
Bounded Fairness

Nachum Dershowitz1

Department of Computer Science

University of Illinois

Urbana, IL 61801

nachum@cs.uiuc.edu

D. N. Jayasimha2

Department of Computer and Information Science

The Ohio State University

Columbus, OH 43210

jayasim@cis.ohio-state.edu

February 1993

1Research supported in part by the U. S. National Science Foundation under

Grants CCR-90-07195 and CCR-90-24271 and by a Lady Davis fellowship at the

Hebrew University of Jerusalem.
2Research supported in part by the U. S. National Science Foundation under

Grant CCR-89-09189.

Abstract

Bounded fairness, a stronger notion than the usual fairness based on even-
tuality, can be used, for example, to relate the frequency of shared resource
access of a particular process with regard to other processes that access the
resource with mutual exclusion. We formalize bounded fairness by introduc-
ing a new binary operator into temporal logic. One main di�erence between
this logic and explicit-time logics, one which we consider to be an advantage
in many cases, is that time does not appear explicitly as a parameter.

The syntax and semantics for this new logic, kTL, are given. This logic is
shown to be more powerful than temporal logic with the eventuality operator
and as powerful as the logic with the until operator. We argue that kTL can
be used to specify bounded fairness requirements in a more natural manner
than is possible with until; in particular, we show properties that can be
expressed more succinctly in kTL. We also give a procedure for testing
satis�ability of kTL formulas.

As applications of bounded fairness, we specify requirements for some
standard concurrent programming problems, and show, for example, that
Dekker's mutual exclusion algorithm is fair in the conventional sense, but
not bounded fair. We also give examples of bounded fair algorithms.

1 Introduction

Fairness means that every process gets a chance to make progress, regardless
of what other processes do. The distinguishing feature of a large class of
fairness notions is eventuality, that is, fairness is de�ned as a restriction on
some in�nite behavior according to the eventual occurrence of some events
[7]. Temporal logic (with the modal operators,2 and3) has been used
as a tool to specify and analyze such fairness properties [19, 20]. Gabbay, et
al. [8], added the U (until) operator to formalize aspects of responsiveness
(for example, the absence of unsolicited response) and fairness (for example,
strict fairness).

In many applications (including real-time applications) the weak com-
mitment of eventual occurrence may not be su�cient. Instead, for some
systems, such as
ight control and process control systems, it is required
that time bounds on their behavior be met. It is then necessary to specify
and reason about time explicitly. Many explicit-time logics have been pro-
posed for such applications (see [21, 9, 17]). While eventual occurrence is a
weak commitment, explicit mention of time is restrictive and undesirable in
many situations. For example, the following is a plausible requirement: any
process pi that requests a resource (such as a critical region) be granted the
resource within the next k times it is granted to a process arriving after pi.
This requirement relates the frequency of shared resource access of a par-
ticular process with that of other processes (which access the resource with
mutual exclusion). This is stronger than the eventuality requirement, but,
nonetheless, does not need the explicit mention of time. This notion of k-
bounded fairness allows one to express a variety of fairness notions elegantly:
from k=1, corresponding to the f irst come f irst served (FCFS) discipline
(which may be too restrictive) to k = 1, corresponding to the (totally un-
restricted) eventuality concept. Note that bounded fairness, though suited
to real-time applications, makes no assumption about the relative progress
of processes; that is, a process' execution rate on a processor is independent
of the execution rate of another process. Such rate assumptions would make
solutions more restrictive and time-dependent.

In the literature, bounded fairness has been mentioned in speci�c con-
texts or en passant. For example, Fagin and Williams [6] de�ne fairness in
the context of a carpool scheduling algorithm which is intuitively similar
to our idea of bounded fairness. Manna and Pnueli [16] mention \bounded
overtaking" which is the same as our idea of fairness. In this paper, we pro-
vide practical motivation for using this concept, and show how a rigorous

1

temporal logic analysis can be done.
The layout is as follows: In Section 2, we give a semi-formal description

of bounded fairness through the process model and show how to specify
bounded fairness requirements for standard concurrent programming prob-
lems. In Section 3, we extend linear temporal logic [19] to include a new

binary operator k
�@
@� , which formally captures our intuitive idea of bounded

fairness. The syntax and semantics for this logic, kTL, are given. In Section
4, we give some properties of kTL. In particular, we prove that this logic
is more powerful than the temporal logic with the modal operators2 and

3 and precisely as powerful as temporal logic with the until operator U ,
and give an example showing the succinctness made possible with the new
operator. In Section 5, we describe the construction of a semantic tableau
for kTL which gives a decision procedure for satis�ability. In Section 6, we
give applications of bounded fairness. In particular, we show that Dekker's
solution to the (two process) mutual exclusion problem is fair in the con-
ventional sense, but not k-bounded fair for any �xed value of k. In the last
section of the paper, we discuss some possible extensions to this research.

