
A Taste of Rewrite Systems

Nachum Dershowitz

Department of Computer Science, University of Illinois, Urbana IL 61801, USA

Abstract. This survey of the theory and applications of rewriting with equations discusses the exis-
tence and uniqueness of normal forms, the Knuth-Bendix completion procedure and its variations, as
well as rewriting-based (functional and logic) programming and (equational, �rst-order, and inductive)
theorem proving. Ordinary, associative-commutative, and conditional rewriting are covered. Current
areas of research are summarized and an extensive bibliography is provided.

0 Menu

Equational reasoning is an important component in symbolic algebra, automated deduction, high-level pro-
gramming languages, program veri�cation, and arti�cial intelligence. Reasoning with equations involves
deriving consequences of given equations and �nding values for variables that satisfy a given equation.

Rewriting is a very powerful method for dealing with equations. Directed equations, called \rewrite rules",
are used to replace equals by equals, but only in the indicated direction. The theory of rewriting centers
around the concept of \normal form", an expression that cannot be rewritten any further. Computation
consists of rewriting to a normal form; when the normal form is unique, it is taken as the value of the initial
expression. When rewriting equal terms always leads to the same normal form, the set of rules is said to be
\convergent" and rewriting can be used to check for equality.

This chapter gives a brief survey of the theory of rewriting and its applications to issues in programming
languages and automated deduction. Section 1 o�ers a few motivating examples as appetizer. The \bread and
butter" concepts come next: Sect. 2 addresses the question of existence of normal forms; Sect. 3 addresses
their uniqueness. Section 4 describes a brew for constructing convergent systems. The main course is a
choice of Sect. 5, a method for proving validity of equations, and, Sect. 6, a method for solving equations.
As side dishes, Sections 7 and 8 consider extensions of rewriting to handle associative-commutative function
symbols and conditional equations. Dessert is Sect. 9, which applies conditional and unconditional rewriting
to programming, while, the pi�ece de r�esistance, Sect. 10, shows how rewriting is used to facilitate deductive
and inductive proofs. Finally, over co�ee, Sect. 11 mentions some current areas of research. An extensive
bibliography for further reading (the \check") is attached.

1 Rewriting

We begin our rewriting feast with the following three puzzles:

Puzzle 1 Hercules and Hydra. Hydra is a bush-like creature with multiple heads. Each time Hercules hacks
o� a head of hers, Hydra sprouts many new branches identical to|and adjacent to|the weakened branch
that used to hold the severed head. But whenever he chops o� a head coming straight out of the ground,
no new branches result. Suppose Hydra starts o� as a lone stalk ten branches tall. The question is: Does
Hercules ever defeat Hydra? ut

Puzzle 2 Chamelion Island. The chamelions on this strange island come in three colors, red, yellow, and
green, and wander about continuously. Whenever two chamelions of di�erent colors meet, they both change
to the third color. Suppose there are 15 red chamelions, 14 yellow, and 13 green. Can their haphazard
meetings lead to a stable state, all sharing the same color? ut

Puzzle 3 Grecian Urn. An urn contains 150 black beans and 75 white. Two beans are removed at a time: if
they're the same color, a black one is placed in the urn; if they're di�erent, the white one is returned. The
process is repeated as long as possible. Is the color of the last bean in the urn predetermined and, if so, what
is it? ut

All three puzzles give rules for going from one state to another. The �rst two concern the possibility of
getting from some starting state to a �nal state; the last asks how the �nal state is related to the initial
state.

In general, a rewrite system consists of a set of rules for transforming terms. Hercules and Hydra can be
expressed pictorially as in Fig. 1.

5

@
@
5

�
�� � � � � �

: : : : : :
!

5

J
J

5

� � �

@
@

5

J
J

5

� � �

�
�� � �

: : : : : :

Fig. 1. Hercules versus Hydra.

Chamelion Island can be expressed by three rules:

red yellow ! green green
green yellow ! red red

red green ! yellow yellow ;

with the added proviso that chamelions can rearrange themselves at will.
The Grecian Urn may be expressed as the following system of four rules, one per possible pair of beans:

black black ! black
white white ! black
black white ! white
white black ! white :

In the sequel, we will solve these puzzles by applying techniques from the theory of rewriting. But, �rst,
let's take a look at some more prosaic examples of rewrite systems.

Example 1 (Insertion Sort). The following is a program to arrange a list of numbers in non-increasing order
by inserting elements one by one into position:

max (0; x) ! x
max (x; 0) ! x

max (s(x); s(y)) ! s(max (x; y))
min(0; x) ! 0
min(x; 0) ! 0

min(s(x); s(y)) ! s(min(x; y))
sort(nil) ! nil

sort(cons(x; y)) ! insert(x; sort(y))
insert(x; nil) ! cons(x; nil)

insert(x; cons(y; z)) ! cons(max (x; y); insert(min(x; y); z)) :

Lists are represented in \cons" notation and numbers in successor (unary) notation. We would like to
ascertain that every term constructed from sort , cons , nil , s, and 0 leads to a unique term, not containing
sort, nor the auxiliary symbols, insert , max , and min . ut

As in the previous example, both sides of a rule l! r can contain variables which refer to arbitrary
terms. A rule is used to rewrite any subterm that is an instance of the left-hand side l. That is, u[l�] rewrites
to u[r�], where � is a substitution of terms for variables of the rule (the same term substituted for each
occurrence of the same variable), u[�] is the \context" in which the instance l� of l occurs as a subterm,
and u[r�] is u[l�] with that subterm replaced by the right-hand side after its variables have had the same
substitution � applied. Such a rewrite step is written u[l�]!u[r�] or, backwards, as u[r�] u[l�]. Rules
are applied nondeterministically, since, in general, more than one rule can be applied, and any one rule may
apply at more than one position within a term.

Rewrite systems have long been used as decision procedures for validity in equational theories, that is,
for truth of an equation in all models of the theory.

Example 2 (Loops). Consider the following system of a dozen rules:

xnx ! e x � (xny) ! y
x=x ! e (y=x) � x ! y
e � x ! x xn(x � y) ! y
x � e ! x (y � x)=y ! y
enx ! x x=(ynx) ! y
x=e ! x (x=y)nx ! y :

Each rule follows by algebraic manipulation from some combination of the following �ve axioms for algebraic
structures called \loops":

x � (xny) = y (y=x) � x = y
xn(x � y) = y (x=y)nx = y

y=y = xnx ;

and the de�nition y=y = e. To use the rewrite system to decide whether an arbitrary equation is a valid
identity for all loops (in which case it can be proved by purely equational reasoning), we need to ascertain
that any two terms equal in the theory have the same normal forms. ut

Rewrite systems can also be used to \interpret" other programming languages.

Example 3 (Interpreter). The state of a machine with three integer-valued registers can be represented as a
triple hx; y; zi. The semantics of its instruction set can be de�ned by the rules for the interpreter shown in
Fig. 2. The penultimate rule, for example, can clearly be applied ad in�nitum. The question is what strategy
of rule application, if any, will lead to a normal form whenever there is one. ut

Fig. 2. Three-register machine interpreter.

eval(set0 n; hx; y; zi) ! hn; y; zi
eval(set1 n; hx; y; zi) ! hx; n; zi
eval(set2 n; hx; y; zi) ! hx; y; ni

eval(inc0; hx; y; zi) ! hs(x); y; zi
eval(inc1; hx; y; zi) ! hx; s(y); zi
eval(inc2; hx; y; zi) ! hx; y; s(zi)

eval(dec0; hs(x); y; zi) ! hx; y; zi
eval(dec1; hx; s(y); zi) ! hx; y; zi
eval(dec2; hx; y; s(z)i) ! hx; y; zi
eval(ifpos0 p; h0; y; zi) ! h0; y; zi

eval(ifpos0 p; hs(x); y; zi) ! eval(p; hs(x); y; zi)
eval(ifpos1 p; hx; 0; zi) ! hx; 0; zi

eval(ifpos1 p; hx; s(y); zi) ! eval(p; hx; s(y); zi)
eval(ifpos2 p; hx; y; 0i) ! hx; y; 0i

eval(ifpos2 p; hx; y; s(zi)) ! eval(p; hx; y; s(zi))
whilepos0 p ! ifpos0 (p; whilepos0 p)
whilepos1 p ! ifpos1 (p; whilepos1 p)
whilepos2 p ! ifpos2 (p; whilepos2 p)
eval((p; q); u) ! eval(q; eval(p; u)) :

Two important properties a rewrite system may possess are termination and conuence. We address these
in the following two sections.

2 Termination

De�nition1 Termination. A rewrite system is terminating if there are no in�nite derivations t1! t2!� � �.

The rules for the Chamelion Puzzle are not terminating; to wit red yellow yellow ! green green yellow
! green red red ! yellow yellow red , which rearranges to red yellow yellow , from which point the same
three steps may be repeated over and over again. On the other hand, each step in the Grecian Urn Puzzle
decreases the number of beans, so it always terminates. The Loop system also terminates, since it always
shortens the length of the expression, but, as pointed out above, our Interpreter does not.

