite values as the meaning of expressions. In�nite values are lim-
its of converging in�nite sequences of partially de�ned values which are more and more de�ned.
This can be formalized by using strongly convergent in�nitary rewrite sequences [KKSV95].
These are Cauchy convergent rewrite sequences in which redexes are (ultimately) contracted
deeper and deeper. We only consider sequences of length at most ! issued from �nite terms.
The existence of a strongly convergent rewrite sequence leading from a term to another is
undecidable. However, we have the following.

Theorem 1. Let R be a con
uent, left-linear, right ground TRS over a �nite signature, t 2
T (�), and � be a constructor (possibly in�nite) term. It is decidable whether t reduces to �.

A TRS is top-terminating if no in�nitary reduction sequence performs in�nitely many rewrites
at � [DKP91]. A TRS R is strongly convergent if all in�nitary reductions in R are strongly
convergent [GOV99]. Giesl et al. showed that dependency pairs [AG00] can be used for proving
strong convergency of TRSs (without collapsing rules) [GOV99]. Kennaway et al. remarked
that top-termination also ensures strong convergence of TRSs; this was implicit in the proof of
Proposition 5.1 in [DKP91]. In fact, both notions coincide.

Theorem 2. A TRS is top-terminating if and only if is strongly convergent.

A TRS is in�nitary normalizing if every (�nite) term t admits a strongly convergent sequence
starting from t and ending into a normal form (i.e., a term without redexes). In�nitary normal-
izing TRSs can be thought of as playing the role of normalizing TRSs in the in�nitary setting,
i.e., ensuring that every term has a meaning. The following fact easily follows from1 [DKP91].

Theorem 3. Every left-linear, top-terminating TRS is in�nitary normalizing.

In�nitary normalizing TRSs do not need to be top-terminating: Consider the TRS R:

f(a) ! f(f(a)) f(a) ! a

It is not di�cult to see that R is in�nitary normalizing; however, the in�nite rewrite sequence

f(a) ! f(f(a)) ! f(a) ! � � �

performs in�nitely many reductions at the top position.
We show that it is possible to prove top-termination of a left-linear TRS R by proving

termination of the canonical context-sensitive rewrite relation associated to R. In context-
sensitive rewriting [Luc98], we (only) rewrite subterms at replacing arguments; a replacement

? This work has been partially supported by CICYT TIC 98-0445-C03-01.
1 But note that the notion of in�nitary normal form used in [DKP91] (a term t such that t = t

0

whenever t! t
0) di�ers from the usual one.

map � : � ! P(N) discriminates the argument positions �(f) � f1; : : : ; ar(f)g, on which we
can perform replacements. This is extended to positions of terms inductively. If the context-
sensitive rewrite relation associated to a TRS R and a replacement map � is terminating, we
say that R is �-terminating. A replacement map � is more restrictive than �0, written � v �0

if 8f 2 �;�(f) � �0(f); �> given by �>(f) = f1; : : : ; ar(f)g for all f 2 � is the less restrictive
map, imposing no restriction. Given a TRS R, its canonical replacement map �can

R
is the most

restrictive replacement map that permits replacements at every non-variable position of the
lhs's of R. We have the following.

Theorem 4. If a left-linear TRS R is �can
R

-terminating, then R is top-terminating.

Strongly convergent TRSs do not need to be �can
R

-terminating: Consider the TRS R:

f(a) ! f(f(a))

It is not di�cult to see that R is strongly convergent. However, it is not �can
R

-terminating, since
�can
R

= �> and R is not terminating.
Since �0-terminating TRSs are also �-terminating whenever � v �0 (see [Luc96]), Theorem 4

can trivially be extended to replacement maps � such that �can
R

v �. However, Theorem 4 does
not necessarily hold if �can

R
6v �: consider our �rst example; if �(f) = ?, then R is �-terminating

but it is not top-terminating. In this way, �-termination criteria [GM99,Luc96,SX98,Zan97] can
also be used for proving in�nitary normalization. The advantage w.r.t. [GOV99] is that we can
use available software and techniques for proving termination by just pre-processing the original
TRS by using the transformations of [GM99,Luc96,SX98,Zan97].

References

[AG00] T. Arts and J. Giesl. Termination of Term Rewriting Using Dependency Pairs Theoretical

Computer Science, 236:133-178, 2000.
[DKP91] N. Dershowitz, S. Kaplan, and D. Plaisted. Rewrite, rewrite, rewrite, rewrite, rewrite.

Theoretical Computer Science 83:71-96, 1991.
[GM99] J. Giesl and A. Middeldorp. Transforming Context-Sensitive Rewrite Systems. In P. Naren-

dran and M. Rusinowitch, editors, Proc. of 10th International Conference on Rewriting

Techniques and Applications, RTA'99, LNCS 1631:271-285, Springer-Verlag, Berlin, 1999.
[GOV99] J. Giesl, V. van Oostrom, and F.J. de Vries. Strong convergence of term rewriting using

strong dependency pairs (Extended abstract). In Proc. of 4th International Workshop on

Termination, WST'99, pages 38-39, 1999.
[KKSV95] R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Trans�nite reductions in Orthog-

onal Term Rewriting Systems. Information and Computation 119(1):18-38, 1995.
[Luc96] S. Lucas. Termination of context-sensitive rewriting by rewriting. In F. Meyer auf der Heide

and B. Monien, editors, Proc. of 23rd. International Colloquium on Automata, Languages

and Programming, ICALP'96, LNCS 1099:122-133, Springer-Verlag, Berlin, 1996.
[Luc98] S. Lucas. Context-sensitive computations in functional and functional logic programs.

Journal of Functional and Logic Programming, 1998(1):1-61, January 1998.
[SX98] J. Steinbach and H. Xi. Freezing { Termination Proofs for Classical, Context-Sensitive and

Innermost Rewriting. Institut f�ur Informatik, T.U. M�unchen, January 1998.
[Zan97] H. Zantema. Termination of Context-Sensitive Rewriting. In H. Comon, editor, Proc. of

8th International Conference on Rewriting Techniques and Applications, RTA'97, LNCS
1232:172-186, Springer-Verlag, Berlin, 1997.

2

Approximating Dependency Graphs

using Tree Automata Techniques

| Extended Abstract |

Aart Middeldorp? and Seitaro Yuuki

1 Dependency Pairs

This paper is concerned with the dependency pair method of Arts and Giesl [1],
a powerful and automatable method for proving termination of rewrite sys-
tems. In this method a rewrite system is transformed into a set of ordering
constraints such that termination of the rewrite system is equivalent to the
solvability of the constraints. The generated constraints are typically solved by
standard techniques (polynomial interpretations, path orders), even when these
techniques are not applicable to the original rewrite system.

The ordering constraints in the dependency pair method are generated by
analyzing the cycles in the dependency graph. This graph summarizes the rela-
tionships between the dependency pairs of the rewrite system. More precisely,
there is an arrow from s! t to u! v in the dependency graph if some instance
of t rewrites to some instance of u. Since this is undecidable in general, the
dependency graph has to be estimated by a decidable approximation. Arts and
Giesl [1] proposed a simple algorithm for this purpose.

De�nition 1. Let R be a TRS. The nodes of the estimated dependency graph

EDG(R) are the dependency pairs of R and there is an arrow from s! t to u!
v if and only if REN(CAP(t)) and u are uni�able. Here CAP replaces outermost

subterms with a de�ned root symbol by fresh variables and REN replaces all

variables by fresh variables.

Example 1. For the TRS R consisting of the two rewrite rules

f(a; b; x) ! f(x; x; x)
a ! c

there is one dependency pair F(a; b; x) ! F(x; x; x) (�). Since F(a; b; x) uni�es

with REN(CAP(F(x; x; x))) = F(x1; x2; x3), EDG(R) consists of the cycle (�)
GG

.