2 Bounded Fairness

We work in the context of the concurrent processing of several asynchronous
processes. To make our ideas concrete, we de�ne fairness using the state
transition model of Burns, et al. [3]. It will become obvious to the reader
that bounded fairness could be de�ned for other abstract models of concur-
rent computation (for example, the model described in [5]). Our process
model, then, is a set of states with a transition function. More formally, a
process Pi is a triple hV;Xi; pii where V is a set of values and Xi is a (possi-
bly countably in�nite) set of states partitioned into disjoint sets Ri, Ti, Ci,
and Ei, corresponding to the remainder, trying, critical, and exit regions
of process Pi, respectively. The remainder set Ri is non-empty; the other
partitions, Ti; Ci, and Ei, can be empty. The state transition function pi:
V �Xi ! V �Xi has the following properties:

1. x 2 Ri; v 2 V imply pi(v; x) 2 V � (Ti [Ci);

2. x 2 Ti; v 2 V imply pi(v; x) 2 V � (Ti [Ci);

3. x 2 Ci; v 2 V imply pi(v; x) 2 V � (Ei [Ri);

4. x 2 Ei; v 2 V imply pi(v; x) 2 V � (Ei [Ri).

2

Note that, for convenience, we refer to a process by the region to which
it currently belongs instead of referring to it by its associated triple.

The usual fairness requirement expressed in linear temporal logic [19],
using the above process model, is

pi 2 Ti � 3(pi 2 Ci) (1)

This assertion states that the process, which is currently in its trying region,
eventually enters its critical region.

For some applications we would want a stronger assertion than (1),
namely that the entry of any process into its critical section is k-bounded
fair. The parameter k is a �xed positive integer referred to informally as the

bound. The formula q k
�@
@� p is read \p is k-bounded to q" and is true at a

particular state if and only if p is true at one of the next k instances that q
is true. (Note the assumption of a linearly ordered time sequence.) De�ne
the proposition

q: a scheduler allows a process pi or another process arriving
after pi into the respective critical region.

Then k-bounded fairness for pi is expressed as follows:

pi 2 Ti � q k
�@
@� (pi 2 Ci) (2)

meaning that a process pi wanting to enter its critical region is guaranteed
to do so at one of the next k times that either pi or a process arriving after
pi is scheduled.

The following two examples illustrate how bounded fairness requirements
may be speci�ed for standard concurrent programming situations using the

k
�@
@� operator in a more natural manner than with either until or atnext

[14].

(Five) Dining Philosophers Problem: We assume that the reader is
familiar with the dining philosophers problem, as originally formulated by
Dijkstra [4]. Suppose we do not require a strict precedence in granting forks
to a philosopher according to the order of the request made, since such
a requirement holds up resources (forks). Instead, we allow philosopher
i's neighbors to get the forks at most twice out of turn after i wishes to
use the forks. Let try-forksi and Ci be the trying and the critical regions,
respectively, of the ith philosopher's process phil i. De�ne

3

qi: the scheduler allows phil i or its neighboring processes
(phil(i+1) mod 5, phil(i+4) mod 5) arriving after phil i to enter the
respective critical region.

The speci�cation for this bounded requirement would be

8i(1 � i � 5)2

�
(phil i 2 try-forksi) � qi 3

�@
@� (phil i 2 Ci)

�

A Monitor Example: A monitor is a language construct for process
synchronization. A process has to wait on a condition variable, say B; if
it �nds that it should not be granted access to a particular section of the
program. Let L be the label at which a process p waits. The operations
de�ned on B are wait and signal [10]. The assertion at x means that the
control
ow is at the beginning of statement x; after x means that control
has just completed execution of x. De�ne the propositions:

wait(B): the associated process waiting on the condition variable
B delays.

signal(B): wake up a process waiting on the condition variable
B.