Termination is an undecidable property of rewrite systems. Nonetheless, the following general method is
very often helpful in termination proofs:

De�nition2 Termination Function. A termination function takes a term as argument and is of one of
the following types:

{ a function that returns the outermost function symbol of a term, with symbols ordered by some prece-
dence (a \precedence" is a well-founded partial ordering of symbols);

{ a function that extracts the immediate subterm at a speci�ed position (which position, can depend on
the outermost function symbol of the term);

{ a function that extracts the immediate subterm of a speci�ed rank (the kth largest in the path ordering
de�ned recursively below);

{ a homomorphism from terms to some well-founded set of values;
{ a monotonic homomorphism, having the strict subterm property, from terms to some well-founded set (a
homomorphism is monotonic with respect to the well-founded ordering if the value it assigns to a term
f(: : : s : : :) is greater than or equivalent to that of f(: : : t : : :) whenever the value of s is greater than
t; it has the strict subterm property if the value of f(: : : t : : :) is always strictly greater than that of its
subterm t);

{ a strictly monotonic homomorphism,having the strict subterm property, from terms to some well-founded
set (it is strictly monotonic if the value of f(: : : s : : :) is strictly greater than that of f(: : : t : : :) whenever
s is of greater value than t); or

{ a constant function.

Simple examples of homomorphisms from terms to the natural numbers are size (number of function
symbols, including constants), depth (maximum nesting of function symbols), and weight (sum of integral
weights of function symbols). Size and weight are strictly monotonic; depth is monotonic.

De�nition3 Path Ordering. Let �0; : : : ; �i�1 (i � 0) be monotonic homomorphisms, all but possibly �i�1
strict, and let �i; : : : ; �k be any other kinds of termination functions. The induced path ordering � is as
follows:

s = f(s1; : : : ; sm) � g(t1; : : : ; tn) = t

if either of the following hold:

(1) si � t for some si, i = 1; : : : ;m; or
(2) s � t1; : : : ; tn and h�1(s); : : : ; �k(s)i is lexicographically greater than or equal to h�1(t); : : : ; �k(t)i, where

function symbols are compared according to their precedence, homomorphic images are compared in the
corresponding well-founded ordering, and subterms are compared recursively in �.

A tuple hx1; : : : ; xmi is lexicographically greater than hy1; : : : ; yni if (a) xi is greater than yi for some i
(1 � i � n) and xj is equivalent to yj for all j up to, but not including, i, or if (b) the xi and yi are
equivalent for all i up to and including n and also m > n. We say that s � t if s � t, but s 6� t.

This ordering mixes and matches syntactic considerations (the �rst three types of termination functions)
with semantic considerations (the others).

Theorem4 [19]. A rewrite system terminates if l� � r� in a path ordering � for all rules l! r and
substitutions �, and also � (l�) = � (r�) for each of the nonmonotonic homomorphisms among its termination
functions.

The proof of this theorem is based on Kruskal's Tree Theorem and the fact that s! t and s �
t imply f(: : : ; s; : : :) � f(: : : ; t; : : :); for all terms s, t, : : : and function symbols f .

The path ordering encompasses many of the orderings described in the literature. The simplest, and
perhaps most generally useful, version of this ordering, called the lexicographic path ordering, uses a prece-
dence for �0 and the ith subterm for the remaining �i (or any other permutation of all the subterms). The
precedence typically encapsulates the dependency of some function de�nitions on others. The resultant path
ordering is \syntactic" in that it depends only on the relative order of the function symbols appearing in the
terms being compared. Terms s and t are compared by �rst comparing their outermost function symbols: if
they're equal, then subterms are compared recursively, in order; if the outermost symbol of s is larger, all
that needs to be shown is that s is larger than t's subterms; otherwise, the only way s can be larger than t
is if one of its subterms is.

To prove that Insertion Sort terminates, note that �ve of the rules show a decrease for � by virtue of
clause (1) of the de�nition of the path ordering, regardless of what we choose for the �i. For the recursive
rules of max and min, we can use the precedence max and min greater than s as �0. For the base case of
insert, we let insert > cons in the precedence. For the recursive rule of sort , we let sort > insert , and have
�1 give the sole argument of sort. Finally, for the recursive rule of insert , we make insert > max;min in the
precedence, and have �1 return the second argument of insert.

Another important class of orderings, the polynomial path orderings, uses a polynomial interpretation for
�0. The interpretation associates a (multivariate) monotonic integer polynomial with each function symbol
and constant, which is extended to a homomorphism to give meaning to terms. The remaining �i select
subterms as before. For example, Loops may be shown terminating by letting each binary symbol take the sum

of its arguments. This \semantic" ordering acts like the lexicographic path ordering when the polynomials
are all of degree 0 (constants). The advantage of polynomials over other classes of interpretations is that
tools are available to help compute inequalities.

To show that Hercules invariably defeats Hydra, we need to show that after each chop and regrowth,
Hydra is smaller than before. To this end, we let nodes have variable arity. This multiset path ordering, in
e�ect, uses a precedence for �0 and has �i give the ith largest subterm. The precedence for Hydra makes
branching nodes larger than heads. Replacing a branch with any number of smaller branches is a decrease
in this ordering.

3 Conuence

We will use s$ t to mean s! t or t! s. We say s derives t and write s!� t if s!� � �! t in zero or more
steps. We say that s and t are convertible, symbolized s$� t, if s$� � �$ t in zero or more steps, and that
s and t are joinable, or that s= t has a rewrite proof, if s and t derive the same term.

The following two de�nitions are easily shown equivalent:

De�nition5 Church-Rosser Property. A rewrite system isChurch-Rosser if terms are joinable whenever
they are convertible. (See Fig. 3(a).)

De�nition6 Conuence. A rewrite system is conuent if terms are joinable whenever they are derivable
from the same term. (See Fig. 3(b).)

...

.........
....
...
...
...

..
....
...
...
...

......................

*
..
....
.....
......
....

......
......
.....
....

......
......
......
...

.

.....
......
......
...
.
..
..
..
...
..
...
....
..

.

..
..
..
.
..
..
..
..
..
..
.

..
....
.....
......
....

......
......
.....
....

......
......
......
...

.

.....
......
......
...
.
..
..
..
.
..
..
..
..
..
..
.

.

..
..
..
...
..
...
....
..

* *

(a) Church-Rosser

.

.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
......
.....
......
.....
..
..
..
..
..
....
..........

.

..
..
.
..
..
..
..
..
.
..
.
..
.

.

.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
......
.....
......
.....
..
..
..
.
..
..
..
..
..
.
..
.
..
.

.

..
..
..
..
....
..........

* *

......
......
......
...

.

.....
......
......
...

.

......
.....
......
...

.

......
.....
........
...
.
..
...
...
.....

.....

..
..
.
..
.
..
..
..
..
.
..
.
.

......
......
......
...

.

.....
......
......
...

.

......
.....
......
...

.

......
.....
........

...

..

.

..
.
..
..
..
..
.
..
.
.

..

.

..
...
...
.....
.....

* *

.

......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
......
.....
......
.....
......
........
..
..
..
...
....
........

..
..
.
..
.
..
..
..
.
..
..
.
.
..

.

......
.....
......
.....
......
......
.....
......
......
.....
......
.....
......
......
.....
......
......
.....
......
......
.....
......
.....
......
........
..
.
..
.
..
..
..
.
..
..
.
.
..

..
..
..
..
...
....
........

.

.....
......
......
...

.

......
.....
......
...

.

......
......
.....
...

.

......
......
......
..
.
..
..
..
..
....
........

.

..
..
.
..
..
..
..
..
.
..
.
.

.

.....
......
......
...

.

......
.....
......
...

.

......
......
.....
...

.

......
......
......
..
.
..
..
.
..
..
..
..
..
.
..
.
.

.

..
..
..
..
....
........

* *

(b) Globally conuent (c) Locally conuent

Fig. 3. Conuence Properties.

Terminating conuent systems are called convergent or complete. Often, we are only interested in con-
uence for ground (variable-free) terms.

A weaker form of conuence is the following:

De�nition7 Local Conuence. A rewrite system is locally conuent if two terms are joinable whenever
they are both obtainable by rewriting (in one step) from the same term. (See Fig. 3(c).)

The following, sometimes referred to as the \Diamond Lemma", connects local and global conuence:

Theorem8 [20]. A terminating rewrite system is Church-Rosser if and only if it is locally conuent.

A rewrite system is locally conuent if (but not only if) no left-hand side uni�es with a non-variable
subterm (except itself) of any left-hand side, taking into account that variables appearing in two rules (or in
two instances of the same rule) are always treated as disjoint. To get conuence for nonterminating systems
we have an additional requirement:

De�nition9 Orthogonal System. A rewrite system is orthogonal if no left-hand side uni�es with a re-
named non-variable subterm of any other left-hand side or with a renamed proper subterm of itself, and no
variable appears more than once on any left-hand side.

The importance of orthogonal systems stems from the following result:

Theorem10 [22]. Every orthogonal system is conuent.

In particular, our erstwhile interpreter is conuent.

