
Deductive and Inductive Synthesis of

Equational Programs

|Draft|

Nachum Dershowitz and Uday S. Reddy
Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

Net: fnachum,reddyg@cs.uiuc.edu

August 3, 1992

Abstract

An equational approach to the synthesis of functional and logic program is taken. Typically,

the synthesis task involves �nding equations which make the given speci�cation an inductive

theorem. To synthesize such programs, induction is necessary. We formulate e�cient procedures

for inductive proof as well as program synthesis using the framework of ordered rewriting. We

also propose heuristics for generalizing from a sequence of equational consequences. These

heuristics handle cases where the deductive process alone is not adequate to come with a

program.

1 Introduction

In a seminal piece of work, Burstall and Darlington [BD77] showed how functional programs,
expressed as equations, can be transformed to more e�cient ones using equational reasoning. Given
a speci�cation of a new function to be synthesized, they use the original program equations forwards
(\unfolding") and backwards (\folding") in a controlled fashion and obtain a recursive program for
the new function. The method has come to be called the \fold{unfold" method and forms an
important component in reasoning about functional programs. (Cf. [BW88]). It has also been
adapted to reasoning about logic programs, see, for example, [Dev90, Hog76, TS84]. Signi�cant
e�ort has been devoted to building automated systems based on the methodology [Dar81, Fea79,
Fea82]. Partial evaluation systems, which have been increasingly successful in recent times [ACM91,
BEJ88], are also based on the unfold-fold method. In building reliable general-purpose program
synthesis systems, however, several issues arise:

� How to determine if the transformed programs are correct? (While the soundness is immediate
from the technique, termination and completeness are still concerns.)

� How to control the application of equations? (Naive application of equations leads to large
search spaces. The controlled application used by Burstall-Darlington does not handle all
problems.)

1

� How does the method generalize to forms of programs (and logics) other than equational
ones? (For instance, conditional equations, Horn clauses or �rst-order clauses.)

� What role does (mathematical) induction play in the synthesis process?

� How does the method relate to other techniques of deductive synthesis, like [BH84, MW80,
Smi90]?

In attempting to answer such questions, we are led to the framework of term rewriting, which
is the best known technique of controlled equational reasoning. Term rewriting was �rst used in
automated reasoning by Knuth and Bendix [KB70] for solving word problems in equational theories.
Two fundamental operations underlie the technique: rewriting and superposition. Rewriting uses a
terminating rewrite system to rewrite a term to a normal form. Superposition uses two given rewrite
rules to deduce a new rewrite rule. The combination of the two techniques achieves an extremely
high performance in equational reasoning. In recent work, term rewriting techniques have been
extended to deal with unoriented equations [BDP89, HR87, MN90], conditional equations [BK86,
Gan91, Kap87, KR87], and �rst-order reasoning [BR91, HD83, HR86, NO91, ZK88]. See [Der89,
DJ90, HO80] for accessible surveys of this rapidly developing area.

The contributions of this paper are three fold: First, we enrich the basic equational reasoning
techniques used by Burstall and Darlington with additional structure to obtain rewrite-based
reasoning. Second, we propose (mathematical) induction techniques to de�ne and ensure the cor-
rectness of synthesized programs. Third, we demonstrate how inductive generalization techniques
supplement the basic deductive techniques to achieve an automated program synthesis system. This
paper consolidates and extends our previous work reported in [Der82a, DP90, Red89, Red90b].
In the cited work, we treat rewrite systems, and, here, generalize the techniques to unoriented
equations using the notion of \ordered rewriting". The application of ordered rewriting to program
synthesis and inductive proofs has also been considered in [Bac88, Bel91a, Gra89]. [FF86] compares
rewriting techniques with the plain equational methods of Burstall and Darlington.

2 Overview of program synthesis

Assume that we wish to synthesize a program for some function f and are given a speci�cation
S of the function f together with an axiomatization E of the problem domain. There are two
ways to think about the program synthesis process. First, we can try to generate all interesting
logical consequences of S [E in the hope of eventually obtaining some set of equations which
serves as a program for f . Second, we can try to reduce the speci�cation S into simpler equations,
using E, in the hope of eventually obtaining equations simple enough to serve as a program for
f . Apparently, the second view is more goal-directed than the �rst. However, in the context of
equational reasoning, both the views produce similar results modulo issues of search space.