The usual fairness property for p is

fair(L : wait(B)) :

23(at L ^ signal(B)) � 3(after L)

where the assertion23x means that x is true in�nitely often.
De�ne the proposition

signal(p,B): signal (B) wakes process p waiting on B or wakes a
process waiting on B which arrived after p.

The bounded fairness property for p is

bounded-fairk(L : wait(B)) :

2

�
at L �

�
signal(p; B) k

�@
@� (after L)

��

4

3 Formal De�nition of k
�@
@�

We de�ne now the syntax and semantics of kTL, the logic with the temporal

operator k
�@
@� . For convenience, we use other well known temporal opera-

tors also. Later we show that these operators can be expressed in terms of

k
�@
@� . Consider a language L with atomic sentences q0, q1, : : : , the usual

connectives :, ^, _, the truth constants T and F , and the temporal con-

nectives 3, 2,
 (the next instant operator), U , atnext, and k
�@
@� . A

Kripke structure for L is given by
i) a countably in�nite sequence, W = f�0; �1; : : :g of states (�0 is the

initial state).
ii) a mapping �(qi; �j) 2 ftrue ; falseg with every atomic formula qi of L

and every �j 2 W .
The mapping � is inductively extended to all formulas as follows:

1: �(:q; �j) = true i� �(q; �j) = false:
2: �(p � q; �j) = true i� �(p; �j) = false or �(q; �j) = true :
3: �(p _ q; �j) = true i� �(p; �j) = true or �(q; �j) = true :
4: �(p ^ q; �j) = true i� �(p; �j) = true and �(q; �j) = true :
5: �(2q; �j) = true i� �(q; �j) = true for every i > j:

6: �(3q; �j) = true i� �(q; �j) = true for some i > j:

7: �(
q; �j) = true i� �(q; �j+1) = true :
8: �(p U q; �j) = true i� for some k > j

�(q; �k) = true and �(p; �i) = true for all i; j < i < k:

9: �(p atnext q; �j) = true i� for some k > j

�(p ^ q; �k) = true and �(q; �i) = false for all i; j < i < k:

10: �(q k
�@
@� p; �m0

) = true (where k 2 f1; 2; 3; : : :g);
i� there is l � k and m0 < m1 < � � � < ml such that
for all i; 1 � i � l; �(q; �mi

) = true ;
�(q; �j) = false for all i; j; 1 � i � l; mi�1 < j < mi;

and �(p; �ml
) = true :

11: �(T ; �j) = true :
12: �(F ; �j) = false:

We will sometimes refer to well-formed formulae (w�s) in the above system
as kTL formulas. We will abuse notation by saying \P is true (false)" when
we really mean �(P) = true (false), for w� P .

5

Observation 1: By convention, the temporal operators are chosen so as
not to include the present state. Our de�nitions of U and atnext are \strong"
in the sense that we require the assertion q to hold in the future for the
associated formulas to be true.

Observation 2: A linearly ordered time structure is implied by the as-
sumption of a countably in�nite sequence of states. Hence our structure is
valid for an !-model.

Observation 3: There is a natural correspondence between states of our
process model and W . In fact, a possible sequence of computations chosen
from the processes, called an admissible computation, forms a one-to-one
correspondence with W . The set of all admissible computations is the in-
terleaved model of parallel computation.

4 Expressiveness

Kamp [13] has shown that L(U), the language with U as the only temporal
connective,1 is as expressive as the �rst order theory of linear order. The
latter is given by the set of natural numbers with equality, the binary relation
<, and a set of unary predicates. Based on this result of expressiveness,
L(U) is said to be expressively complete.

We now show that L(k
�@
@�) is also expressively complete by showing

that

� Every w� P in L(U) can be rewritten as a w� Q in L(k
�@
@�) such

that, for every structure � and for every state in �, Q is true at state
�i in � if and only if P is true at �i in �.

� Every w� P in L(k
�@
@�) can be rewritten as a w� Q in L(U) such

that, for every structure � and for every state in �, Q is true at state
�i in � if and only if P is true at �i in �.

Theorem 1 L(k
�@
@�) is at least as powerful as L(U).