Example 4 Combinatory Logic. Combinatory Logic is a prime example of a (nonterminating) orthogonal
system (juxtaposition and h�; �i are binary operators):

Ix ! x
(Kx)y ! x

((Sx)y)z ! (xz)(yz) :

This system can be used to implement any recursive function. The combinators K and S were dubbed
\kestrel" and \starling" by Smullyan; I is the identity combinator. ut

Example 5 Cartesian Closed Categories. The following non-orthogonal, non-conuent system is used in the
compilation of functional languages (juxtaposition represents the binary composition operator):

Ix ! x (xy)z ! x(yz)
xI ! x hx; yiz ! hxz; yzi

F hx; yi ! x EhCx; yi ! xhI; yi
Shx; yi ! y (Cx)y ! C(xhyF; Si) :

The combinators E and C stand for \evaluation" and \Currying", respectively; I is the identity morphism;
F and S project the components of pairs h�; �i. ut

For terminating conuent systems, any rewriting strategy will lead to the unique normal form of any
given term; for nonterminating orthogonal systems, we defer to the discussion in Sect. 9. Also, for terminating
systems, there is a stronger result, relating conuence to joinability in a �nite number of cases:

De�nition11 Critical Pair. If l ! r and s ! t are two rewrite rules (with variables made distinct) and
� is a most general uni�er of l and a nonvariable subterm s0 of s, then the equation t� = s�[r�], where r�
has replaced s0� (= l�) in s�, is a critical pair.

A �nite rewrite system has a �nite number of critical pairs.

Theorem12 [28][25]. A rewrite system is locally conuent if and only if all its critical pairs are joinable.
Therefore, a terminating system is conuent (hence, convergent) if and only if all its critical pairs are
joinable.

Insertion Sort has one trivially joinable critical pair, 0= 0, formed from either the �rst two rules, or the
fourth and �fth.

Example 6 Fragment of Group Theory. Each of the rules

0 + x ! x x+ 0 ! x
(�x) + x ! 0 x+ (�x) ! 0

�0 ! 0 �(�x) ! x
(�x) + (x+ y) ! y x+ ((�x) + y) ! y

follows from some combination of the following three axioms:

x+ 0 = x
0 + x = x

(�x) + (x+ y) = y :

This system has numerous critical pairs, all of which are joinable. For example, the rules x+ (�x)!0 and
x+ ((�x) + y)! y form a critical pair x+ 0=�(�x), both sides of which reduce, via other rules, to x. ut

De�nition13 Encompassment. A term s encompasses a term t if a subterm of s is an instance of t. We
write s > t if s encompasses t, but not vice-versa.

De�nition14 Reduced System. A system R is reduced if, for each rule l! r in R, the right-hand side r
is irreducible (unrewritable) and if l > l0, for the left-hand side l, then l0 is irreducible (proper subterms of l
are in normal form, as is any term more general than l).

The above Fragment is reduced, but the Interpreter isn't.

De�nition15 Canonical System. A rewrite system is canonical if it is conuent, terminating, and re-
duced.

The following interesting fact was observed by a number of people:

Theorem16 [29]. Suppose two canonical (not necessarily �nite) rewrite systems have the same equational
theory (that is, their convertibility relations are the same) and when combined are still terminating. Then
the two must be identical up to renaming of variables.

Two interesting results with practical repercussions are:

Theorem17 [27]. The union of two conuent rewrite systems sharing no function symbols (or constants)
is also conuent.

Theorem18 [94]. The union of two convergent rewrite systems sharing no function symbols (or constants),
and in which no variable appears more than once on any left-hand side, is also convergent.

4 Completion

To construct conuent systems, a method is used, called completion, which turns critical pairs into rewrite
rules. Completion uses an ordering to orient equations and to allow use of unoriented equations to simplify.
This ordering should be a reduction ordering, de�ned as follows:

De�nition19 Reduction Ordering. A well-founded partial ordering � on terms is a reduction ordering
if s � t implies u[s�] � u[t�], for any context u[�] and substitution �.

The path ordering is not necessarily a reduction ordering, but its major special cases, including the lexico-
graphic and multiset path orderings, are.

The encompassment ordering also plays a role in most versions of completion. It is used to determine
which of two rules is more general, and hence preferred.

In our version of completion, not only rules, but also equations, are used to rewrite with. A term u[l�]
containing an instance of l of an equation l= r or r= l may be rewritten to u[r�] whenever u[l�] is greater
than u[r�] in the given reduction ordering.

We require a broader notion of critical pair:

De�nition20 Ordered Critical Pair. Given a reduction ordering �, if l = r and s = t are two (not
necessarily distinct) equations (with variables distinct), � is a most general uni�er of l and a nonvariable
subterm of s, and s� is not necessarily smaller than either t� or s�[r�], then the equation t� = s�[r�] is a
(ordered) critical pair formed from those equations. (Term s is not necessarily smaller than term t if there
is a substitution � such that s� � t�.)

Completion maintains a set of unoriented equations E and a set of rules R oriented according to the
given reduction ordering �. These sets are manipulated in the following six ways:

Deduce: Add a critical pair of R and/or E to E.

Simplify: Use a rule in R to rewrite either side of an equation s= t in E. Or use an equation l= r
in E (or use r= l in E) to rewrite s (or t), provided l strictly encompasses s (or t).

Delete: Remove an equation from E whose sides are identical.

Orient: Remove an equation s= t (or t= s) from E such that s � t. Add the rule s! t to R.

Compose: Use R or E to rewrite the right-hand side of an existing rule.

Collapse: Use a rule l! r in R or equation l= r in E to rewrite the left-hand side s of a rule in R,
provided l strictly encompasses s. Remove the rewritten rule from R and place it as an equation in
E.

One simple version of completion mixes the above inference steps according to the following strategy:

(((Simplify [Delete)�; (Orient; Compose�; Collapse�))�; Deduce)� :

In words: simplify and delete equations as much as possible before orienting. Use the newly oriented equation
to fully compose right-hand sides and collapse left-hand sides of all non-reduced existing rules; then, go back
and simplify over again. When there are no equations left to orient, generate one new critical pair, and repeat
the whole process.

Di�erent versions of completion di�er in which equations they orient �rst and in how they keep track
of critical pairs that still need to be deduced. They, in fact, often skip some critical pairs. A version of
completion is fair if it does not altogether avoid processing any relevant critical pair. Running completion
with a fair strategy can have one of three outcomes: It might converge on a �nite system that is a decision
procedure for the initial set of equations; it might reach a point in which all (ordered) critical pairs have
been considered and all have rewrite proofs|using rules and equations; or it might loop and generate an
in�nite number of rules and/or equations.

Theorem21 [43][40]. For any fair completion strategy, if at some point all critical pairs between persisting
rules have been considered and no equation persists forever in E, then the (�nite or in�nite) set of rules
persisting in R is convergent.

This means that eventually both sides of any identity in the theory of the initial set of equations will become
joinable.

Example 7 Abelian Groups I. Completion, given

x � 1 = x x � y = y � x
x � (y � z) = (x � y) � z x � x� = 1 ;

and a lexicographic path ordering (in which �> �> 1 and � looks at its left argument �rst) will generate the
following decision procedure for free Abelian (commutative) groups:

1� ! 1 x � y $ y � x
x � 1 ! x x � (y � z) $ y � (x � z)
1 � x ! x (x � y) � z ! x � (y � z)

(x�)� ! x x � (x� � z) ! z
x � x� ! 1 (y � x)� ! x� � y� :

Those equations used in both directions have a two-headed arrow. To decide validity of an equation s= t,
the lexicographic path ordering is extended to a total ordering that includes any constants appearing in s or
t. The double-headed rules are then used only in a direction that reduces in this ordering. The equation is
valid if and only if both s and t have the same normal form. ut

De�nition22 Completable Simpli�cation Ordering. A reduction ordering is a completable simpli�ca-
tion ordering if it can be extended to a reduction ordering that is total on ground terms (in which any two
distinct terms|made up of function symbols and constants occurring in the given equations|are compara-
ble).

Such orderings have the property that every term is strictly greater than its proper subterms. Examples
include the empty ordering, the lexicographic path ordering with a partial or total precedence, and the
polynomial path ordering.

Theorem23 [33][40]. Suppose R is a �nite convergent system for axioms E and � is a completable sim-
pli�cation ordering for which all rules in R decrease. Any fair completion strategy will generate a �nite
convergent system for E (not necessarily identical to R).

If R is canonical and the strategy performs all compositions and collapses, then, by Theorem 16, com-
pletion will actually produce R.

The e�ciency of completion depends on the number of critical pairs deduced. In general, an equation
s= t is redundant if there exist proofs Qi of equations ui�1=ui, i = 1; : : : ; n, such that u0 = s, un+1 = t,
u � u0; : : : ; un+1, and the proof s u! t from which the critical pair was formed is greater than each of the
Qi in some well-founded ordering � on equational proofs. (The proof ordering � must have the property
that a proof decreases by replacing a subproof with one involving terms that are all smaller vis-a-vis the
reduction ordering � supplied to completion.)

The following can be shown by induction with respect to �:

Theorem24 [40]. For any fair completion strategy, if at some point all non-redundant critical pairs between
persisting rules have been considered and no equation persists forever in E, then the (�nite or in�nite) set
of rules persisting in R is convergent.