For example, consider the following axiomatization of list append and reverse functions:

append(X; nil) = X (1)

append(nil; Y) = Y (2)

append(A �U; Y) = A � append(U; Y) (3)

append(append(X; Y); Z) = append(X; append(Y; Z)) (4)

2

reverse(nil) = nil (5)

reverse(A � U) = append(reverse(U); A � nil) (6)

We would like to synthesize a more e�cient program for reverse using a new function rev, speci�ed
by:

rev(X; Y) = append(reverse(X); Y) (7)

By noting that the subterm reverse(X) can be simpli�ed using the de�ning equations of reverse,
if X is instantiated to nil and A � U respectively, we obtain:

rev(nil; Y) = append(reverse(nil); Y)
= append(nil; Y)
= Y

rev(A � U; Y) = append(reverse(A �U); Y)
= append(append(reverse(U); A � nil); Y)
= append(reverse(U); append(A � nil; Y))
= append(reverse(U); A � Y)
= rev(U;A � Y)

All the steps use axioms to replace \equals by equals", except for the last step which uses the original
speci�cation for a smaller instance. (Such use of the original speci�cation is termed \folding"
in [BD77].) Note also that all these steps can be viewed as either forward or backward reasoning
steps. In the forward reasoning view, we depend on an appropriate synthesis procedure to generate
only \interesting" consequences of the speci�cation. We also need some other mechanism to verify
whether a correct (terminating and complete) program is obtained. In the backward reasoning view,
we think of these same steps as reducing the speci�cation to simpler equations. The last folding
step needs to be justi�ed more carefully in this view. Because our task is to produce program
equations which verify the speci�cation, we cannot use the speci�cation arbitrarily in the synthesis
process. The justi�cation is that, in producing the program for the instance X = A � U , we can
assume the speci�cation as an inductive hypothesis for the smaller instance X = U . Thus, folding
steps correspond to induction steps in the backward reasoning view. For the price of carrying out
this additional inductive reasoning, we obtain an important bene�t: the synthesized program is
guaranteed to be correct.

Yet another useful equational consequence is derivable from the speci�cation. Notice that the
right hand side of the speci�cation is simpli�able by the �rst axiom if Y is instantiated to nil:

rev(X; nil) = append(reverse(X); nil)
= reverse(X)

Oriented backwards, as reverse(X) = rev(X;Nil), this equation gives us a new program for reverse
in terms of the synthesized function rev . This is a forward reasoning step which has no justi�cation
in the backward reasoning view. Our program synthesis procedure mixes forward and backward
reasoning steps|as well as heuristic steps|to achieve a viable and automatic procedure.

Many program synthesis tasks involve conditional reasoning in addition to equational reasoning.
Even though term rewriting techniques have been extended to conditional equations as well as
�rst-order clauses, we do not wish to get into these technical areas in this paper. Instead, we will
use an equational axiomatization of boolean algebras and the trick that U � V is equivalent to

3

U ^ true = U

U ^ false = false

U ^ U = U

U , true = U

U , U = true

(U , V) ^W = (U ^W), (V ^W), W

:U = U , false

U _ V = (U ^ V), U , V

U � V = (U ^ V), U

U ^ V = V ^ U
(U ^ V) ^W = U ^ (V ^W)

U , V = V , U

(U , V), W = U , (V , W)
U _ V = V _ U

(U _ V) _W = U _ (V _W)

Figure 1: Equational axiomatization of propositional calculus

(U ^ V) = V where = denotes equality, in this case, of truth values, that is, logical equivalence.
All predicate symbols are treated as function symbols and so are the logical connectives :, ^, _,
�, and ,. Figure 1 gives an equational axiomatization of propositional calculus in this notation.
(Cf. [HD83].)