1It is understood that the language has atomic sentences and the usual non-temporal

connectives. All languages mentioned in this paper are interpreted in Kripke structures

mentioned in the previous section.

6

Proof: This follows from the fact that the temporal connective U can be

expressed in terms of k
�@
@� , as follows:

p Uq � (p � q) 1
�@
@� q (3)

Consider the left-hand side of this identity: its truth in state �i means that
q is true in some state �j (j > i), and p and :q hold in each state of the
(possibly empty) sequence �i+1; : : : ; �j�1. Similarly, the right-hand side,

(p � q) 1
�@
@� q, is true in state �i when q is true at some state �j (j > i)

at which time p � q must also be true; at all other states in the sequence
�i+1; : : : ; �j�1, p � q is false, that is, p is true and q is false.

Other temporal connectives can be expressed succinctly in terms of

k
�@
@� . We state the following results without proof. (Their proofs are

straightforward using the mappings given in the previous section.)

3p � p 1
�@
@� T

2p � :

�
:p 1

�@
@� T

�

p � T 1
�@
@� p

p atnext q � q 1
�@
@� p

Since L(U) is more powerful than L(3) or L(2)) [8], we conclude

from Theorem 1 that L(k
�@
@�) is more powerful than L(2).

Theorem 2 L(U) is at least as powerful as L(k
�@
@�).

Proof: We show that k
�@
@� can be expressed in terms of U in the following

inductive manner:

q 1
�@
@� p � :q U (p^ q) (4)

q k
�@
@� p � q 1

�@
@� p _

�
:q U q k�1

�@
@� p

�
for k > 1, (5)

The correctness of the base case, k = 1, is fairly obvious (refer to the
mappings in Section 4). For the inductive case, consider �rst what it means

for q k
�@
@� p to be true at state m0: There are 1 � l � k subsequent states

m1 < m2 < � � �< ml at which q is true, but between which (for all times x,

7

mi�1 � x � mi, 1 � i � l) q is false, and, furthermore, p is true at the last

one. Comparing this with the meaning of :q U(q k�1
�@
@� p)), namely that q

is false until some state m1 (when it may or may not be true), and is true
at each of m2, : : : , ml0 (for some l0), but false in between, while p is true
at ml0 , we see that the left-hand side is true when p and q are true at m1,

which is covered by the disjunct q 1
�@
@� p.

On the other hand, if the �rst disjunct of the right-hand side is true, then

so is the left-hand side. For the right-hand side to be true, when :(q 1
�@
@� p),

p must be false when q is �rst true, but true one of the next k � 1 times it
is, which also makes the left-hand side true.

Corollary 1 L(k
�@
@�) has the same power as L(U).

There is some similarity between the iterated atnext operator and k
�@
@� .

(The two were proposed independently in [14] and [12], respectively.) Infor-
mally, p atnextk q means, \p holds at the kth next state at which q holds"
(but may hold earlier, too). It is straightforward to show that

q k
�@
@� p �

k_
i=1

p atnext i q (6)

and
p atnextk q � q 1

�@
@� (p atnextk�1 q) for k > 1 (7)

Succinctness of a formalism is its ability to express properties in short

formulas. The operator k
�@
@� contributes to the succinctness of expressions

that would otherwise require multiple occurrences of U . In fact, a formula

(q1 ^ � � � ^ qm) k
�@
@� (p1 ^ � � � ^ pn);

where the qi and pj are distinct propositional variables, requires k uses of
U , each referring to all of the qs and ps.

5 Satis�ability

Since propositional logic with the until operator is decidable, it follows from
Theorems 1 and 2 that kTL is also decidable. All the same, in this section,
we outline a semantic tableau method (closely related to the analytic tableau

8

method of Smullyan [22]) to obtain a decision procedure for satis�ability that
has some interest in its own right.

A kTL formula is elementary if it is a propositional variable, its negation,
or a next time formula (one with
 as the main, \outermost" connective).
Any other formula is non-elementary. Using the rules of Table 1, algorithm
BUILD shown in Figure 1 decomposes a formula f to construct a tableau
(graph) that comprises a systematic search for an interpretation (model) of
f . The number of nodes in the resultant graph for a �nite length formula is
�nite. (Fn is the set of formulas labeling node n.)