For the Group Fragment, the critical pair y=(�0)+y, obtained by rewriting (�0)+(0+y) with 0+x!x
and (�x)+ (x+ y)! y, is redundant since (�0)+ (0+ y) is greater than each of the terms in the alternative
proof y 0 + y (�0) + y.

Various techniques have been used in practice to check for redundancy. In particular, a critical pair
can be ignored if the variable part of either of the rules involved becomes reducible. Experimental results
that give some indication of the utility of such redundancy criteria have been reported, particularly in the
associative-commutative case described in the next section.

5 Validity

In addition to its use for generating canonical systems to serve as decision procedures for the given axioms,
completion may also be used as an equational theorem prover. Classical forward reasoning systems work from
the axioms, \expanding" the set of established formul� by inferring new ones from old ones. Completion
may be viewed as an inference engine that also \contracts" formul� by constantly rewriting them, making
forward reasoning practical. The potentially in�nite set of rules and equations generated by completion are
used to simplify the two sides of the equation in question. Rules are used in the indicated direction only,
while equations are used in whichever direction reduces the term it is applied to in the given ordering. An
identity is proved when both sides reduce via rules and equations to the identical term.

For completeness of this theorem-proving methodology, we require a completable ordering.

Theorem25 [75][44][33]. Suppose s= t is a theorem of E. For any fair completion strategy starting with
E and a completable simpli�cation ordering, at some point s and t will rewrite to the identical term using
the generated rules and equations.

The word problem in arbitrary equational theories can always be semi-decided in this way. With an
empty ordering, completion amounts to ordinary paramodulation of unit equations; with more of an ordering,
completion can be more e�ective, by reducing the number of allowed inferences and increasing the amount
of simpli�cation that may be performed without loss of completeness.

Example 8 Distributive Lattices. With axioms:

x ^ x = x x _ x = x
x ^ y = y ^ x x _ y = y _ x

(x ^ y) ^ z = x ^ (y ^ z) (x _ y) _ z = x _ (y _ z)
(x _ y) ^ x = x (x ^ y) _ x = x

x _ (y ^ z) = (x ^ y) _ (x ^ y) ;

and a lexicographic path ordering that makes meet bigger than join, completion eventually generates:

x ^ (y _ z) ! (x _ y) ^ (x _ y) :

ut

The above method can be re�ned to ignore critical pairs that have di�erent rewrite proofs, each depending
on the relative ordering of terms substituted for variables.

6 Satis�ability

We turn now from questions of validity to satis�ability.
If ground terms are joinable whenever they are convertible, we say the system is ground conuent. If it

is, in addition, terminating, then it's ground convergent:

De�nition26 Ground Convergence. A system is ground convergent if every ground (variable-free) term
always rewrites to a unique normal form.

Ground convergence is a reasonable property to expect from a rewrite system, like Insertion Sort, used
as a program. Such programs compute the value of a ground term by rewriting it to its unique normal form.

De�nition27 Narrowing. A term s narrows to a term t, symbolized s ; t, if t = s�[r�], for some
non-variable subterm s0 of s, renamed rule l! r in R, and most general uni�er � of s0 and l.

By ;� we denote the reexive-transitive closure of this narrowing relation.

Theorem28 [48]. If R is a rewrite system, � is an irreducible substitution (that is, x� is irreducible for all
variables x), and s� !� t, then there exists a term u such that s ;� u and u is at least as general as t.

A term u is at least as general as a term t if there is a substitution � such that t� = u.
Thus, narrowing can be used with such systems to solve equational goals; a solution is a substitution �

for which s� has normal form t. Narrowing a goal eval(p; hx; 0; 0i) with the Interpreter, where p is some �xed
program, will �nd all inputs x that lead to various �nal triples. The uni�ers of each step are composed to
get the solution to the original goal.

Theorem29 [8]. If R is a ground convergent rewrite system and s� !� t, then there exist terms u and v
such that s ;� u, t !� v, and u is at least as general as v.

Example 9 List Append. With the program

append (nil ; y) ! y
append (cons(x; z); y) ! cons(x; append (z; y))

the goal append (x; y) generates all lists x and the result of appending them to y. For example, append (x; y);
y with x 7! nil. ut

Without convergence, reducible solutions are lost. Variations on narrowing include: normal narrowing in
which terms are rewritten to normal form before narrowing; basic narrowing in which the substitution part
of prior narrowings is not subsequently narrowed; top-down narrowing in which terms are decomposed from
top down to identify necessary narrowings; left-to-right narrowing in which the leftmost possible narrowing
is performed at each step; other restrictions obtain all solutions only in special cases.

7 Associativity and Commutativity

Many axioms are di�cult to handle by rewriting. We could not, for example, include the non-terminating
rule x+ y! y + x in a rewrite-system decision procedure. Instead, we can restrict application of the rule to
commute only in the direction that decreases the term in some given ordering. For example, we might allow
2+1 to be replaced by 1+2, but not vice-versa, as done in Sect. 5. Another approach is to use commutativity
only to enable the application of other rules. For example, we would apply a rule x + 0!x to 0 + 1, as
well as to 1+ 0. In the associative-commutative (AC) case, this means that u[s]!u[r�] whenever s is equal
under AC to an instance l� of the left-hand side of some rule l! r (that is, s and l� may have arguments
to AC symbols permuted). Thus, AC-matching must be used to detect applicability of rules in this case for
AC-rewriting.

To better handle these problematic identities, reasonably e�cient special-purpose completion procedures
have been designed. For instance, the completion procedure given in the previous section may be modi�ed
in the following ways to handle AC symbols:

1. An equation s= t is oriented only if s0 � t0 for any AC variants s0 of s and t0 of t. This ensures that each
AC-rewrite reduces the term it is applied to.

2. AC-uni�cation is used to generate critical pairs instead of ordinary uni�cation. This means that we look
at the set of most general substitutions that allow a left-hand side to be AC-equal to a nonvariable
subterm of another left-hand side, and get a critical pair for each such ambiguously rewritable term.

3. AC-rewriting is used for composition, collapsing, and simpli�cation.
4. Any equation between AC-variants is deleted.
5. An additional expansion operation is needed: whenever a new equation f(s; t)= r is formed, where f

is an AC symbol and f(s; t) 6� r, an extended equation f(s; f(t; z))= f(r; z) is added, too, for some
new variable z. This ensures that f(s; t)= r can be used even when rearrangement is needed to get an
instance of its left-hand side.

Recall that the Chamelions do not terminate. But if we turn any of the rules around, they do! Though
the result is not conuent, AC completion can be used to generate a conuent system of rules and equations:
Start o� with the three rules as unoriented equations, and use an ordering with red > yellow > green. The
oriented equations are:

red yellow ! green green
red red ! green yellow

red green ! yellow yellow :

Notice how the second rule acts contrary to the \real" chamelions. The extended rules are:

yellow (red z) ! green (green z)
red (red z) ! green (yellow z)

green (red z) ! yellow (yellow z) ;

and their commutative variants. The green red and extended yellow red rules produce an critical pair
yellow (yellow yellow)= green (green green), which gets oriented from left to right:

yellow (yellow yellow) ! green (green green) :

The complete system reduces the initial state and the monochrome states to distinct normal forms. (Which?)
Since the system is Church-Rosser, there is no way to get from the initial arrangement of chamelions to one
in which they are of uniform color, no matter which way any of the rules are used.

Example 10 Abelian Groups II. The AC-completion procedure, given

x � 1 = x
x � x� = 1 ;

where � is AC, and a polynomial ordering in which �0(x � y) = �0(x) + �0(y) + 1, �0(x�) = 2�0(x), and
�0(1) = 1, generates the following decision procedure for Abelian groups:

1� ! 1 x � 1 ! x
(x�)� ! x (y � x)� ! x� � y�

x � x� ! 1 x � (x� � z) ! z :

The last rule is a composed version of the extension x � (x� � z)! 1 � z of x � x�!1. This extended rule,
together with with (y0 � x0)�!x�0 � y

�

0 , forms a critical pair

(x2 � z1)
�(x2 � (x1 � x2)

� � z2)
� = (z1 � z2)

�

via AC-uni�er x 7! x1 � x2, z 7! z1 � z2, y0 7! x1 � z1, and x0 7! x2 � x
� � z2. Both sides reduce to z�2 � z

�

1 .

With this system, both sides of any identity reduce by AC-rewriting to AC-equal terms. ut

The Grecian Urn may also be viewed as an AC-rewriting system. Beans are rearranged until the pair
to be removed are adjacent. Extended with rules l z ! r z for each original bean rule ;! r, this is system
is conuent. For instance, black white ! white and the extended rule white white z ! black z , rewrite a
black white white bean arrangement to white white and black black , respectively, both of which rewrite to
black . This means that the normal form is independent of the order in which rules are applied. If there are
an even number of white beans, they can be paired and reduced to black, and then all the black beans reduce
to one; if there are an odd number, the leftover white bean swallows all remaining blacks.