Consider the following axiomatization of addition, multiplication and comparison of natural
numbers in the unary number system, wherein the number n is represented as a sum of n 1's:

M + 0 = M (8)

M +N = N +M (9)

(M +N) +K = M + (N +K) (10)

M � 0 = 0 (11)

M � (N + 1) = M �N +M (12)

M �M = true (13)

M +K � N +K = M � N (14)

M �M +N = true (15)

We want to synthesize a program for natural number division speci�ed by

div(X; Y + 1; Q;R) = R � Y ^X � (Y + 1)�Q+ R (16)

We proceed as in the rev example, and instantiate Q to 0 and N + 1 to use the �rst two de�ning

4

axioms of � respectively:

div(X; Y + 1; 0; R) = R � Y ^X � (Y + 1)� 0 +R

= R � Y ^X � 0 + R

= R � Y ^X � R+ 0
= R � Y ^X � R

div(X; Y + 1; N + 1; R) = R � Y ^X � (Y + 1)� (N + 1) + R

= R � Y ^X � (Y + 1)�N + (Y + 1) + R

= R � Y ^X � ((Y + 1)�N + R) + (Y + 1)

For the �rst case, we can instantiate R to X for using the domain fact (13) and Y to X + Z

for using the axiom (15). This gives the more compact version of the equation:

div(X;X + Z + 1; 0; X) = true

For the second case, we can instantiateX to U+Y +1 for using the axiom (14) with the substitution
[M 7! U; K 7! Y + 1; N 7! (Y + 1)�N +R]. This gives:

div(U + Y + 1; Y + 1; N + 1; R) ! R � Y ^ U � (Y + 1)�N +R

! div(U; Y + 1; N;R)

where the last step is a folding step using the speci�cation. The two equations

div(X;X + Z + 1; 0; X) ! true

div(U + Y + 1; Y + 1; N + 1; R) ! div(U; Y + 1; N;R)

can be viewed as a logic program for division. (See [Der85] for a discussion of how logic programs
are treated in the equational framework.)

3 Equational programs

First, we brie
y explain our notation. By an alphabet of function symbols �, we mean a set of
function symbols together with an arity associated with each. The set of terms over � (respecting
arities) is denoted T� (called the set of ground terms). The set of (free) terms over � using variables
from a set X is denoted T�(X). We assume a countable set of variables X and refer to members
of T�(X) as simply terms, or free terms, for clari�cation.

An equation is a pair of terms written as r = s. Given a set of equations E and terms t and u,
E ` t = u if and only if there are terms t0, t1, : : : , tn (n � 0) such that

t � t0 =E t1 =E : : : =E tn � u

where =E is the \replacing equals by equals" relation of E. A sequence such as the one exhibited
is called an \equational proof". The standard relational notations =+

E
and =�

E
are used to denote

the transitive and re
exive-transitive closure of =E respectively. Thus, E ` t = u i� t =�

E
u.

To treat equations as programs, we need the notion of a rewrite relation. This is de�ned in
terms of a well-founded order with certain extra properties stated below. Let � be such an order.
We say that t rewrites to u and write t !E u if t =E u and t � u. The idea is that an equation is

5

used for rewriting only in one direction, the direction that achieves reduction by the order �. Since
� is well-founded, every rewrite sequence t0 !E t1 ! : : : is �nite and results in a normal form
(which may not be unique). Thus, our equational programs are always terminating by de�nition.
In equation t = u is said to have a rewrite proof if there are terms t0, t1, : : : , tn and u0, u1, : : : um
such that

t � t0 !E t1 !E : : :!E tn � um E : : : E u1 E u0 � u

where E is the relational inverse of!E . Thus, a rewrite proof is an equational proof that rewrites
both t and u to some common normal form. As usual,!+

E
and!�

E
are used to denote the transitive

and re
exive-transitive closures of!E respectively. In addition, $E denotes the symmetric closure
of !E , i.e., t$E u i� t =E u and either t � u or u � t.