1: ::p ! fpg
2: p ^ q ! fp; qg
3: :(p _ q) ! f:p;:qg
4: :
 p ! f
:pg
5: 2p ! f
p;
2pg
6: :3p ! f
:p;
:3pg
7: p _ q ! fpg; fqg
8: :p ^ q ! f:pg; f:qg
9: 3p ! f
pg; f
3pg
10: :2p ! f
:pg; f
:2pg
11: p U q ! f
qg; f
p;
(p U q)g
12: :(p U q) ! f
:p;
:qg; f
:q;
p;
:(p Uq)g

13: q 1
�@
@� p ! f
p;
qg; f
:q;

�
q 1
�@
@� p

�
g

14: :

�
q 1
�@
@� p

�
! f
:p;
qg; f
:q;
:

�
q 1
�@
@� p

�
g

15: q k
�@
@� p ! f
p;
qg; f
:p;
q;

�
q k�1
�@
@� p

�
g;

f
:q;

�
q k
�@
@� p

�
g

16: :

�
q k
�@
@� p

�
! f
:p;
q;
:

�
q k�1
�@
@� p

�
g;

f
:q;
:

�
q k
�@
@� p

�
g

Table 1: Tableau rules

9

Algorithm BUILD

1. Let Fr = ffg, where r is the initial node.

2. A decomposed formula f is marked f� to avoid its repeated decompo-
sition. The next two steps are repeatedly applied.

3. If Fn contains an unmarked, non-elementary formula g whose de-
composition rule yields S1; S2; : : : ; Sm, then, for every Si, form
ni = (Fn � fgg) [fS1; : : : ; Smg [fg

�g. If the graph already has a
node labeled ni, form an edge from n to this node. Otherwise, create
a new node labeled ni. Thus, every non-elementary formula that has
not been decomposed is expanded using the decomposition rules.

4. Otherwise (when Fn has elementary or marked formulas only), remove
the outermost
 from all the nexttime formulas and create edges to
existing nodes whose outermost
 has been removed, or else (if such a
node does not exist) create a new node labeled by only those formulas
whose outermost
 has been removed.

Figure 1: Algorithm to construct the semantic tableau for a kTL formula.

Algorithm REMOVE of Figure 2 checks for satis�ability, using the
graph produced by BUILD. It removes nodes that are unsatis�able from
the tableau. Following Ben-Ari, et al. [2], we call a node containing only el-
ementary or marked formulas a state. An eventuality formula is a temporal
formula whose tableau decomposition yields two or more subformulas, one
of which contains itself as a subformula (rules 9{16 in Table 1). In a graph
containing these formulas, it is possible that the eventualities are never sat-
is�ed by some paths which inde�nitely postponed its evaluation. In rules
9{12 of Table 1, let its �nite subformula be the �rst set in the decompo-
sition. To check satis�ability of eventuality formulas, we de�ne �nite-term
node(s) for each eventuality formula. An eventuality formula given in rules
9{12 is said to have a �nite-term node if there exists a path from the node
labeled by this formula to a state labeled by its �nite subformula. For for-

mulas involving k
�@
@� (rules 13{16), the �nite term node de�nitions are

more involved. A formula q k
�@
@� p is said to have �nite-term nodes if there

exists a path from a node labeled by this formula that includes i (1 � i � k)

10

Algorithm REMOVE

1. Remove any node containing a formula and its negation.

2. Remove any node, all successors of which have been removed.

3. Remove the child of any state, or the initial state, if it contains an
eventuality formula not having �nite-term nodes.

Figure 2: Algorithm to remove unsatis�able nodes

distinct states, each of which is labeled f
p;
qg. (The need for this seem-
ingly complicated de�nition can be understood by building a tableau for

the unsatis�able formula
(:p ^ q)^ (q 1
�@
@� p).) A formula :(q k

�@
@� p) is

said to have �nite-term nodes if there exists a path from a node labeled by
this formula that includes exactly k distinct states, each of which is labeled
f
(:p);
qg.

Theorem 3 (Satis�ability) Let G be the graph resulting from applying
algorithms BUILD and REMOVE to a formula f . Then f is satis�able if
and only if the initial node is in G.

This can be proved using the techniques suggested by Smullyan [22] and
Wolper [23].