Example 11 Ring Idempotents. The ring axioms

x+ 0 = x x(y + z) = (xy) + (xz)
x+ (�x) = 0 (y + z)x = (yx) + (zx)

x+ y = y + x (x+ y) + z = x+ (y + z)
(xy)z = x(yz) ;

plus
aa = a bb = b cc = c
(a+ b+ c)(a+ b+ c) = a+ b+ c ;

can be completed, with an appropriate ordering, to a convergent AC system that includes the rules

ba ! �(ab) + �(bc) +�(cb) +�(ac) +�(ca)
bca ! abc+ acb+ cab+ cac+ cbc+ ab+ ab+ ac+ ac+ cb+ cb+ bc+ ca :

The normal forms of this system include (besides inverses and sums) all monomials (the order of factors
matters) not containing aa, bb, cc, ba, or bca. ut

8 Conditional Rewriting

A conditional rewrite system is a collection of rules of the form

u1= v1 ^ � � � ^ un= vn j l ! r ;

meaning that terms u[l�], containing an instance of left-hand side l, rewrite to u[r�] only when all the
conditions ui�= vi� hold. The most popular operational semantics for such a system require both sides of
each condition to rewrite to the same normal form before an instance of l may be rewritten.

Example 12 Conditional Append. To get the avor of this expanded notion of rewriting, consider the system

null (nil) ! true
null(cons(x; y)) ! false
car(cons(x; y)) ! x
cdr(cons(x; y)) ! y
append (nil ; y) ! y

null(x)= false j append (x; y) ! cons(car(x); append (cdr (x); y))

and its derivation

append (cons(a; cons(b; nil)); cons(c; nil))
�

! cons(a; cons(b; cons(c; nil))) :

ut

De�nition30. A conditional rewrite system is orthogonal if each variable occurs at most once in a left-hand
side of each rule, one side of each condition in each rule is a ground normal form, and no left-hand side uni�es
with a renamed non-variable subterm of any other left-hand side or with a proper subterm of itself.

Theorem31 [56]. Every orthogonal conditional rewrite system is conuent.

This de�nition of orthogonality could be weakened to allow overlaps when the conjunction of the con-
ditions of the overlapping rules cannot be satis�ed by the rules of the system. This is the case with the
Conditional Append example, since only the last two rules overlap, but null(nil) can never be false.

For non-orthogonal systems, another approach is required. Under certain circumstances terminating sys-
tems are conuent if all their critical pairs are joinable, but we need a suitable notion of critical pair:

De�nition32 Conditional Critical Pair. Let R be a conditional rewrite system. The conditional equa-
tion c� ^ p�) s�[r�] = t� is a conditional critical pair of R if c j l! r and p j s! t are conditional
rules of R, l uni�es via most general uni�er � with a nonvariable subterm of s and c�^p� is satis�able in R.

Theorem33 [59]. If no left-hand side uni�es with a nonvariable proper subterm of a left-hand side, and if
every critical pair is joinable, then the system is conuent.

A conditional critical pair p) s= t is joinable if s� and t� are joinable for all � satisfying p.

De�nition34 Decreasing Systems. A conditional system is decreasing if there exists a well-founded or-
dering � containing the rewrite relation ! and which satis�es two additional requirements: (a) � has the
subterm property f(: : : ; s; : : :) � s, and (b) l� � c� for each rule c j l! r and substitution �.

Decreasing systems exactly capture the �niteness of recursive evaluation of terms. The notion needs to
be extended, however, to cover systems (important in logic programming) with variables in conditions that
do not also appear in the left-hand side.

Theorem35 [57][59]. A decreasing system is conuent (hence, convergent) if and only if there is a rewrite
proof of s�= t� for each critical pair c) s= t and substitution � such that c� holds.

Conditional Append is decreasing.

Example 13 Stack. The following is a decreasing conditional rewrite system:

top(push(x; y)) ! x
pop(push(x; y)) ! y
empty?(empty) ! true

empty?(push(x; y)) ! false
empty?(x)= false j push(top(x); pop(x)) ! x :

ut

Completion has been extended to conditional equations, with \ordered" conditional critical pairs turned
into rules only if they are decreasing.

9 Programming

Rewrite systems are readily used as a programming language. If one requires of the programmer that all
programs be terminating, then rewriting may be used as is to compute normal forms.With ground conuence,
one is assured of their uniqueness.

Many programs (interpreters, for example) do not always terminate. Still, we would want to compute
normal forms whenever they exist. Conuent systems have at most one normal form per input term. To �nd
the unique normal form for orthogonal systems, we use the following strategy for choosing the point at which
to apply a rule:

De�nition36 Outermost Rewriting. A rewriting step s! t is outermost if no rule applies at a symbol
closer to the root symbol (in the tree representation of terms).

Theorem37 [64]. For any orthogonal system, if no outermost step is perpetually ignored, the normal
form|if there is one|will be reached.

Outermost rewriting of expressions is used to compute normal forms in Combinatory Logic.
In this way, orthogonal systems provide a simple, pattern-directed (�rst-order) functional programming

language, in which the orthogonal conditional operator

if (true; x ; y) ! x
if (false; x ; y) ! y

can also conveniently be incorporated. Various strategies have been developed for e�cient computation in
special cases. Moreover, orthogonal systems lend themselves easily to parallel evaluation schemes.

Conditional equations provide a natural bridge between functional programming, based on equational
semantics, and logic-programming, based on Horn clauses. Interpreting de�nite Horn clauses p_:q1_: : :_:qn
as conditional rewrite rules, q1= true ^ � � � ^ qn = true j p! true gives a system satisfying the constraints
of Theorem 33, because predicate symbols are never nested in the \head" (p) of a clause. Furthermore, all
critical pairs are joinable, since all right-hand sides are the same (true).

Solving existential queries for conditional equations corresponds to the logic-programming capability
of resolution-based languages like Prolog. Goals of the form s!? t can be solved by a linear restriction of
paramodulation akin to narrowing (for unconditional equations) and to the SLD-strategy in Horn-clause logic.
If s and t are uni�able, then the goal is satis�ed by any instance of their most general uni�er. Alternatively,
if there is a (renamed) conditional rule c j l! r such that l uni�es with a nonvariable (selected) subterm of
s via most general uni�er �, then the conditions in c� are solved, say via substitution �, and the new goal
becomes s��!? t��.

Suppose we wish to solve

append (x; y)
?
! x

using Conditional Append. To apply the conditional rule, we need �rst to solve null(x)=? false using the
(renamed) rule null(cons(u; v))! false, thereby narrowing the original goal to

cons(car(cons(u; v)); append (cdr(cons(u; v)); y))
?
! cons(u; v) :

Straightforward rewriting reduces this to

cons(u; append (v; y))
?
! cons(u; v) ;

to which the �rst rule for append applies (letting v be nil), giving a new goal cons(u; y)!? cons(u; v). Since
the two terms are now uni�able, this process has produced the solution x 7! cons(u; nil) and y; v 7! nil .

For ground conuent conditional systems, any equationally satis�able goal can be solved by the method
outlined above. Some recent proposals for logic programming languages, incorporating equality, adopt such
an operational mechanism.

Simpli�cation via terminating rules is a very powerful feature, particularly when de�ned function symbols
are allowed to be arbitrarily nested in left-hand sides (which is not permitted with orthogonal rules). Assum-
ing ground convergence, any strategy can be used for simpli�cation, and completeness of the goal-solving
process is preserved. One way negation can be handled is by incorporating negative information in the form
of rewrite rules which are then used to simplify subgoals to false. Combined with eager simpli�cation, this
approach has the advantage of allowing unsatis�able goals to be pruned, thereby avoiding some potentially
in�nite paths. Various techniques are also available to help avoid some superuous paths that cannot lead
to solutions.

10 Theorem Proving

We have already seen how completion is used to prove validity of equations in equational theories (that is,
truth in all models) and also how narrowing and related methods can be used to solve equational goals in
conditional and unconditional theories. In this section we will see how to handle the non-equational case.

Completion can be used to prove validity of Horn clauses in Horn theories by writing each clause :q _ p
as an equation p ^ q= q, and each unit clause p as p= true. The completeness of completion for equational
reasoning means that an equational proof will be found for any atomic formula, the validity of which follows
from a given set of clauses, all expressed as just indicated (plus the Boolean equation true ^ x = x).

One approach to extending rewriting methods to the full �rst-order predicate calculus is to add inference
rules for restricted forms of paramodulation to refutational theorem provers. An ordering of terms and
formul� is used to restrict inferences and to allow simpli�cation.

Alternatively, one can apply completion to the full �rst-order case by employing Boolean algebra. The
following AC system does the trick:

x _ true ! true x � true ! x
x _ false ! x (x � y) _ z ! (x _ z) � (y _ z)

x_ y $ y _ x x _ (y _ z) $ (x _ y) _ z
x � y $ y � x x � (y � z) $ (x � y) � z
x _ x ! x x _ x _ y ! x _ y
x � x ! true x � x � y ! y ;

where _ is \inclusive or" and � is \equivalent". With this system, all propositional tautologies reduce to
true and contradictions, to false. To prove validity of a formula, one Skolemizes its negation (and renames
variables) to obtain a universally quanti�ed formula, and expresses it using the above connectives. Then, were
the original formula true, there would be an equational proof of the contradiction true = false. Completion
can be used to discover such a proof.