This gives rise to the following ordering constraints:

F(a; b; x) > F(x; x; x) f(a; b; x) % f(x; x; x) a % c

with > a well-founded order and % a weakly monotonic quasi-order compatible
with > (i.e., % � > � > or > � % � >) such that both > and % are closed under

? Institute of Information Sciences and Electronics, University of Tsukuba, Tsukuba

305-8573, Japan. Email: ami@is.tsukuba.ac.jp.

substitutions. Since the �rst ordering constraint is not satis�ed by any standard
order used for proving termination, an automatic termination proof will fail.
Note however that the cycle does not exist in the real dependency graph DG(R)
as no instance of F(x; x; x) rewrites to an instance of F(a; b; x).

The approximation of Arts and Giesl often results in an unnecessarily large
graph and hence a large number of constraints. Sometimes, as in the above
example, this causes the failure of the termination proof. Our aim is to show
that by using tree automata techniques we obtain a much better estimation of
the dependency graph.

2 Tree Automata Techniques

Our approach is based on the following two ingredients:

1. The powerful framework of Durand and Middeldorp [2] for the study of de-
cidable call-by-need computations in orthogonal term rewriting. This frame-
work is parameterized by so-called approximation mappings. An approxi-
mation mapping abstracts from parts of the terms in the rewrite rules such
that the set of terms that rewrite to a term in an arbitrary regular tree
language is regular.

2. The folklore result that it is decidable whether the set of ground instances
of an arbitrary term intersects with a regular tree language. This result is
well-known for linear terms but it also holds for non-linear terms.

A set of ground terms is said to be regular if it is accepted by a (�nite bottom-
up) tree automaton. We write �(t) for the set of ground instances of the term
t. If R is a TRS over a signature F and L � T (F) then (!�

R
)[L] denotes the

set of all terms s 2 T (F) such that s!�

R
t for some term t 2 L.

De�nition 2. An approximation mapping is a mapping � from TRSs to TRSs

with the property that !R �!�

�(R) for every TRS R. In the following we write

R� instead of �(R). We say that � is regularity preserving if (!�

R�
)[L] is

regular for all TRSs R and regular L.

In this extended abstract we consider only the approximation mapping nv of
Oyamaguchi. Let R be a TRS. The nv approximation Rnv is obtained from R
by replacing all occurrences of variables in the rewrite rules by fresh variables.
It is well-known that nv is regularity preserving.

De�nition 3. Let R be a TRS and � an approximation mapping. The nodes

of the �-approximated dependency graph DG�(R) are the dependency pairs of

R and there is an arrow from s ! t to u ! v if and only if both �(t) \
(!�

R�
)[�(REN(u))] 6= ? and �(u) \ (!�

(R�1)�
)[�(REN(t))] 6= ?.

Lemma 1. Let R be a TRS and � an approximation mapping.

1. If � is regularity preserving then DG�(R) is computable.

2. DG(R) � DG�(R).

3 Comparison

In this section we compare our nv-approximated dependency graph with the
estimated dependency graph of Arts and Giesl and the approximation of the
dependency graph de�ned by Kusakari and Toyama [5].

Theorem 1. DGnv(R) � EDG(R) for every TRS R.

The reverse does not hold. Consider the TRS R of Example 1. The TRS
Rnv consists of the two rules

f(a; b; x) ! f(x1; x2; x3)
a ! c

and we clearly have �(REN(F(a; b; x))) = fF(a; b; t) j t 2 T (F)g. The only term
that rewrites inRnv to a (b) is a (b) itself and hence (!

�

Rnv
)[�(REN(F(a; b; x)))]

= fF(a; b; t) j t 2 T (F)g. Because no instance of F(x; x; x) belongs to this set,
DGnv(R) contains no arrow. Therefore R is trivially terminating.

The TRS R is interesting because it is not DP quasi-simply terminating.
The class of DP quasi-simply terminating TRSs was introduced by Giesl and
Ohlebusch [4] and supposed to \capture all TRSs where an automated termi-
nation proof using dependency pairs is potentially feasible". We note that the
various re�nements of the dependency pair method (narrowing, rewriting, in-
stantiation; see Giesl and Arts [3]) are not applicable and moreover that proving
innermost termination (which is easy with the standard dependency pair tech-
nique) is insuÆcient for termination as R does not belong to a known class for
which termination and innermost termination coincide.

Kusakari and Toyama [5] de�ned a rather complicated approximation of the
dependency graph based on the concepts of !-reduction and
-reduction. It can
be shown that the approximated dependency graph of Kusakari and Toyama and
the estimated dependency graph of Arts and Giesl are incomparable in general
(contradicting the remark in [5] that their algorithm is more powerful than the
one of Arts and Giesl). It can also be shown that our nv-approximated depen-
dency graph is always a subgraph and often a proper subgraph of Kusakari and
Toyama's approximated dependency graph. In particular, their approximation
is of no help for proving termination of the TRS of Example 1.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236:133{178, 2000.
2. I. Durand and A. Middeldorp. Decidable call by need computations in term rewrit-

ing. In Proc. 14th CADE, volume 1249 of LNAI, pages 4{18, 1997.
3. J. Giesl and T. Arts. Veri�cation of Erlang processes by dependency pairs. Appli-

cable Algebra in Engineering, Communication and Computing, 2000. To appear.
4. J. Giesl and E. Ohlebusch. Pushing the frontiers of combining rewrite systems

farther outwards. volume 7 of Studies in Logic and Computation, pages 141{160.

Wiley, 2000.
5. K. Kusakari and Y. Toyama. On proving AC-termination by AC-dependency pairs.

Research Report IS-RR-98-0026F, School of Information Science, JAIST, 1998.

Semantic labeling meets dependency pairs

Enno Ohlebusch

Faculty of Technology, University of Bielefeld

P.O. Box 10 01 31, 33501 Bielefeld, Germany

email: enno@TechFak.Uni-Bielefeld.DE

Zantema [Zan95] devised the method of semantic labeling in which a given term rewrit-
ing system (F ;R) is transformed into a labeled TRS (Flab;Rlab) by labeling the function
symbols. The labeling is always based on a quasi-model of R and it turns out that R is
terminating if and only if Rlab is terminating. Semantic labeling is an interesting tech-
nique for proving termination because termination of Rlab is often much easier to prove
than termination of R; for example, a recursive path ordering might be applicable to Rlab

but not to R. The main result in [Zan95] reads as follows.

Theorem 1.1 A TRS (F ;R) is terminating if and only if there exists a non-empty quasi-
model (M;%) of (F ;R) and a labeling (L; lab) for M such that the TRS (Flab;Rlab [
dec(Flab)) is terminating, where

dec(Flab) =
[

f2F(n);n2N

ffa(x1; : : : ; xn)! fb(x1; : : : ; xn) j a >f bg:

However, Zantema [Zan95] remarks that \the technique of semantic labelling is hard
to automate". In contrast to that, the dependency pair method of Arts and Giesl [AG00,
AG98] can be automated. This fact constitutes the main advantage of the dependency pair
method over semantic labeling. In the dependency pair approach a set IN of inequalities,
each of the form s � t or s > t, is generated and the existence of a quasi-ordering %
satisfying these inequalities is su�cient for showing termination. More precisely, Arts and
Giesl [AG98] showed the following theorem (note that here we use the stable-strict ordering
corresponding to a quasi-ordering instead of its strict part; see [GO00]).

Theorem 1.2 A TRS R is terminating if and only if for each cycle P in the estimated
dependency graph EDG(R) of R, there is an argument �ltering system (AFS) A and a
quasi-reduction ordering % on T (F 0;V) such that

� l #A% r #A for all rules l ! r from R,

� s #A% t #A for all dependency pairs hs; ti from P,

1

� s #A� t #A for at least one dependency pair hs; ti from P,

where F 0 consists of all function symbols occurring in the inequalities.