6 Applications

In [11], the second author introduced a new synchronization primitive called
the Distributed Synchronizer, which is particularly suited for implementa-
tion on large shared memory multiprocessors. It was shown there that for
a multiprocessor with n processing elements, the DSP and DSV operations
(the usual P and V operations implemented with the distributed synchro-
nizer) are (2n� (1 + log2 n))-bounded fair.

In this section, we show that Dekker's solution to the two process mutual
exclusion problem [4, 15] is not k-bounded fair for any �xed value of k. A
rigorous proof is tedious; an informal proof follows the algorithm:

11

I: t := 1; y1 := y2 := false;

Process 1 Process 2
l0: execute m0: execute
l1: y1 := true m1: y2 := true
l2: if y2 = false then goto l7 m2: if y1 = false then goto m7

l3: if t = 1 then goto l2 m3: if t = 2 then goto m2

l4: y1 := false m4: y2 := false
l5: loop until t = 1 m5: loop until t = 2
l6: goto l1 m6: goto m1

l7: t := 2 m7: t := 1
l8: y1 := false m8: y2 := false
l9: goto l0 m9: goto m0

According to the process model of Section 2, Ti = fx1; : : : ; x6g; Ci =
fx7; x8g; Ei = fx9g; R1 = fx0g. For i = 1, x is l, and x is m for i = 2.

For process p1, the k-bounded fairness requirements are:

a) ((p1 2 T1) ^ (p2 2 T2)) �

�
(after l2) _ (after m2) k+1

�@
@� after l2

�

b) ((p1 2 T1) ^ (p2 62 T2)) �

�
(after l2) _ (after m2) k

�@
@� after l2

�

Assume that the processor executing Process 1 is at l5 and that it takes
a long time to execute l5 (we make no assumptions about the relative speeds
of processes). Meanwhile, the processor executing Process 2 executes m7,
: : : , m1, and is at m2. It still �nds that y1 = false, since l5 and l6 are not
complete. Thus, it enters its critical region though p1 2 T1. This, in fact,
can happen any number of times. Hence, the algorithm is not k-bounded
fair for any �xed value of k. It is fair, since Process 1 will eventually be able
to enter its critical region (an instruction takes only a �nite amount of time
to execute).

In the examples that we have chosen, the bound is (2n � (1 + log2 n))
for DSP and DSV, and is unbounded for Dekker's algorithm. We have
investigated other concurrent algorithms for bounded fairness. Peterson's
two process mutual exclusion algorithm [18] is 2-bounded fair since it permits
a process executing in its trying region to be overtaken at most once. The
solution to the dining philosophers problem utilizing monitors presented in
Ben-Ari [1] is 1-bounded fair.

12

7 Discussion

Most fairness properties involve the temporal concept \eventually." Eventu-
ality, however, is a weak concept with which to specify and prove properties
of many real-time concurrent programs. We have introduced a stronger
notion of fairness called k-bounded fairness. The de�nition is elegant be-
cause time is not explicit, though the idea of bounded fairness would seem
to require it. We have formalized this notion by introducing a new binary

operator k
�@
@� into the linear temporal logic with the operators 2 and

3. With the new operator we are able to express a variety of fairness
notions from strict �fo fairness to eventuality. We have shown that the ex-
tended temporal logic is quite powerful. We have used it to specify a few
standard concurrent programming problems and to study mutual exclusion
algorithms for bounded fairness.

This work can be extended in various ways:

� A number of related operators merit investigation:

{ There is a dual notion,

q k p � :(q k
�@
@� :p)

(p is true each of the next k instants q is).

{ The assertion, \p is true the kth time q is, but not before," denoted

q =k
�@
@� p, can be expressed in terms of the k

�@
@� operator as

follows:

q =1
�@
@� p � q 1

�@
@� p

q =k
�@
@� p � :

�
q k�1
�@
@� p

�
^

�
q k
�@
@� p

�
for k > 1.

We have now a spectrum of related operators: q k
�@
@� p, p atnextk q,

q =k
�@
@� p, and q k p. Each refers to the next k times q is true. The

�rst asks only that p be true at one of them; the second demands that
it be true at the kth occurrence speci�cally; the third adds that it not
be true before; the last requires p to be true at all of them. It might
be interesting to see what the natural applications for these various
operators are.