If r = s is an equation in E such that r � s, we also write it as r ! s. The idea is that such an
equation is always used in one direction: to rewrite instances of r to the corresponding instances
of s. The equation r ! s is often called a \rewrite rule" to emphasize this fact, but note that all
our equations are rewrite rules in a more general sense. They are always used for rewriting along a
reducing direction. But, this may be to rewrite an instance of r to s in some cases, and to rewrite
an instance of s to r in others. For example, consider the commutativity equation x+ y = y + x.
Since the equation is symmetric, orienting it in any direction results in in�nite rewrite sequences.
On the other hand, speci�c instances of the equation, t + u = u + t, may achieve a reduction in
one direction or the other. For instance, using a lexicographic order for �, t+ u � u + t i� t � u.
In particular, we ensure that the order � is total on ground terms. So, all ground instances of
equations are obtainable by rewriting.

The conventional term rewriting theory deals with rewrite systems, i.e., sets of equations r ! s

which are all oriented in a particular direction. The idea that unoriented equations can also be used
for rewriting provided they are used along a reducing direction was proposed in [BDP89, HR87].
This form of rewriting is often called ordered rewriting. The results of this paper generalize our
previous results [Der82a, Der85, DP90, Red89, Red90b] to the framework of ordered rewriting.

The mixing of programs and program synthesis with termination issues needs some explanation.
Requiring that the rewrite relation be always included in a well-founded order has two consequences.
First, it ensures that programs terminate along all evaluation paths. While this is a reasonable
requirement for most common programs, some applications also require programs which do not
terminate but make progress inde�nitely. Programs in lazy functional languages [BW88] often
exhibit this property. We envisage that the techniques of this paper will eventually be extended
to such programs by suitable relaxation of the termination requirements. (Cf. [DK89].) A second
consequence of the termination of rewrite relations is that the automated reasoning procedures have
some heuristic guidance about the direction they should employ in reducing problems. Without
such guidance, the reasoning procedures need to explore too many possibilities resulting in large
search spaces and much redundancy. It will be seen that the well-founded orders used for the
rewrite relations play in essential role in the problem speci�cation for program synthesis as well as
in the synthesis process itself.

3.1 Orderings

We now state the required properties of the well-founded order �. A well-founded order > on
ground terms is called a complete simpli�cation ordering if

� it is total on ground terms,

6

� it has the replacement property (s > s0 implies t[s] > t[s0]), and

� it has the subterm property (t > s whenever s is a proper subterm of t).

The order � is de�ned on terms by t � u i� t� > u� for all ground substitutions �, where > is a
complete simpli�cation ordering. Note that� also inherits the replacement and subterm properties.
In addition, it also has the substitution property: t � u implies t� � u� for all substitutions �.
(In practice, it su�ces to use some simpli�cation ordering on free terms for �, provided it has the
substitution property and t � u implies t� > u� for all ground substitutions �.)

Of particular interest in program synthesis is the lexicographic path ordering [Der82b, KL80].
Assume a total order on function symbols referred to as a \precedence order". Then, the lexico-
graphic path order � is de�ned inductively by t � f(t1; : : : ; tm) � g(u1; : : : ; un) � u i� t � ui for
all i and

� ti � u,

� f > g in the precedence order, or

� f = g, m = n and ht1; : : : ; tmi is greater than hu1; : : : ; umi by the lexicographic extension of
�.

In practice, one also speci�es the sequence in which the arguments of a function symbol must be
compared lexicographically (so that one obtains
exibility in ordering the arguments of a function
symbol). Note that the lexicographic path order satis�es all the requirements above. It has the
replacement, subterm and substitution properties and it is total on ground terms. Thus, the
lexicographic path order serves as both the � order on free terms and > order on ground terms.

We illustrate the path order with examples. Consider the equations (1{6) and the precedence
order

reverse > append > � > nil

With the corresponding lexicographic path order, every left hand side is greater than the corre-
sponding right hand side. For example, considering (1),

append(X; nil)� X

because X is a subterm of append(X; nil). For the equation (4),

append(append(X; Y); Z) � append(X; append(Y; Z))

because happend(X; Y); Zi is greater than hX; append(Y; Z)i. (append(X; Y) � X by the subterm
property.) For the equation (6),

reverse(A � U) � append(reverse(U); A � nil)

because reverse > append in the precedence order and reverse(A �U)� reverse(U) and reverse(A �
U) � A � nil (reverse > �, reverse > nil and reverse(A � U) � A).