The dependency pair method and semantic labeling can quite naturally be combined
as we will show. We consider only �nite TRSs over �nite signatures and assume that every
signature as well as every algebra is non-empty. Given a TRS R, we apply the dependency
pair method in order to show termination. Suppose for a cycle P in EDG(R) we have
found an AFS A and a well-founded weakly monotone F -algebra (M;%) such that

� l #A%M r #A for all rules l ! r from R,

� s #A%M t #A for all dependency pairs hs; ti from P,

but there is no dependency pair hs; ti in P with s #A�M t #A (if there were a depen-
dency pair hs; ti 2 P with s #A�M t #A, then %M would be a quasi-reduction ordering
satisfying the inequalities and we are done). Since we work with the stable-strict relation
corresponding to %M, this means that for every dependency pair hs; ti 2 P there is a
ground substitution � : V ! T (F) with [t #A �]M % [s #A �]M. Therefore, we have to
take care of all assignments � : V ! M with [�]M(s #A) � [�]M(t #A), where � denotes
the equivalence relation on M induced by %. In this situation we try to use semantic
labeling w.r.t. the labeling induced by the quasi-model (M;%). So in contrast to Theorem
1.1, (M;%) is assumed to be well-founded. Moreover, since the quasi-model is �xed, the
method is amenable to automation.

De�nition 1.3 A weakly monotone F -algebra (M;%) is a quasi-model of a set of inequal-
ities IN if s %M t for every s > t and every s � t in IN.

Given a quasi-model (M;%), we label the function symbols as follows. For every
f 2 F (n), choose either Lf = M=� or Lf = ;. That is, function symbols are labeled by
equivalence classes from M=�. More precisely, in case Lf 6= ;, de�ne labf (m1; : : : ; mn) =
m, where m denotes the equivalence class of fM(m1; : : : ; mn). Thus, for every assignment
� : V !M , the mapping lab� : T (F ;V)! T (Flab;V) is de�ned as

lab�(t) =

8<
:

t if t 2 V;
f(lab�(t1); : : : ; lab�(tn)) if t = f(t1; : : : ; tn) and Lf = ;;
fm(lab�(t1); : : : ; lab�(tn)) if t = f(t1; : : : ; tn) and Lf 6= ;;

where m denotes the equivalence class of [�]M(t).
Our main result is the following theorem.

Theorem 1.4 Let IN be a set of inequalities of the form s > t or s � t, where s; t 2
T (F ;V). There exists a quasi-reduction ordering on T (F ;V) satisfying the inequalities in
IN if and only if there is a well-founded quasi-model (M;%) of IN, and a quasi-reduction
ordering %lab on T (Flab;V) satisfying the inequalities in INlab, where

INlab = flab�(s) > lab�(t) j s > t 2 IN; � : V !M; [�]M(s) � [�]M(t)g
[flab�(s) � lab�(t) j s � t 2 IN; � : V !M; [�]M(s) � [�]M(t)g

2

Corollary 1.5 A TRS R is terminating if and only if for each cycle P in the estimated
dependency graph of R there is an AFS A and a well-founded weakly monotone F 0-algebra
(M;%) satisfying

� l #A%M r #A for all rules l ! r from R,

� s #A%M t #A for all dependency pairs hs; ti from P,

where F 0 consists of all function symbols occurring in the inequalities, and a quasi-reduction
ordering %lab on T (F 0

lab;V) satisfying

� lab�(l #A) %lab lab�(r #A) for every rule l ! r 2 R and every assignment � : V !M
with [�]M(l #A) � [�]M(r #A),

� lab�(s #A) %lab lab�(t #A) for every dependency pair hs; ti from P and every assign-
ment � : V !M with [�]M(s #A) � [�]M(t #A),

� lab�(s #A) �lab lab�(t #A) for at least one dependency pair hs; ti from P and every
assignment � : V !M with [�]M(s #A) � [�]M(t #A).

Proof: Direct consequence of Theorems 1.2 and 1.4.

By means of the preceding corollary, we are able to show termination of the TRS

f(�(x); y) ! �(f(x; g(1; f(y; 2))))
f(g(x; y); z) ! g(f(x; z); f(y; z))
f(�(x); y) ! f(x; �(c(y)))
f(x; c(y)) ! f(c(x); y)

which contains the �rst two rules of the system �0 and two new rules. The system �0

describes the process of substitution in combinatory categorical logic; cf. [Zan95].

References

[AG98] T. Arts and J. Giesl. Modularity of termination using dependency pairs. In
Proceedings of the 9th International Conference on Rewriting Techniques and Ap-
plications, volume 1379 of Lecture Notes in Computer Science, pages 226{240,
Berlin, 1998. Springer-Verlag.

[AG00] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236:133{178, 2000.

[GO00] J. Giesl and E. Ohlebusch. Pushing the frontiers of combining rewrite systems
farther outwards. In Frontiers of Combining Systems 2 (Proceedings of the 2nd
International Workshop on Frontiers of Combining Systems), pages 141{160. Re-
search Studies Press Ltd., 2000.

[Zan95] H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta
Informaticae, 24:89{105, 1995.

3

Busy Beaver PCPs

Mario Schmidt, Heiko Stamer, and Johannes Waldmann ?

Institut f�ur Informatik, Universit�at Leipzig
Augustusplatz 10-11, D-04109 Leipzig, Germany

pcp@informatik.uni-leipzig.de

1 Introduction

One way to investigate a problem is to look for small instances that are hard.
The goal is to bound the hardness of the instance by a function of its size. (The
existence of) such a function gives information on the problem's (decidability
and) complexity. We apply this idea to the Post Correspondence Problem (PCP)
[Pos46]. This resembles the hunt for Busy Beaver Turing machines [Mar00].

A PCP instance is a �nite list [(u1; v1); : : : (un; vn)] of pairs of words ui; vi 2 �
�

that determines two morphisms �; : �� ! �� with � = f1; : : : ; ng by �(i) =
ui resp. (i) = vi. A solution of an instance is a member of the equality set
E(�;) = fw j w 2 �+; �(w) = (w)g: It is well known that it is undecidable
whether a PCP instance has a solution.

The size of an instance is the number of its pairs (i. e. j�j). We call PCP(n) the
set of all instances of size n. It is known that solvability of PCP(7) is undecidable
[MS96], while PCP(2) is decidable [EKR82]. We focus on PCP(3).

The width of an instance is the maximal length of a word maxi2�fjuij; jvijg. We
call PCP(n;w) the set of all instances of size n and width w. We want to know,
for �xed n = 3, how the maximal length of a minimal solution grows with w;
with the aim of collecting information on the decidability of PCP(3).

In this note, we show some of the current record holding instances, then we
describe a family of instances that seems to contain a lot of hard ones, and
�nally we discuss growth rates.

While we could not determine the status of PCP(3) so far, we think that our work
nicely demonstrates techniques from combinatorics of words, (string) rewriting,
and termination, applied to an interesting problem that is accessible to students,
and thus can be used in teaching. In fact Stamer's implementation of the search
algorithms started from a programming assignment.

Details will be elaborated in Schmidt's forthcoming diploma thesis, and an ac-
companying technical report. This abstract just collects results and conjectures.

? corresponding author

2 PCP(3) record holders

When looking for solutions of (randomly generated) instances, it is important to
prune unsuccessful branches of the search tree, and to reject unsolvable instances
early, without wasting too much time.

Moreover, note that it is not enough to �nd (or guess) and then verify a solution,
since we also have to check that the solution has minimal length.

Some applicable techniques are explained (independently) in [Lor00], and we
implemented some extensions. We found these PCP(3) instances of seemingly
maximal hardness (the �rst one already is in [Lor00]):

instance

�
0 1 001
001 0 1

� �
1 10 1101
0 1011 1

� �
01000 0 100
0 01001 0010

�

length of min. sol. 75 132 182

The current list of record holders is maintained at our web site
http://www.informatik.uni-leipzig.de/~pcp/. We welcome any addition,
correction, or independent veri�cation of entries of this list. Moreover, if you
visit our web site, you can play an online PCP puzzle game. Each day, a fresh
(semi-hard) PCP instance is generated automatically.

3 Morphic PCPs

We noticed that a lot of the hard instances seem to follow the simple pattern

M(u; v) =

�
0 1 u
v 0 1

�
, where v starts with 0, and u ends with 1. (For the record

PCP(3,3) (see above), we even have u = v.)