As a very simple example, consider the theorem

[9xp(x) ^ 8x (p(x) � p(f(x)))] � 9xp(f(f(x))) :

Its Skolemized negation is equivalent to the following equations:

p(f(f(x))) = false
p(a) = true

p(x) _ p(f(x)) = p(f(x)) ;

where a is a Skolem constant. These equations entail the contradiction:

true = true _ [p(f (a)) _ p(f (f (a)))] = p(a) _ [p(f(a)) _ p(f(f(a)))] =
[p(a) _ p(f(a))] _ p(f(f(a))) = p(f(a)) _ p(f(f(a))) = p(f(f(a))) = false :

For program veri�cation, one often needs to prove that an equation or formula holds in the standard
(initial) model, rather than in all models. Such proofs typically require the use of induction. Rewriting
techniques have been applied to inductive proofs of equations, establishing s= t in the standard model of
the axioms by proving that s� and t� are joinable for all substitutions � of ground terms constructed from
function symbols and constants appearing in the axioms. For example, the equation append (x; nil)=x is
true for all lists x, but is not true in all other models of the List Append axioms. The equation black x = x
is true for all strings of beans x, but does not follow equationally from AC and the Grecian Urn rules.

De�nition38 Cover Set. Let R be a rewrite system and � be a reduction ordering containing its rewriting
relation !. A cover set S for conjecture c is a set of equations such that every ground instance c� is equal
(in the equational theory of R) to an instance e� of an equation e in S, such that c� � e�.

De�nition39 Rewriting Induction. Let R be a rewrite system and � be a reduction ordering containing
its rewriting relation!. Let c be a conjecture and S, its cover set. Rewriting induction is the rule of inference
which allows one to conclude that every ground instance of c is true for R by showing that each case e in S
follows (equationally) from R and instances c� of the hypothesis that are smaller than e vis-�a-vis �.

In practice, a conjecture s= t is proved by expanding it into cases s�1= t�1, : : : , s�n= t�n, for some
\covering" substitutions �1; : : : ; �n, rewriting each case to be proved at least once using R, then attempting
to construct rewrite proofs for them, freely using the inductive hypothesis s= t. The rewrite step guarantees
that all instances of the hypothesis used in the rewrite proofs are smaller than the case of the conjecture
under consideration. For ground convergent systems, narrowing at a particular position in a term is often a
convenient method of generating cover sets and taking the requisite �rst step.

Theorem40 [89]. Rewriting induction is sound.

Example 14 Reversal of Lists. Consider the following canonical system for reversing lists:

reverse(nil) ! nil
reverse(cons(x; y)) ! append (reverse(y); cons (x; nil))

append (nil ; x) ! x
append (x; nil) ! x

append (cons(x; y); z) ! cons(x; append (y; z))
append (append (x; y); z) ! append (x; append(y; z)) ;

and suppose one wishes to prove that

reverse(append (x; y)) = append (reverse(y); reverse(x)) :

All cases are covered by x 7! nil and x 7! cons(x1; x2), since ground terms containing reverse or append
reduce to lists built of cons and nil. The corresponding two instances of the conjecture form a cover set. For
x = nil , we need reverse(y) = reverse(y), which is trivially the case. For x = cons(x1; x2), we need to show

append (reverse(append (x2; y)); cons(x1; nil)) =
append (reverse(y); append (reverse(x2); cons(x1; nil))) :

The left side rewrites by hypothesis to

append (append (reverse(y); reverse(x2)); cons(x1; nil)) ;

which rewrites to the right-hand side. ut

In more complicated cases, additional lemmata may need to be added to R along the way. Completion
can help �nd them.

Unlike traditional inductive proof methods, rewriting induction is guaranteed to disprove a false conjec-
ture. (Of course, no method can prove all true ones.)

De�nition41 Ground Reducibility. A term s is ground reducible with respect to a rewrite system if all
its ground instances s are rewritable.

Theorem42 [80][84]. Ground reducibility is decidable for �nite rewrite systems, but undecidable for AC
systems.

Theorem43 [34][88][37]. An equation c is not an inductive theorem of a ground convergent rewrite system
R if and only if deducing critical pairs by unifying left-hand sides of rules in R on the larger (rather, not
necessarily smaller) side of conjectures derived in this way from c produces an equation u= v such that the
larger of u and v is ground irreducible by R, or else u and v are distinct, but neither is ground reducible.

The set of critical pairs between R and c is always a (generous) cover set, unless c is obviously not an in-
ductive theorem, as described in the above theorem. Simpli�cation by rules and lemmasmay be incorporated
into the proof procedure.

11 Future Research

Rewriting is an active �eld of theoretical and applied research. Current research topics include the following:

Typed Rewriting Under reasonable assumptions, virtually everything we have done extends to the multisorted
case. Adding subsorts allows functions to be completely de�ned without having to introduce error elements
for when they are applied outside their intended domains. But deduction in such \order-sorted" algebras
presents some di�culties. The most popular approach is to insist that the sort of the right-hand side is
always contained in that of the left.

AC termination The methods we have described for proving termination of ordinary rewriting are of only
limited applicability when associativity and commutativity are built into the rewriting process. Special
techniques have been devised to handle this case, which is of great practical importance.

Higher-order rewriting In the previous sections, we worked with �rst-order terms only. Since the typed
lambda calculus is terminating and conuent, some researchers have been looking at ways of combining
it with �rst-order rewriting in such a way as to preserve convergence, thereby endowing rewriting with
higher-order capabilities.

Hierarchical systems From the point of view of software engineering, it is important that properties of rewrite
programs, like termination and conuence, be modular. That is, we would like to be able to combine two
terminating systems, or two convergent systems, and to have the same properties hold for the combined
system. This is not true in general, not even when one system makes no reference to the function symbols
and constants used in the other. Finding useful cases when systems may safely be combined is a current area
of study.

Concurrency Conuent systems, in general, and orthogonal systems, in particular, are natural candidates
for parallel processing, since rewrites at di�erent positions are more or less independent of each other. Work
is being undertaken on language and implementation issues raised by this possibility.

In�nite rewriting Rewriting can be extended to apply to structures other than the �nite terms we have
considered. Indeed, graph rewriting has important applications, since graphs allow one to represent structure-
sharing, as well as in�nite terms.

First-order theorem proving In Sect. 10, we saw how to simulate resolution-like inference equationally. A
productive area of research is the application of ideas from rewriting to more traditional refutational the-
orem provers. Using orderings on terms and formul� helps restrict deduction and increase the amount of
simpli�cation and redundancy elimination that can be incorporated without forfeiting completeness.

Acknowledgments

I thank Jieh Hsiang for his comments. This work was supported in part by the National Science Foundation
under Grants CCR-90-07195 and CCR-90-24271 and by a Lady Davis fellowship at the Hebrew University
of Jerusalem.

Selected Bibliography

The hundred items in this bibliography were chosen from among English language references on rewriting.
They are divided into sections, corresponding to Sections 1{11 above, and are listed chronologically within
section. (Beware that chronology oftentimes does not reect the dependency of ideas, particularly as only the

most polished versions are listed here.) Included are most books and surveys, plus many articles that were
historically important, represent major stepping stones, or present the current state of research. Surveys
are starred. Related topics, including the Lambda Calculus, Combinatory Logic, uni�cation theory, and
resolution theorem proving, have been omitted, as have descriptions of implementations. Several new books
and surveys are in the o�ng.

1. Rewriting

1. Saul Gorn. Handling the growth by de�nition of mechanical languages. In Spring Joint Computer Con-
ference, pages 213{224, Philadelphia, PA, Spring 1967.

*2. G�erard Huet and Derek C. Oppen. Equations and rewrite rules: A survey. In R. Book, editor, Formal
Language Theory: Perspectives and Open Problems, pages 349{405. Academic Press, New York, 1980.

*3. David R. Musser and Deepak Kapur. Rewrite rule theory and abstract data type analysis. In Jacques
Calmet, editor, Proceedings of the European Computer Algebra Conference (Marseille, France), volume
144 of Lecture Notes in Computer Science, pages 77{90, Berlin, April 1982. Springer-Verlag.

*4. Jean-Pierre Jouannaud and Pierre Lescanne. Rewriting systems. Technology and Science of Informatics,
6(3):181{199, 1987. French version: \La r�e�ecriture", Technique et Science de l'Informatique (1986), vol.
5, no. 6, pp. 433{452.

5. Benjamin Benninghofen, Susanne Kemmerich, and Michael M. Richter. Systems of Reductions, volume
277 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1987.

6. Matthias Jantzen. Conuent String Rewriting, volume 14 of EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, Berlin, 1988.

*7. J�urgen Avenhaus and Klaus Madlener. Term rewriting and equational reasoning. In R. B. Banerji, editor,
Formal Techniques in Arti�cial Intelligence: A Sourcebook, pages 1{41. Elsevier, Amsterdam, 1990.

*8. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B: Formal Methods and Semantics, chapter 6, pages 243{320.
North-Holland, Amsterdam, 1990.