To handle the speci�cation (7) of rev , we must extend the precedence order to include rev . A
good heuristic in choosing precedences is that a symbol f may be greater than all the symbols

7

which may be introduced during the evaluation of f(t1; : : : ; tn). Since the evaluation of rev(t; u)
must not introduce reverse and append , but may introduce � and nil, we choose the order

reverse > append > rev > � > nil

Note that
append(reverse(X); Y) � rev(X; Y)

by this extension. Thus, the speci�cation (7) cannot be used left-to-right in evaluating terms of the
form rev(t; u). This de�nes the problem for the program synthesis procedure. It must �nd simpler
equations which can be used to evaluate rev(t; u).

3.2 Programs

An equational theory E is said to be con
uent with respect to � if, whenever t =�

E
u, there is a

rewrite proof of t = u. It is said to be ground con
uent if this property holds for all ground terms.
Note that con
uence implies that all terms have unique normal forms. Similarly, ground con
uence
implies that all ground terms have unique normal forms.

De�nition 1 An equational program is an equational theory E together with a complete simpli�-
cation ordering > such that E is ground con
uent.

The ground con
uence requirement means that the results of programs are deterministic.
Ground con
uence is not a decidable property. On the other hand, con
uence is decidable (for

decidable orderings) and it forms a su�cient condition for ground con
uence. So, in practice, we
use the following method. We divide equational theories into parts: axioms and inductive theorems .
The axioms serve to de�ne the function symbols and are used in evaluation of terms. The inductive
theorems form additional knowledge about the problem domain which may be used in program
synthesis. If the set of axioms is ground con
uent then the full theory with inductive theorems is
also ground con
uent. (Cf. Section 5.) The ground con
uence of axioms can then be ensured by
checking con
uence. For example, considering the equational theory (1{6), the equations (1) and
(3) de�ne append , and the equations (5) and (6) de�ne reverse. The rest are inductive theorems.
Since no two left hand sides (greater sides) of the axioms have a common instance, they form a
con
uent theory and, so, the whole theory is ground con
uent.

An equational program is said to be complete with respect to a set of ground input terms �
and a set of ground output terms 	 if the normal form of every t 2 � belongs to 	. The output
terms are typically formed of constructor symbols, such as nil and � in the case of list axioms.
Sometimes, we want model equivalences over constructor terms in which case only a subset of
constructor terms may be included in 	. For example, considering the axioms (8{10) for + in the
unary number system, 	 includes 0, 1 and m + 1 where m 2 	. All other terms, such as m + 0,
0 +m, m + (n + k) must be reducible. The set of input terms is often the set of all terms, but
occasionally we want to model partial functions or partial axiomatizations of total functions. For
example, the natural number axioms (13{15) only model the true cases of comparisons. It is not,
in general, possible to specify the sets � and 	 in a mechanically veri�able fashion, but [Der85]
gives methods for some important cases.

8

4 Superposition and case-based reasoning

An important component in the informal synthesis procedure outlined in Section 2 is the instan-
tiation of equations for the various cases of their variables. Two questions to be answered in the
formalization of the procedure are how to �nd the instantiations which are useful for synthesis,
and how to verify that the chosen instantiations are complete. The informal procedure already
gives an indication of the answer to the �rst question. We should choose instantiations which make
further simpli�cations possible. For example, in the synthesis of rev , we chose instantiations which
enable simpli�cation by the axioms (1) and (3). In this section, we de�ne formal methods for such
instantiation.

The conventional inference rule for equational reasoning is paramodulation [RW69]:

PM
l = r t[s] = u

t[r]� = u�
if � = mgu(l; s)

where mgu denotes the most general uni�er. Thus, uni�cation of the subterm s with l suggests how
the variables in s should be instantiated so as to apply the equation l = r. However, unrestricted use
of paramodulation generates too many consequences not all of which are useful. For instance, the
right hand side of the speci�cation (7) can be uni�ed with the right hand sides (or some subterms)
of all the axioms (1{4) and (6).