We call these morphic instances, because if we only use the �rst two pairs, we
obtain the in�nite word that is the limit of the morphism 0 7! v; 1 7! 0. We get
a (di�erent) in�nite word by using the last two pairs only, from the morphism
0 7! 1; 1 7! ~u. The question is how these words \meet".

A special case are Fibonacci instances F (u) = M(u; 01), so named because the
�rst two pairs give the in�nite Fibonacci word f = 01001010010 : : :.

It is clear that for F (u) to be solvable, u must be a factor of f that ends with 1.
Is this condition also su�cient for solvability? We could verify this for juj � 6,
and some larger ones, and found rather hard instances among them. The table
lists the lengths of the minimal solutions:

u 1 01 001 101 0101 1001 00101 01001 001001 100101 101001 0100101 0101001
l 1 3 30 44 6 78 8 80 120 36 108 55 22

Solvability of F (1001001) is open.

4 Growth rates

As noted in [Lor00], the instance family

�
0 10n

0n1 0

�
with minimal solutions

AnBn achieves the fastest known growth (of the length of a minimal solution,
seen as a function of the instance width) among PCP(2). Still there does not
seem to be a simple proof for this | such a proof would imply a simple proof
of decidability of PCP(2).

For PCP(3) families, we can achieve quadratic growth, by

�
0 0n 1n0
00 1 0

�
, with

minimal solution An
2

BnC. A more non{obvious, but still only quadratic be-

haviour is exhibited by

�
01 12n0 1
1 10 1010

�
, for suitable values of n:

n 1 2 3 4 5 6 7 8 9 10 11 12 13
l 4 10 32 22 84 170 240 46 208 522 128 280 760

Interestingly, the proof requires some number theory: the length of the solution
depends on the number of incongruent values of 2k modulo 2n� 1.

So far, we did not �nd larger growth for PCP(3) families (neither polynomials
of higher degree, nor exponentials). This gives hope for decidability . . .

References

[EKR82] A. Ehrenfeucht, J. Karhumaki, and G. Rozenberg. The (generalized) post
correspondence problem with lists consisting of two words is decidable. The-
oretical Computer Science, 21(2):119{144, November 1982.

[Lor00] Richard J Lorentz. Creating di�cult instances of the post correspondence
problem. 2nd International Conference on Computers and Games, Hama-
matsu, 2000.

[Mar00] Heiner Marxen. Busy beaver. http://www.drb.insel.de/~heiner/BB/

index.html, 2000.
[MS96] Yuri Matiyasevich and G�eraud S�enizergues. Decision problems for semi-Thue

systems with a few rules. In Proceedings, 11th Annual IEEE Symposium on

Logic in Computer Science, pages 523{531, New Brunswick, New Jersey, 27{
30 July 1996. IEEE Computer Society Press.

[Pos46] Emil Post. A variant of a recursively unsolvable problem. Bulletin of the

American Mathematical Society, 52:264{268, 1946.

Inference of termination conditions for

numerical loops

Alexander Serebrenik

Department of Computer Science, K.U. Leuven
Celestijnenlaan 200A, B-3001, Heverlee, Belgium
Email: Alexander.Serebrenik@cs.kuleuven.ac.be

Numerical computations form an essential part of almost any real-world pro-
gram. Clearly, in order for a termination analyser to be of practical use it should
contain a mechanism for inferring termination of such computations. However,
this topic attracted less attention of the research community. In works of Der-
showitz et al. [5] and Ruggieri [9] such termination analysis techniques were
presented. In [8] a termination inference technique for constraints logic pro-
gramming was suggested.

The study of termination for constraint logic programs [9] provide the neces-
sary theoretical results and imply the equivalence of a variant of acceptability [1]
and termination. Unfortunately, this work does not provide a methodology for
actual proving termination or inferring conditions that imply it. Alternatively,
Mesnard [8] provides techniques for inferring termination conditions, but does
not consider inherently non well-founded CLP-domains.

In this paper we present a termination inference technique for numerical loops
based on the well-known constraints based approach [4], further extending [3],
and on the adornments technique [6, 7]. We restrict our interest only to integer
loops, since termination of real number computations is often implementation
dependent (see [5]).

Example 1.

p(X) X > 0; X � 5; X1 is X + 1; p(X)

p(X) X > 5

This example illustrates two possible sources of termination. First, if no rule is
applicable for some query (e.g. ?�p(�1)), and second, if some rules are applicable,
but the execution terminates(e.g. ?� p(3) or ?� p(7)). We distinguish between
these cases and infer termination conditions separately.

A condition ensuring termination in the �rst case is de�ned syntactically,
based on the constraints appearing in rules bodies.

One of the major di�culties while analysing termination in the second case
is de�ning correct level-mappings. On the one hand, level-mappings should map
atoms to natural numbers. On the other hand, level-mappings should re
ect
the possibly negative numeric values of integer arguments. This contradiction is
solved by step-by-step inference of bounded integer arguments and re�ning the
de�nition of the level-mapping.

Each time a new de�nition of the level-mapping is suggested acceptability
decreases are constructed as in [4]. Then, the system of constraints is solved
and it either provides some constraints on integer variables, that are assumed to
hold, and, thus, extends a set of bounded variables on which level-mapping can
be based, or de�nes a level-mapping completely, thus, proving termination. The
termination condition in the latter case is constructed from all the constraints
on integer arguments assumed so far.

The presented technique is robust enough to analyse correctly examples such
as sqrt [9], between and range [10], towers of Hanoi [2], Hilbert and Sierpinski

curves [11], bad loops [5] or belonging to programming classics factorial, gcd and
�bonacci.

Finally, as future work we consider implementing the methodology and es-
timating its power by benchmarking.

References

1. K. R. Apt and D. Pedreschi. Studies in Pure Prolog: Termination. In J. W. Lloyd,
editor, Proc. Esprit Symp. on Comp. Logic, pages 150{176. Springer Verlag, 1990.

2. W. F. Clocksin and S. Mellish, Christopher. Programming in Prolog. Springer
Verlag, 1981.

3. S. Decorte and D. De Schreye. Termination analysis: some practical properties of
the norm and level mapping space. In J. Ja�ar, editor, Proc. of the 1998 Joint Int.
Conf. and Symp. on Logic Programming, pages 235{249. MIT Press, June 1998.

4. S. Decorte, D. De Schreye, and H. Vandecasteele. Constraint-based termination
analysis of logic programs. ACM Transactions on Programming Languages and
Systems (TOPLAS), 21(6):1137{1195, November 1999.

5. N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A general framework
for automatic termination analysis of logic programs. Appl. Algebr. Eng. Commun.
Comput., 2000. accepted.

6. A. Y. Levy and Y. Sagiv. Constraints and redundancy in datalog. In Proc. of
the Eleventh ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, pages 67{80. ACM Press, 1992.

7. N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. Unfolding mystery of themergesort .
In N. Fuchs, editor, Proc. of the Seventh Int. Workshop on Logic Program Synthesis
and Transformation. Springer Verlag, 1998. LNCS 1463.

8. F. Mesnard. Inferring left-terminating classes of queries for constraint logic pro-
grams. In M. Maher, editor, Proc. JICSLP'96, pages 7{21. The MIT Press, 1996.

9. S. Ruggieri. Termination of constraint logic programs. In P. Degano, R. Gorrieri,
and A. Marchetti-Spaccamela, editors, Automata, Languages and Programming,
24th International Colloquium, ICALP'97, pages 838{848. Springer Verlag, 1997.
LNCS 1256.

10. L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1994.
11. N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.