*9. W. Wechler. Reductions, volume 25 of EATCS Monographs on Theoretical Computer Science, chapter 2,
pages 89{133. Springer-Verlag, Berlin, 1991.

*10. Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, edi-
tors, Handbook of Logic in Computer Science, volume 2, chapter 1, pages 1{117. Oxford University Press,
Oxford, 1992.

2. Termination

11. Zohar Manna and Steven Ness. On the termination of Markov algorithms. In Proceedings of the Third
Hawaii International Conference on System Science, pages 789{792, Honolulu, HI, January 1970.

12. G�erard Huet and Dallas S. Lankford. On the uniform halting problem for term rewriting systems. Rap-
port laboria 283, Institut de Recherche en Informatique et en Automatique, Le Chesnay, France, March
1978.

13. Dallas S. Lankford. On proving term rewriting systems are Noetherian. Memo MTP-3, Mathematics
Department, Louisiana Tech. University, Ruston, LA, May 1979. Revised October 1979.

14. Sam Kamin and Jean-Jacques L�evy. Two generalizations of the recursive path ordering. Unpublished
note, Department of Computer Science, University of Illinois, Urbana, IL, February 1980.

15. NachumDershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 17(3):279{301,
March 1982.

*16. NachumDershowitz. Termination of rewriting. J. Symbolic Computation, 3(1&2):69{115, February/April
1987. Corrigendum: 4, 3 (December 1987), 409{410.

17. Hubert Comon. Solving inequations in term algebras (Preliminary version). In Proceedings of the Fifth
Annual IEEE Symposium on Logic in Computer Science, pages 62{69, Philadelphia, PA, June 1990.

18. Jean-Pierre Jouannaud and Mitsuhiro Okada. Satis�ability of systems of ordinal notations with the sub-
term property is decidable. In J. Leach Albert, B. Monien, and M. Rodr��guez Artalejo, editors, Proceed-
ings of the Eighteenth EATCS Colloquium on Automata, Languages and Programming (Madrid, Spain),
volume 510 of Lecture Notes in Computer Science, pages 455{468, Berlin, July 1991. Springer-Verlag.

19. Nachum Dershowitz and Charles Hoot. Topics in termination. In C. Kirchner, editor, Proceedings of the
Fifth International Conference on Rewriting Techniques and Applications (Montreal, Canada), Lecture
Notes in Computer Science, Berlin, June 1993. Springer-Verlag.

3. Conuence

20. M. H. A. Newman. On theories with a combinatorial de�nition of `equivalence'. Annals of Mathematics,
43(2):223{243, 1942.

21. A. Selman. Completeness of calculii for axiomatically de�ned classes of algebras. Algebra Universalis,
2:20{32, 1972.

22. Barry Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the Association for
Computing Machinery, 20(1):160{187, January 1973.

23. J. Staples. Church-Rosser theorem for replacement systems. In J. Crossley, editor, Algebra and Logic,
volume 450 of Lecture Notes in Mathematics, pages 291{307, Berlin, West Germany, 1975. Springer-
Verlag.

*24. George M. Bergman. The Diamond Lemma for ring theory. Advances in Mathematics, 29(2):178{218,
August 1978.

25. G�erard Huet. Conuent reductions: Abstract properties and applications to term rewriting systems. J.
of the Association for Computing Machinery, 27(4):797{821, October 1980.

26. Jan Willem Klop. Combinatory Reduction Systems, volume 127 of Mathematical Centre Tracts. Mathe-
matisch Centrum, Amsterdam, 1980.

27. Yoshihito Toyama. On the Church-Rosser property for the direct sum of term rewriting systems. J. of
the Association for Computing Machinery, 34(1):128{143, January 1987.

4. Completion

28. Donald E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263{297. Pergamon Press, Oxford, U. K., 1970.
Reprinted in Automation of Reasoning 2, Springer-Verlag, Berlin, pp. 342{376 (1983).

29. Yves M�etivier. About the rewriting systems produced by the Knuth-Bendix completion algorithm. In-
formation Processing Letters, 16(1):31{34, January 1983.

30. Phillipe Le Chenadec. Canonical Forms in Finitely Presented Algebras. Pitman-Wiley, London, 1985.
*31. Bruno Buchberger. History and basic features of the critical-pair/completion procedure. J. Symbolic

Computation, 3(1&2):3{38, February/April 1987.
32. Deepak Kapur, D. R. Musser, and P. Narendran. Only prime superpositions need be considered for the

Knuth-Bendix procedure. J. Symbolic Computation, 4:19{36, August 1988.
33. Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion without failure. In H. A��t-Kaci

and M. Nivat, editors, Resolution of Equations in Algebraic Structures, volume 2: Rewriting Techniques,
chapter 1, pages 1{30. Academic Press, New York, 1989.

*34. Nachum Dershowitz. Completion and its applications. In H. A��t-Kaci and M. Nivat, editors, Resolution
of Equations in Algebraic Structures, volume 2: Rewriting Techniques, chapter 2, pages 31{86. Academic
Press, New York, 1989.

35. Pierre Lescanne. Completion procedures as transition rules + control. In M. Diaz and F. Orejas, editors,
Proceedings of the Conference on Theory and Practice of Software Development, volume 351 of Lecture
Notes in Computer Science, pages 28{41, Berlin, 1989. Springer-Verlag.

*36. A. J. J. Dick. An introduction to Knuth-Bendix completion. Computing Journal, 34(1):2{15, February
1991.

37. Leo Bachmair. Canonical Equational Proofs. Birkh�auser, Boston, 1991.
*38. David A. Du�y. Knuth-Bendix Completion, chapter 7, pages 147{175. Wiley, Chichester, 1991.
39. Ursula Martin and Michael Lai. Some experiments with a completion theorem prover. J. Symbolic Com-

putation, 13(1):81{100, January 1992.
40. Leo Bachmair and Nachum Dershowitz. Equational inference, canonical proofs, and proof orderings. J.

of the Association for Computing Machinery, to appear.

5. Validity

41. T. Evans. On multiplicative systems de�ned by generators and relations, I. Proceedings of the Cambridge
Philosophical Society, 47:637{649, 1951.

42. J. R. Slagle. Automated theorem-proving for theories with simpli�ers, commutativity, and associativity.
J. of the Association for Computing Machinery, 21(4):622{642, 1974.

43. G�erard Huet. A complete proof of correctness of the Knuth-Bendix completion algorithm. J. Computer
and System Sciences, 23(1):11{21, 1981.

44. Jieh Hsiang and Micha�el Rusinowitch. On word problems in equational theories. In T. Ottmann, editor,
Proceedings of the Fourteenth EATCS International Conference on Automata, Languages and Program-
ming (Karlsruhe, West Germany), volume 267 of Lecture Notes in Computer Science, pages 54{71,
Berlin, July 1987. Springer-Verlag.

45. Gerald E. Peterson. Solving term inequalities. In Proceedings of the Eighth National Conference on Ar-
ti�cial Intelligence, pages 258{263, Boston, MA, July 1990.

*46. Nachum Dershowitz. Rewriting methods for word problems. In M. Ito, editor, Words, Languages &
Combinatorics (Proceedings of the International Colloquium, Kyoto, Japan, August 1990), pages 104{
118, Singapore, 1992. World Scienti�c.

6. Satis�ability

47. M. Fay. First-order uni�cation in an equational theory. In Proceedings of the Fourth Workshop on Auto-
mated Deduction, pages 161{167, Austin, TX, February 1979.

48. Jean-Marie Hullot. Canonical forms and uni�cation. In R. Kowalski, editor, Proceedings of the Fifth
International Conference on Automated Deduction (Les Arcs, France), volume 87 of Lecture Notes in
Computer Science, pages 318{334, Berlin, July 1980. Springer-Verlag.

49. Nachum Dershowitz and G. Sivakumar. Solving goals in equational languages. In S. Kaplan and J.-P.
Jouannaud, editors, Proceedings of the First International Workshop on Conditional Term Rewriting
Systems (Orsay, France), volume 308 of Lecture Notes in Computer Science, pages 45{55, Berlin, July
1987. Springer-Verlag.

50. W. Nutt, P. R�ety, and G. Smolka. Basic narrowing revisited. J. Symbolic Computation, 7(3 & 4):295{318,
1989.

51. Alexander Bockmayr, Stefan Krischer, and Andreas Werner. An optimal narrowing strategy for gen-
eral canonical systems. In M. Rusinowitch, editor, Proceedings of the Third International Workshop on
Conditional Rewriting Systems (Pont-a-Mousson, France, July 1992), volume 656 of Lecture Notes in
Computer Science, Berlin, January 1993. Springer-Verlag.

7. AC-Completion

52. Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equational theories. J. of
the Association for Computing Machinery, 28(2):233{264, April 1981.

53. Jean-Pierre Jouannaud and H�el�ene Kirchner. Completion of a set of rules modulo a set of equations.
SIAM J. on Computing, 15:1155{1194, November 1986.

54. Leo Bachmair and Nachum Dershowitz. Completion for rewriting modulo a congruence. Theoretical
Computer Science, 67(2 & 3), October 1989.

55. Hantao Zhang and Deepak Kapur. Unnecessary inferences in associative-commutative completion pro-
cedures. Mathematical Systems Theory, 23:175{206, 1990.