13

� kTL incorporates only the future fragment of time. There is a natural
extension to the past by allowing k to be a negative integer. Though
inclusion of the past would not add expressive power to the logic,
perhaps the extended logic would allow simpler speci�cations, simpler
proofs of past program behavior, or the like.

� Another possible extension is to allow quanti�cation of k. We might
consider a restricted logic in which k is quanti�ed but the non-temporal
variables are not. Is the restricted logic, with k quanti�ed, decidable?

Acknowledgments

We thank Tim Carlson and Neelam Soundararajan for useful discussions on
this topic and Lenore Zuck for helping with the proof of Theorem 2.

References

[1] M. Ben-Ari. Principles of Concurrent Programming. Prentice-Hall In-
ternational, 1982.

[2] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching
time. Acta Informatica, 20:207{226, 1983.

[3] J. E. Burns, M. J. Fischer, P. Jackson, N. A. Lynch, and G. L. Peterson.
Shared data requirements for implementation of mutual exclusion using
a test-and-set primitive. In Proc. of the International Conference on
Parallel Processing, pages 79{87, 1977.

[4] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages, pages 43{112. Academic Press, 1968.

[5] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 996{1072. Elsevier
Science, 1990.

[6] R. Fagin and J. H. Williams. A fair carpool scheduling algorithm. IBM
J. of Research & Development, 27(2):133{139, 1983.

[7] N. Francez. Fairness. Texts and Monographs in Computer Science.
Springer-Verlag, 1986.

14

[8] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis
of fairness. In Proc. Seventh Annual ACM Symp. on Prin. of Prog.
Languages, pages 163{173, 1980.

[9] H. Hansson and B. Jonsson. A framework for reasoning about time
and reliability. In Proc. IEEE Real-Time Systems Symp., pages 102{
111, 1989.

[10] C. A. R. Hoare. Monitors: An operating system structuring concept.
Communications of the ACM, 17(10):549{557, 1974.

[11] D. N. Jayasimha. Distributed synchronizers. In Proc. 17th Intl. Conf.
on Parallel Processing, pages 23{27., 1988.

[12] D. N. Jayasimha and N. Dershowitz. Bounded fairness. CSRD Rpt.
615, Ctr. for Supercomputing Res. and Dev., Univ. of Illinois, Urbana,
IL, 1986.

[13] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD
thesis, University of California, Los Angeles, CA, 1968.

[14] F. Kroger. Temporal Logic of Programs. Springer Verlag, 1987.

[15] Z. Manna and A. Pnueli. Veri�cation of concurrent programs: The
temporal framework. In R. S. Boyer and J. S. Moore, editors, The
Correctness Problem in Computer Science. Academic Press, New York,
NY, 1981.

[16] Z. Manna and A. Pnueli. Proving temporal properties: The temporal
way. In Proc. 10th Colloq. on Automata, Languages, and Programming,
pages 491{512, 1983.

[17] J. S. Ostro�. Temporal Logic for Real Time Systems. Research Studies
Press, 1989.

[18] G. L. Peterson. Myths about the mutual exclusion problem. Informa-
tion Processing Letters, 12(3):115{116, 1981.

[19] A. Pnueli. The temporal logic of programs. In Proc. 19th Annual IEEE
Symp. on Foundations of Computer Science, pages 46{57, 1977.

[20] A. Pnueli. The temporal semantics of concurrent programs. Symp. on
the Semantics of Concurrent Computations, pages 1{20, 1979. LNCS
Vol. 70, Springer Verlag, Berlin.

15

[21] A. Pnueli and E. Harel. Applications of temporal logic to the speci�-
cation of real time systems. In Symp. on Formal Techniques in Real-
Time and Fault-Tolerant Systems, pages 84{98, 1988. LNCS Vol. 331,
Springer Verlag, Berlin.

[22] R. Smullyan. First Order Logic. Springer Verlag, 1971.

[23] P. Wolper. Temporal logic can be more expressive. Information and
Control, 56(1{2):72{98, 1983.

16

Footnotes

1. It is implicitly understood that the language has atomic sentences and
the usual non-temporal connectives. All languages mentioned in this
paper are interpreted in Kripke structures mentioned in the previous
section.

17