2

On termination of meta-programs

Alexander Serebrenik

Department of Computer Science, K.U. Leuven
Celestijnenlaan 200A, B-3001, Heverlee, Belgium
Email: Alexander.Serebrenik@cs.kuleuven.ac.be

The term meta-programming refers to the ability of writing programs that
have other programs as data and exploit their semantics [1]. The choice of lo-
gic programming as a basis for meta-programming o�ers a number of practical
and theoretical advantages. One of them is the possibility of tackling critical
foundation problems of meta-programming within a framework with a strong
theoretical basis. Another is the surprising ease of programming. These reasons
motivated an intensive research on meta-programming inside the logic program-
ming community [1, 8, 10, 11]. See also [6] for a survey.

On the other hand, termination analysis is one of the most intensive research
areas in logic programming as well. See [3] for the survey. More recent work on
this topic can be found among others in [4, 5, 7, 9, 12, 14{16].

Traditionally, termination analysis of logic programs have been done either
by the \transformational" approach or by the \direct" one. A transformational
approach �rst transforms the logic program into an \equivalent" term-rewrite
system (or, in some cases, into an equivalent functional program). Here, equival-
ence means that, at the very least, the termination of the term-rewrite system
should imply the termination of the logic program, for some prede�ned collec-
tion of queries1. Direct approaches do not include such a transformation, but
prove the termination directly on the basis of the logic program. In [13] we
have developed an approach that provides the best of both worlds: a means to
incorporate into \direct" approaches the generality of general term-orderings.

As we show in this paper, the suggested technique is very useful for prov-
ing termination of di�erent meta-interpreters together with di�erent classes of
object programs. Our research has been motivated by the famous \vanilla" meta-
interpreter, undoubtly belonging to logic programming classics.

Example 1.

solve(true):

solve((Atom;Atoms)) solve(Atom); solve(Atoms):

solve(Head) clause(Head;Body); solve(Body):

Termination of this meta-interpreter, presented in Example 1, have been
studied by Pedreschi and Ruggieri. They proved, that it improves termination

1 The approach of Arts [2] is exceptional in the sense that the termination of the logic
program is concluded from a weaker property of single-redex normalisation of the
term-rewrite system.

(Corollary 40, [11]). However, we can claim more|\vanilla" not just improves
termination, but preserves it.

In order for meta-interpreters to be useful in applications they should be
able to cope with a reacher language than the \vanilla" meta-interpreter, includ-
ing, for example, negation. Moreover, typical applications of meta-interpreters,
such as debuggers, will also require producing some additional output or per-
forming some additional tasks during the execution, such as constructing proof
trees or cutting \unlikely" branches for uncertainty reasoner with cuto�. These
extensions can and usually will in
uence termination properties of the meta-
interpreter.

By extending the suggested technique [13] to normal programs, we are able to
perform the correct analysis of a number of possible extended meta-interpreters,
performing tasks as described above. We identify most popular classes of meta-
interpreters, such as extended meta-interpreters [10], and using this extended
technique prove that termination is usually improved. We also state some more
generic conditions implying preservation of termination. Moreover, the same
extension of the technique allows us to perform termination analysis of Situation
Calculus applications.

Finally, we state yet other meta-interpreters for which performing termina-
tion analysis would be an interesting issue for further research.

References

1. K. R. Apt and F. Turini, editors. Meta-Logics and Logic Programming. Logic
Programming. The MIT Press, 1995.

2. T. Arts. Automatically proving termination and innermost normalisation of term
rewriting systems. PhD thesis, Universiteit Utrecht, 1997.

3. D. De Schreye and S. Decorte. Termination of logic programs: The never-ending
story. J. Logic Programming, 19/20:199{260, May/July 1994.

4. S. Decorte and D. De Schreye. Termination analysis: some practical properties of
the norm and level mapping space. In J. Ja�ar, editor, Proc. of the 1998 Joint Int.
Conf. and Symp. on Logic Programming, pages 235{249. MIT Press, June 1998.

5. S. Decorte, D. De Schreye, and H. Vandecasteele. Constraint-based termination
analysis of logic programs. ACM Transactions on Programming Languages and
Systems (TOPLAS), 21(6):1137{1195, November 1999.

6. P. Hill and J. Gallagher. Meta-programming in logic programming. In D. M.
Gabbay, C. Hogger, and J. Robinson, editors, Handbook of logic in Arti�cial Intel-
ligence and Logic Programming, pages 421{498. Clarendon press, 1998. volume 5.
Logic Programming.

7. S. Hoarau. Inf�erer et compiler la terminaison des programmes logiques avec con-
traintes. PhD thesis, Universit�e de La R�eunion, 1999.

8. G. Levi and D. Ramundo. A formalization of metaprogramming for real. In
D. S. Warren, editor, Logic Programming, Proceedings of the Tenth International
Conference on Logic Programming, pages 354{373. MIT Press, 1993.

9. N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs.
In L. Naish, editor, Proc. of the Fourteenth Int. Conf. on Logic Programming, pages
63{77. MIT Press, July 1997.

2

10. B. Martens and D. De Schreye. Why untyped nonground metaprogramming is not
(much of) a problem. Journal of Logic Programming, 22(1):47{99, January 1995.

11. D. Pedreschi and S. Ruggieri. Veri�cation of meta-interpreters. Journal of Logic
and Computation, 7(2):267{303, November 1997.

12. S. Ruggieri. Veri�cation and validation of logic programs. PhD thesis, Universit�a
di Pisa, 1999.

13. A. Serebrenik and D. De Schreye. Non-transformational termination ana-
lysis of logic programs, based on general term-orderings. In K.-K. Lau, ed-
itor, Pre-Proceedings of Tenth International Workshop on Logic-based Program
Synthesis and Transformation, 2000, pages 45{54. University of Manchester,
2000. Technical Report Series, Department of Computer Science, Univer-
sity of Manchester, ISSN 1361-6161. Report number UMCS-00-6-1, URL :
http://www.cs.man.ac.uk/cstechrep/titles00.html.

14. J.-G. Smaus. Modes and Types in Logic Programming. PhD thesis, University of
Kent, 1999.

15. C. Taboch. A semantic basis for termination analysis of logic programs. Master's
thesis, Ben-Gurion University of the Negev, 1998.

16. S. Verbaeten. Static veri�cation of compositionality and termination for logic pro-
gramming languages. PhD thesis, Department of Computer Science, K.U.Leuven,
Leuven, Belgium, June 2000. v+265+xxvii.

3

On a Control-Theoretic Approach for Proving Termination

Oliver Theel

Darmstadt University of Technology

Department of Computer Science

D-64283 Darmstadt, Germany

Phone: [49] (6151) 16-5306

Fax: [49] (6151) 16-5410

Email: theel@informatik.tu-darmstadt.de

Keywords: Termination, Self-Stabilization, Convergence,Control Theory,Ljapunov Equa-
tion, Ljapunov Function

Self-stabilization is a powerful property of a distributed algorithm: a self-stabilizing dis-
tributed algorithm is guaranteed to reach a pre-defined set of so-called legitimate states in
finite time, regardless it its initial system state. Once in a legitimatestate, a self-stabilizing
distributed algorithm doesnot voluntarily leavetheset of legitimatestates. Only in caseof
faults, leading to aperturbation of thesystem state, thealgorithm may switch to aso-called
ill egitimate state.1 Being in an illegitimate state, the algorithm re-enters a legitimate state
assoon asnew faultsceaseto appear and errors in thesystem stateaswell as failed compo-
nentshavebeen corrected or repaired. Thus, self-stabilizing distributed algorithmstolerate
– although in a non-masking manner – any number and distribution of transient faults [3].
Furthermore, self-stabilizing distributed algorithmsdo not need to be correctly initialized,
since an arbitrary, improper initialization corresponds to an ill egitimate state. From there,
asdescribed above, thealgorithm wil l autonomously convergeto a legitimatestate. Dueto
these advantages, self-stabilizing distributed algorithms are subject to excessive research
focusing on design aswell asverification techniques.