8. Conditional Rewriting

56. J. A. Bergstra and Jan Willem Klop. Conditional rewrite rules: Conuency and termination. J. of Com-
puter and System Sciences, 32:323{362, 1986.

57. St�ephane Kaplan. Simplifying conditional term rewriting systems: Uni�cation, termination and conu-
ence. J. Symbolic Computation, 4(3):295{334, December 1987.

58. Peter Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin, 1988.

59. Nachum Dershowitz, Mitsuhiro Okada, and G. Sivakumar. Canonical conditional rewrite systems. In
Proceedings of the Ninth Conference on Automated Deduction (Argonne, IL), volume 310 of Lecture
Notes in Computer Science, pages 538{549, Berlin, May 1988. Springer-Verlag.

60. St�ephane Kaplan and Jean-Luc R�emy. Completion algorithms for conditional rewriting systems. In
H. A��t-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures, volume 2: Rewriting
Techniques, pages 141{170. Academic Press, Boston, 1989.

*61. Jan Willem Klop and Roel C. de Vrijer. Extended term rewriting systems. In S. Kaplan and M. Okada,
editors, Proceedings of the Second International Workshop on Conditional and Typed Rewriting Systems
(Montreal, Canada, June 1990), volume 516 of Lecture Notes in Computer Science, pages 26{50, Berlin,
1991. Springer-Verlag.

62. Peter Padawitz. Reduction and narrowing for Horn clause theories. Computing Journal, 34(1):42{51,
February 1991.

63. Harald Ganzinger. A completion procedure for conditional equations. J. Symbolic Computation, 11:51{81,
1991.

9. Programming

64. Michael J. O'Donnell. Computing in systems described by equations, volume 58 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, 1977.

65. John V. Guttag, Ellis Horowitz, and David R. Musser. Abstract data types and software validation.
Communications of the ACM, 21(12):1048{1064, December 1978.

66. Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and Jos�e Meseguer. Principles of OBJ2.
In Brian Reid, editor, Conference Record of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, pages 52{66, New Orleans, LA, January 1985. Association for Computing
Machinery.

67. Nachum Dershowitz. Computing with rewrite systems. Information and Control, 64(2/3):122{157,
May/June 1985.

68. Michael J. O'Donnell. Equational Logic as a Programming Language. MIT Press, Cambridge, MA, 1985.
69. Uday S. Reddy. On the relationship between logic and functional languages. In D. DeGroot and

G. Lindstrom, editors, Logic Programming: Functions, Relations, and Equations, pages 3{36. Prentice-
Hall, Englewood Cli�s, NJ, 1986.

70. Joseph A. Goguen and Jos�e Meseguer. Eqlog: Equality, types, and generic modules for logic program-
ming. In D. DeGroot and G. Lindstrom, editors, Logic Programming: Functions, Relations, and Equa-
tions, pages 295{363. Prentice-Hall, Englewood Cli�s, NJ, 1986.

71. Nachum Dershowitz and David A. Plaisted. Equational programming. In J. E. Hayes, D. Michie, and
J. Richards, editors, Machine Intelligence 11: The logic and acquisition of knowledge, chapter 2, pages
21{56. Oxford Press, Oxford, 1988. To be reprinted in Logical Foundations of Machine Intelligence,
Horwood.

72. Ste�en H�olldobler. Foundations of Equational Logic Programming, volume 353 of Lecture Notes in Arti-
�cial Intelligence. Springer-Verlag, Berlin, West Germany, 1989.

73. Nachum Dershowitz and Mitsuhiro Okada. A rationale for conditional equational programming. Theo-
retical Computer Science, 75:111{138, 1990.

74. G�erard Huet and Jean-Jacques L�evy. Computations in orthogonal rewriting systems, I and II. In J.-L.
Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of Alan Robinson, pages 395{443.
MIT Press, Cambridge, MA, 1991.

10. Theorem Proving

75. Dallas S. Lankford. Canonical inference. Memo ATP-32, Automatic Theorem Proving Project, University
of Texas, Austin, TX, December 1975.

76. Dallas S. Lankford and A. Michael Ballantyne. The refutation completeness of blocked permutative nar-
rowing and resolution. In Proceedings of the Fourth Workshop on Automated Deduction, pages 53{59,
Austin, TX, February 1979.

77. David R. Musser. On proving inductive properties of abstract data types. In Proceedings of the Seventh
ACM Symposium on Principles of Programming Languages, pages 154{162, Las Vegas, NV, 1980.

78. G�erard Huet and Jean-Marie Hullot. Proofs by induction in equational theories with constructors. J. of
Computer and System Sciences, 25:239{266, 1982.

79. Gerald E. Peterson. A technique for establishing completeness results in theorem proving with equality.
SIAM J. on Computing, 12(1):82{100, February 1983.

80. David A. Plaisted. Semantic conuence tests and completion methods. Information and Control,
65(2/3):182{215, May/June 1985.

81. Jieh Hsiang. Refutational theorem proving using term-rewriting systems. Arti�cial Intelligence, 25:255{
300, March 1985.

82. Etienne Paul. Equational methods in �rst order predicate calculus. J. Symbolic Computation, 1(1):7{29,
March 1985.

83. Deepak Kapur and David R. Musser. Proof by consistency. Arti�cial Intelligence, 31(2):125{157, Febru-
ary 1987.

84. Deepak Kapur, Paliath Narendran, and Hantao Zhang. On su�cient completeness and related properties
of term rewriting systems. Acta Informatica, 24(4):395{415, August 1987.

85. Jean-Pierre Jouannaud and Emmanuel Kounalis. Automatic proofs by induction in equational theories
without constructors. Information and Computation, 81(1):1{33, 1989.

86. Wolfgang K�uchlin. Inductive completion by ground proof transformation. In H. A��t-Kaci and M. Nivat,
editors, Resolution of Equations in Algebraic Structures, volume 2: Rewriting Techniques, pages 211{244.
Academic Press, New York, 1989.

87. Hubert Comon and Pierre Lescanne. Equational problems and disuni�cation. J. Symbolic Computation,
7:371{425, 1989.

88. Laurent Fribourg. A strong restriction of the inductive completion procedure. J. Symbolic Computation,
8(3):253{276, 1989.

89. Uday S. Reddy. Term rewriting induction. In M. Stickel, editor, Proceedings of the Tenth International
Conference on Automated Deduction (Kaiserslautern, West Germany), volume 449 of Lecture Notes in
Computer Science, Berlin, July 1990. Springer-Verlag.

90. Nachum Dershowitz and Eli Pinchover. Inductive synthesis of equational programs. In Proceedings of the
Eighth National Conference on Arti�cial Intelligence, pages 234{239, Boston, MA, July 1990. AAAI.

91. Nachum Dershowitz. Ordering-based strategies for Horn clauses. In Proceedings of the Twelfth Interna-
tional Joint Conference on Arti�cial Intelligence, pages 118{124, Sydney, Australia, August 1991.

92. Deepak Kapur, Paliath Narendran, and Hant�ao Zhang. Automating inductionless induction using test
sets. J. Symbolic Computation, 11:83{112, 1991.

11. Future Research

93. J. A. Goguen, C. Kirchner, and J. Meseguer. Concurrent term rewriting as a model of computation. In
R. Keller and J. Fasel, editors, Proceedings of Graph Reduction Workshop (Santa Fe, NM), volume 279
of Lecture Notes in Computer Science, pages 53{93. Springer-Verlag, 1987.

94. Yoshihito Toyama, Jan Willem Klop, and Hendrik Pieter Barendregt. Termination for the direct sum of
left-linear term rewriting systems. In Nachum Dershowitz, editor, Proceedings of the Third International
Conference on Rewriting Techniques and Applications (Chapel Hill, NC), volume 355 of Lecture Notes
in Computer Science, pages 477{491, Berlin, April 1989. Springer-Verlag.

*95. A. J. J. Dick and P. Watson. Order-sorted term rewriting. Computing Journal, 34(1):16{19, February
1991.

96. Nachum Dershowitz, St�ephane Kaplan, and David A. Plaisted. Rewrite, rewrite, rewrite, rewrite,
rewrite,: : : . Theoretical Computer Science, 83(1):71{96, 1991.

*97. Nachum Dershowitz, Jean-Pierre Jouannaud, and Jan Willem Klop. Open problems in rewriting. In
R. Book, editor, Proceedings of the Fourth International Conference on Rewriting Techniques and Appli-
cations (Como, Italy), volume 488 of Lecture Notes in Computer Science, pages 445{456, Berlin, April
1991. Springer-Verlag.

98. Jean-Pierre Jouannaud and Mitsuhiro Okada. Executable higher-order algebraic speci�cation languages.
In Proceedings of the Sixth IEEE Symposium on Logic in Computer Science, 1991.

99. Leo Bachmair. Associative-commutative reduction orderings. Information Processing Letters, 43(1):21{
27, August 1992.

*100. Jieh Hsiang, Helene Kirchner, Pierre Lescanne, and Michael Rusinowitch. The term rewriting approach
to automated theorem proving. J. Logic Programming, 14(1&2):71{99, October 1992.