Theverificationof aself-stabilizingdistributedalgorithmisgenerally donein two steps.
In one step, convergence into the set of legitimate state in finite time must be shown. In
another step, the closure of the set of legitimate states must be proven. Whereas proving
closure is easy, proving convergence is much more challenging. In fact, proving conver-
gence is an instance of proving termination, since for any self-stabilizing algorithmA an
alternativealgorithmB can begiven that repeatedly executesA’sprogram actionsin aloop
while a certain state predicateP is false. This state predicate evaluates to true if and only
if the current state of the system is identical to a legitimate state. Consequently, through
B’s termination proof followsA’sconvergenceproof and viceversa. Thus, all methodsfor
proving termination and convergence that exist in self-stabilization and termination liter-
ature can be applied. However, the existing methods all boil down to a well-foundedness
argument: One has to devise a system state function mapping the system state into a do-
main for which a total order among the entities can be given and where a smallest domain
element with respect to the total ordering exists. Building on this function, the proof must
show that while the system performs subsequent state transitions, the function value de-
creases with respect to the total ordering. This guarantees that after a finite number of
state transitions the function value is minimal. If the corresponding system state is a le-
gitimate state then convergence has been proven. Although it is obvious how to perform
a convergenceproof using such a termination function (which is called convergence func-
tion in self-stabilization literature), it is be no means easy to devise such a function since

1A system state iseither a legitimate state or an ill egitimate state.

47

it somehow captures “the very essence of convergence” of the algorithm. Techniques to
systematically identify those functionsare thereforehighly looked for.

Self-stabilizing algorithmsexhibit certain analogieswith stable feedback systemsused
in electrical and mechanical engineering. In contrast to self-stabilizing algorithms which
present arelatively young areaof research in computer science, feedback systemsresearch
dates back for more than a century. Not surprisingly, feedback system theory offers a
variety of methods for reasoning about system stability. The basic idea of our research is
to investigate to what extend feedback system theory can be used for reasoning about the
self-stabilization property of algorithms.

Asafirst result, wecould identify asystem model for so-calleddiscrete-timenon-linear
dynamicvariablestructurefeedbacksystems [5] that allowsthemodelingof self-stabilizing
algorithms in terms of feedback system terminology. This system model can be seen as
connector of two research areas: it bridgesthegap between self-stabilizing algorithmsand
feedback systems. As a consequence, based on the model, a powerful criterion of control
theory, known asLjapunov’s“Second Method” [1,2] can directly beadopted for reasoning
about system stability and, thus, for the reasoning about the self-stabilization property of
a modeled algorithm. If a so-called Ljapunov equation for a given system can be solved
then a convergencefunction (called Ljapunov function) isguaranteed to existsand is iden-
tified in thecourseof thecalculation. Unfortunately, theLjapunov equation cannot always
straightforwardly be solved,2 but it does simplify convergence function identification for
many self-stabilizing algorithms. For instance, for self-stabilizing algorithms that can be
modeled as linear time-discrete dynamic dynamic feedback systems (with and without
variable structure), a standard starting point always solves the Ljapunov equation lead-
ing to an identification of a suitable Ljapunov function. But even in the non-linear case,
Ljapunov theory offersmany good starting points for solving theLjapunov equation or for
direct identification of aLjapunov function.

Interestingly, it turned out that the transfer function approach (presented at WST’99,
see [4] for details) seamlessly fits into our new approach: through the system model and
Ljapunov theory wearenow able to identify a termination function solely based on agiven
transfer function.

In the talk, we would like to present the control-theoretic approach for identifying ter-
mination functions as sketched in this abstract. We plan to illustrate the usefulness of the
approach through asamplealgorithm whoseconvergenceproperty is to beproven. Wewill
show how to model the algorithm as an instance of the system model and how to system-
atically identify a suitable Ljapunov function. Finally, we would like to elaborate on the
potentialsand limitationsof thepresented technique.

References
[1] R. E. Kalman and J. E. Bertram. Control System Analysisand Design Via the“Second

Method” of Lyapunov - Part II : Discrete-Time Systems. Transactions of the ASME,
Journal of Basic Engineering, 82:394–400, June1960.

[2] M. A. Ljapunov. Problème général de la stabilité du movement. Ann. Fac. Sci.
Toulouse, 9:203–474, 1907.

[3] M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45–67, 1993.

[4] O. Theel and F. C. Gärtner. On Proving Convergencethrough Transfer Functions(Ex-
tended Abstract). In Jürgen Giesl, editor, Proc. of the 4th International Workshop on
Termination (WST’99), Dagstuhl, Germany, pages46–47, May 1999.

[5] V I. Utkin. Variable Structure Systems with Sliding Modes. IEEE Transactions on
Automatic Control, 22:212–222, 1977.

2E.g., for instable systems the equation can, of course, never be solved, since the existence of a Ljapunov
function implies system stability.

48

Proving Termination Automatically and Incrementally

Xavier Urbain

Laboratoire de Recherche en Informatique (LRI)
CNRS UMR 8623

Bât. 490, Université Paris-Sud, Centre d’Orsay
91405 Orsay Cedex, France
E-mail:urbain@lri.fr

In order to provide a structural and hierarchical approach of TRS and to run termination
proofs incrementally, we introduce notions ofrewriting modulesand relative dependency
pairs built upon these modules.

Definition 1. LetR1 be a TRS overF1. A module extendingR1 is a couple(F2 j R2) such
that: F1 \ F2 = ;; R2 is a TRS overF1 [F2; for eachl ! r 2 R2, �(l) 2 F2.

SystemR1 [R2 overF1 [F2 is then ahierarchical extension of systemR1(F1) by
module(F2 j R2).

Definition 2. Let (F2 j R2) be a module hierarchically extending a TRSR1. For each rule
l ! r 2 R2, a pair hl; r0i wherer0 is a subterm ofr such that�(r0) 2 F2 is called a
dependency pairof module(F2 j R2).

The set of dependency pairs of all rules of a moduleM is denoted DP(M).

Dependency pairs of(F j R) are then given relatively toF only.
Important results concerning C" termination (that is termination stable under addition

of � = fG(x; y) ! x; G(x; y) ! yg) [2–4] can be expressed in that framework.

Theorem 1. LetR1(F1) be a TRS and let(F2 j R2) be a module extendingR1. If R1 is C"
terminating and if there is no infinite dependency chain of(F2 j R2) overR1 [R2, then
R1 [R2 is strongly normalizing.

Theorem 2. LetR1(F1) be a TRS, let(F2 j R2) and(F3 j R3) be two modules extending
R1 withF2 \ F3 = ;.
If R1 [R2 C" terminates and if there is no infinite dependency chain of(F3 j R3) over
R1 [R3 [�, thenR1 [R2 [R3 C" terminates.

Note thatR2 does not interferewith the premise over(F3 j R3).
Both theorems can be turn into effective new incremental methods for termination proof.

Since they are well suited for automation, we propose an implementation of modular criteria
inside system CiME2 [1]. Termination proofs can now be performed automatically (for both
ordering search and modular strategy) in an incremental fashion as illustrated by example
below.

Example Let us build a system supposed to compute logarithms of numbers in binary no-
tation. What weneed isfirstly abasic binary representation of numbers that is:

F# f# : constant; 1; 0 : postfix unaryg
R# f#0 ! #

Wethen need somearithmetic functionsover thosenumbers, at least addition in (F+ j R+):

F+ f+ : binaryg

R+

8<
:
x+# ! x; #+ x ! x;

x0 + y0! (x+ y)0; x0 + y1! (x+ y)1;
x1 + y0! (x+ y)1; x1 + y1! (x+ (y +#1))0:

Termination of R# [R+ is proven using relative dependency pairs and polynomial inter-
pretation.

DP((F+ j R+)) :

8>>>><
>>>>:

hx0 + y0; x+ yi
hx0 + y1; x+ yi
hx1 + y0; x+ yi
hx1 + y1; y +#1i
hx1 + y1; x+ (y +#1)i

9>>>>=
>>>>;

[[#]] = 0
[[0]](x) = [[x]] + 1
[[1]](x) = [[x]] + 1
[[+]](x; y) = [[x]] + [[y]]

Since DP((F+ j R+)) strictly decreases andR# [R+ [� weakly decreases, there is no
infinite chain of (F+ j R+) over R# [R+ [�.

Weneed also substraction, providing thus another module(F� j R�):

F� f� : binaryg

R�

8<
:
x�# ! x; #� x ! #;

x0� y0! (x� y)0; x0� y1! ((x� y)�#1)1;
x1� y0! (x� y)1; x1� y1! (x� y)0:

Termination proof of (F� j R�) extendingR# is performed using same interpretation for
#, 0 and1, and taking [[�]](x; y) = [[x]]. From theorem 2,R# [R+ [R� C" terminates.

We shall use Boolean operations (R:), and then comparisons over integers (presented
byR#) thus extending bothR: andR#:

F: ftrue; false : constants; : : unary ; if : ternaryg

R:

8>><
>>:

:(true) ! false
:(false) ! true
if (true; x; y) ! x

if (false; x; y)! y

Fge fge : binaryg

Rge

8>>>>>>>><
>>>>>>>>:

ge(x0; y0) ! ge(x; y)
ge(x0; y1) ! :ge(y; x)
ge(x1; y0) ! ge(x; y)
ge(x1; y1) ! ge(x; y)
ge(x;#) ! true
ge(#; x0) ! ge(#; x)
ge(#; x1) ! false

50

(F: j R:) has no DP. For polynomial interpretation

[[#]] = 0; [[0]](x) = [[x]] + 1; [[1]](x) = [[x]] + 1;
[[true]] = 0; [[false]] = 0; [[:]](x) = 0;

[[if]](x;y;z) = [[y]] + [[z]]; [[ge]](x;y) = [[x]] + [[y]];

dependency pairs of (Fge j Rge) strictly decrease while rules of R# [R: [Rge weakly
decrease. Wemay then apply Theorem 2 and conclude thatR# [R+ [R� [R: [Rge is
C" terminating.

Now we can consider firstly (FLog0 j RLog0) and then (FLog j RLog) extending it and
computing logarithms.

FLog0 fLog0 : unaryg

RLog0

8<
:

Log0(#) ! #
Log0(x1)! Log0(x) + # 1
Log0(x0)! if (ge(x;#1);Log0(x) + # 1;#)

FLog fLog : unaryg
RLog

�
Log(x)! Log0(x)�#1

DP((FLog0 j RLog0)):

�
hLog0(x1);Log0(x)i
hLog0(x0);Log0(x)i

�

For the polynomial interpretation used for R# [R+ extended with

[[:]](x) = 0; [[true]] = 0; [[false]] = 0;
[[ge]](x) = 0; [[if]](x;y;z) = [[y]] + [[z]]; [[Log0]](x) = [[x]];

dependency pairs of (FLog0 j RLog0) stricly decrease while rules of R = R# [R+ [R: [
Rge[RLog0 weakly decrease, thusR C" terminates. Finally, Module(FLog j RLog) extend-
ing (FLog0 j RLog0) and(F� j R�) has no dependency pair so no chain exists.

We can then conclude thatR# [R+ [R� [R: [Rge [RLog0 [RLog is C" strongly
normalizing.

References

1. E. Contejean, C. Marché, B. Monate, and X. Urbain. Cime version 2, 2000. Prerelease available at http:
//www.lri.fr/~demons/cime.html .

2. B. Gramlich. A structural analysis of modular termination of term rewriting systems. Research Report
SR-91-15, University Kaiserslautern, 1991.

3. B. Gramlich. Generalized sufficient conditions for modular termination of rewriting. Applicable Algebra in
Engineering, Communication and Computing, 5:131–158, 1994.

4. E. Ohlebusch. Modular propertiesof composable term rewriting systems. Journal of Symbolic Computation,
20:1–41, 1995.

51

Binding-time Annotations without Binding-time Analysis

(Extended Abstract)

Wim Vanhoof and Maurice Bruynooghe

Department of Computer Science,
K.U.Leuven, Belgium.

e-mail: fwimvh,mauriceg@cs.kuleuven.ac.be

Abstract. In this work, we argue that the use of termination conditions as unfolding criteria
is insuÆcient to obtain adequate specialisation of logic programs. We describe how a binding-
time analysis for logic programs that allows more liberal unfoldings can be obtained by
altering termination analysis in such a way that it proves termination at specialisation-time

rather than at run-time.

1 Introduction and Motivation

Partial evaluation is a well-studied source-to-source transformation, capable of specialising a pro-
gram P with respect to a part s of its input. The result is a program Ps that computes, when
provided with the remaining part d of the input, the same result as the original program P on the
complete input s+ d. The general e�ect of partial evaluation is that the computations performed
by a program are staged: some (ideally all) operations in P that depend only on s are performed
by the specialiser; the remaining computations (those depending on d) by the residual program
Ps. Partial evaluation can be used to speed up the computation of a program, in particular when
the program must be run a number of times while part of its input (the part denoted by s) remains
constant. Indeed, using partial evaluation, the latter computations must be performed only once
to construct Ps, which can then be run any number of times with di�erent inputs d1; : : : ; dn.

The heart of any partial evaluator is an evaluation mechanism for the language under con-
sideration. In a logic programming setting, \evaluation" of a program corresponds to building an
SLD-tree for a program/query pair hP;Qi. If the program terminates, the corresponding SLD-tree
is �nite. In this setting, partially available input corresponds to a query Q0 that is less instanti-
ated than Q. Due to the nature of logic programming, the program could, in principle, simply be
evaluated with respect to Q0. Most likely, however, the SLD-tree built for hP;Q0i will be in�nite.
Indeed, if the control
ow is determined by a value that is unknown in hP;Q0i, SLD-derivations
of in�nite length may be created resulting in a non-terminating specialisation process. Instead of
building such a possibly in�nite SLD-tree, a partial evaluator for logic programs builds a �nite
number of �nite SLD-trees that together cover the complete computation for hP;Q0i [5]. The re-
sulting SLD-trees are partial, in the sense that, while building the SLD-tree, the partial evaluator
unfolds some predicate calls whereas it does not unfold others. The predicate calls that are not
unfolded are said to be residualised { they will appear as code in the residual program.

Most work on partial evaluation in logic programming concentrates on the so-called on-line ap-
proach to partial evaluation [4]: during the construction of a partial SLD-tree, the partial evaluator
selects each call occurring in an SLD-derivation and decides whether or not to unfold it; usually
basing its decision on the structure of the SLD-tree built so far. In the o�-line approach on the
other hand, the program is �rst analysed by a so-called binding-time analysis (BTA). Binding-time
analysis is a global analysis that takes a program and (an abstraction of) the query and generates
an annotated version of the original program, in which every predicate call is accompanied by an
instruction stating whether or not instances of this call must be unfolded. The actual specialiser
builds the partial SLD-trees simply by following the instructions generated by BTA.

In general, on-line systems tend to achieve better specialisation results, since they consider
each call occurring in an SLD-derivation in isolation. This di�ers from the o�-line approach, in

which a control decision is associated to a syntactic occurrence of a call in the program, based on
an abstraction of the concrete input. O�-line systems, however, also o�er a number of advantages
over on-line systems. First, the separation of the process in a binding-time analysis followed by a
specialisation phase makes the process conceptually easier to reason about, and results in a fairly
simple (and eÆcient!) specialiser from which the burden of continuously monitoring the evaluation
process has been removed. Also, the analysis output can be represented by annotations on the
original source program, and provide as such excellent feedback to the user providing clues to
why an optimisation was (not) performed. In spite of these advantages and the extensive work
on o�-line partial evaluation in other paradigms, only few e�orts have been made to construct an
o�-line partial evaluation system for logic programming [1].

The basic task of binding-time analysis is to mark as much predicate calls as possible unfoldable
in the program while guaranteeing that building a partial SLD-tree by following the annotations is
a terminating process. Termination of the process is guaranteed if only calls that are guaranteed to
terminate are marked unfoldable. This is basically the approach taken in [1]: termination analysis
(either by hand, or by an automatic system) is used to derive conditions { expressed in terms of
availability of a predicate's arguments { under which a call to the particular predicate is guaranteed
to terminate. Next, the program is analysed by a classical groundness analysis [6], the results
of which (expressing what arguments in a predicate call are available) are combined with the
termination conditions to settle the unfolding conditions during analysis. However, appealing as
the approach may seem, the use of run-time termination of a call as an unfold condition imposes
considerable restrictions on the unfolding possibilities. The fact that a call is marked unfoldable
only in case it terminates under normal evaluation implies that only calls that can completely be
unfolded to true or fail are unfolded. In other words, a specialiser relying on the result of such a
binding-time analysis is restricted to building complete SLD-trees, rather than partial SLD-trees.
We illustrate this limitation with the following example.

Example 1. Consider the meta interpreter depicted in the left-hand side of Fig. 1. The interpreter
has two predicates implementing the classical member/2 and append/3 predicates as object pro-
gram. Suppose we want to annotate this program with respect to the query solve([mem(X,Xs)]).

Meta interpreter Specialised meta interpreter

solve([]).

solve([A|Gs]):- solve atom(A), solve(Gs).

solve atom(A):- cl(A,Body), solve(Body).

cl(mem(X,Xs), [app(,[X|], Xs)]).

cl(app([],L,L), []).

cl(app([X|Xs],Y,[Z|Zs]),[app(Xs,Y,Zs)]).

solve([mem(X,Xs)]):- solve atom(mem(X,Xs)).

solve atom(mem(X,Xs)):-

solve atom(app(A,[X|], Xs)).

solve atom(app([],[X|B],[X|B])).

solve atom(app([E|Es],[X|B],[Z|Zs])):-

solve atom(app(Es, [X|B], Zs)).

Fig. 1. Vanilla meta interpreter

Using termination as a criterium for unfolding results in no calls to solve/1 at all being marked
unfoldable, and practically no specialisation would be obtained. Indeed, all calls to solve/1 aris-
ing during unfolding would be of the form solve([mem(X,Xs)]) or solve([app(A,[X|],Xs)]),
none of which is terminating.

2 From Termination Analysis to Binding-time Analysis

In this work, we devise a binding-time analysis that allows more liberal unfoldings than those
based on termination conditions tout-court. The general idea is to construct step-wise an annotated
version of the program and to use termination analysis to prove that building a partial SLD-tree
for an initial goal with respect to the annotated program under construction (as opposed to the

2

original program) terminates. Hence, the process of building a partial SLD-tree according to the
annotations terminates.

Example 2. Reconsider the vanilla interpreter from Example 1. Intuitively, from a specialisation
point of view, we can see that it is perfectly safe to unfold all calls to the solve/1 predicate as long
as the intermediate calls to solve atom/1 are residualised. The idea is that the solve/1 predicate
in a sense only performs the parsing of an object goal (deconstructing a list of atoms), which is
terminating in Example 1. Thus, residualising the calls to solve atom/1 and unfolding the others
results in the specialised program depicted in the right-hand side of Fig. 1 which corresponds,
modulo a standard structure �ltering transformation [3] with the standard de�nitions for the
append/3 and member/2 predicates. Hence, all meta interpretation overhead has been removed.

In order to construct such a binding-time analysis, the key observation is the following: the
termination behaviour of building a partial SLD-tree for a query Q with respect to an annotated

program Pann is equivalent with the termination behaviour of building a complete SLD-tree for
a program that is derived from P by removing those calls that are annotated to residualise in
Pann, keeping only those that are annotated unfoldable in Pann. Our binding-time analysis then
proceeds as follows: Assume we have to annotate a program P with respect to an initial query Q.
If termination of Q with respect to P can be proven by an automatic termination analysis, all calls
in P can safely be annotated unfoldable. As a result, every call occurring during specialisation of
Q will be unfolded, and specialisation of Q boils down to plain evaluation of Q in P (constructing
a complete SLD-tree for hP;Qi). If, on the other hand, termination of Q can not be proven, due to
the presense of a \suspect" call in P , a new program is derived from P by deleting the particular
call from P . Once more, termination analysis is performed on the transformed program, and the
process is repeated until enough calls are removed from the program such that it terminates.
Deleting a call from the program corresponds with marking the particular call to residualise in
the annotated program: the call under consideration is not unfolded, and no bindings are created
by it.

Such a binding-time analysis can easily be implemented starting from a termination analysis
that is capable of identifying \problematic" calls, i.e. those calls due to which the analysis was
unable to prove termination of a goal. An example of such a termination analysis is [2]. The
analysis constructs a �nite approximation of the binary unfoldings semantics of the program
under consideration. The binary unfoldings semantics of a program consists of a set of binary
clauses that relates the head atom with a particular body atom of one of the program's clauses.
To prove termination of a query Q with respect to a program P , it suÆces to show [2] that a
particular condition holds on (some of) the binary clauses constructed by the termination analysis.
If the condition does not hold on a particular binary clause, its single body atom identi�es the
problematic call in the original program.

References

1. Maurice Bruynooghe, Michael Leuschel, and Kostis Sagonas. A polyvariant binding-time analysis
for o�-line partial deduction. In C. Hankin, editor, Programming Languages and Systems, Proc. of

ESOP'98, part of ETAPS'98, pages 27{41, Lisbon, Portugal, 1998. Springer-Verlag. LNCS 1381.
2. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic programs. Journal of

Logic Programming, 41(1):103{123, 1999.
3. J. Gallagher and M. Bruynooghe. Some low-level source transformations for logic programs. In

M. Bruynooghe, editor, Proceedings Meta'90, pages 229{244, Leuven, April 1990.
4. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and polyvariance in partial

deduction of normal logic programs. ACM Transactions on Programming Languages and Systems,
20(1), 1998.

5. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. Journal of Logic Pro-

gramming, 11(3&4):217{242, 1991.
6. Kim Marriott and Harald S�ndergaard. Precise and eÆcient groundness analysis for logic programs.

ACM letters on Programming Languages and Systems, 2(1-4):181{196, 1993.

3

Mathematical analysis of some termination

principles

Andreas Weiermann

Institut f�ur Mathematische Logik und Grundlagenforschung

der Westf�alischen Wilhelms-Universit�at M�unster

Einsteinstr. 62, D-48149 M�unster, Germany

Abstract

In this survey talk we start with recalling some celebrated combinato-
rial independence results. These include Friedman's miniaturization of the
well-foundedness of "0, Friedman's miniaturization of Kruskal's theorem
(KT) and Kirby's and Paris' results on Goodstein sequences and Hydra
battles. We then give a mathematical classi�cation of these principles in
terms of growth rate conditions using recursion theory and methods from
analytic combinatorics, a �eld which is familiar in computer science from
the average case analysis of algorithms.

We relate Otter's tree constant 2.95576... to Friedman's miniatur-
ization of KT and obtain the following re�nement [to appear in JSL] of
a result by Loebl and Matou�sek. Let � be Otter's tree constant and
c := 1

log2(�)
. Then for any rational number r > c the following assertion

is true but independent of �rst order Peano arithmetic: For any natural
number K there exists a natural number M so large that for any se-
quence T0; : : : ; TM of �nite trees satisfying that the number of nodes in
Ti is bounded by K + r � log2(i+1) for i = 0; : : : ;M we �nd indices i and
j less than or equal to M such that i < j and Ti is homeomorphically
embeddable into Tj .

This result is rather sharp since for r < c the corresponding assertion
can be proved within primitive recursive arithmetic.

Friedman's miniaturization of the well-foundedness for "0 and iterated
!-powers !h is classi�ed similarly with an application of the saddle point
method. Using a result from random walk theory we give a classi�cation
of Friedman's miniaturization of KT for binary trees. Using related tech-
niques we also obtain complete classi�cation results for Hydra battles and
Goodstein sequences. These investigations lead to new Goodstein style se-
quences for which termination is independent. We further characterize the
derivation lengths for the �nitary Ackermann functions using Brigham's
theorem from analytic number theory (joint work with I. Lepper).