Since our equational theories are ground con
uent with respect to the complete reduction order
>, we can restrict attention to only certain uses of paramodulation. Suppose � is a ground
substitution that is more speci�c than �. Then the e�ect of a paramodulation inference is to
simplify the two step proof t[r]� =E t[l]� =E u� to a single step t[r]� =E u�. (Note that l� � s�

by virtue of � being more speci�c than the mgu �.) But, if t[r]� > t[l]� or u� > t[l]�, then the
initial proof is already a rewrite proof and nothing is achieved by the new equation. Thus, we only
need to use the paramodulation inference if there is a ground substitution � such that t[l]� > t[r]�
and t[s]� > u�. In terms of the order �, this means t[l]� 6� t[r]� and t[s]� 6� u�. In other words
t[l]� is maximal in the equation t[l]� = t[r]� and t[s]� is maximal in t[s]� = u�. The restriction of
paramodulation to this condition is called ordered superposition:

Sup
l = r t[s] = u

t[r]� = u�
if s not variable, � = mgu(l; s), t[l]� 6� t[r]� and t[s]� 6� u�

A conclusion of ordered superposition is called an ordered critical pair. The conventional notions of
superposition and critical pair (without the \ordered" pre�x) use the stronger restrictions l � r and
t[s] � u. Having made this distinction, we drop the \ordered" quali�cation for our more general
concepts from now on.

As an example, consider the superposition of the associativity axiom (4) with the other list
axioms. We obtain the following critical pairs:

(i) append(X;Z) = append(X; append(nil; Z)) from (1) and (4)
(ii) append(X; Y) = append(X; append(Y; nil)) from (1) and (4)
(iii) append(Y; Z) = append(nil; append(Y; Z)) from (2) and (4)
(iv) append(A � append(U; Y); Z) = append(A � U; append(Y; Z)) from (3) and (4)

The superposition inference can be repeatedly used on an equational theory to transform
all proofs of the form t[r]� E t[l]� !E u� to simpler proofs. This process, together with

9

simpli�cation of the resulting equations, is called (ordered) completion. Since proofs of the above
form are the only obstacles to con
uence, the result of completion is a ground con
uent system
that de�nes unique normal forms for all ground terms. See [BDP89, MN90] for a discussion of
completion.

In applying equational reasoning to program veri�cation and synthesis, we have a �xed equa-
tional program. The equation l = r used in the superposition inference belongs to the �xed program,
and need not be treated as a premise of the ifnerence. The specialization of superposition to �xed
equational theories is called linear superposition:

LSup
t[s] = u

t[r]� = u�
if s not variable, (l = r) 2 E, � = mgu(l; s), t[l]� 6� t[r]� and t[s]� 6� u�

An important fact that is often overlooked is that the conclusion t[r]� = u� is, in fact, logically
equivalent to t[s]� = u� given the equational theory E. Thus, the only reason for writing the
inference rule in this direction is the specialization involved in the substitution �. If we consider a
su�cient number of �'s to cover all possible ground instances, then we can invert the direction of
the inference rule.

De�nition 2 A set of substitutions � is said to be inductively complete if for every ground
substitution �, there exist � 2 � and ground substitution � such that x� !�

E
x�� for all variables

x.

Notice that it is adequate to restrict attention to irreducible �'s in this de�nition because other
substitutions reduce to irreducible ones. Using this notion, we can de�ne a rule for case-based
reasoning as follows:

Cases
t[r1]�1 = u�1 : : : t[rk]�k = u�k

t[s] = u

if fli = rigi � E, �i = mgu(li; s), t[li]�i 6� t[ri]�i, t[s]�i 6� u�i and f�igi is inductively complete.
That is, given a set of critical pairs of t[s] = u whose overlapping substitutions form an inductively
complete set, we can infer the equation itself. The soundness property of the inference is as follows:

Lemma 3 Given a Cases inference, if all the ground instances of the premises have rewrite proofs
in E, then all the ground instances of the conclusion have rewrite proofs in E.

For example, to prove the associativity property, append(append(X; Y); Z) = append(X; append(Y; Z)),
as an inductive theorem of (1{3), it is adequate to prove the critical pairs (iii) and (iv). Note that
the substitutions [X 7! nil], and [X 7! A � U] form an inductively complete set. Similarly, to
synthesize a program from the speci�cation rev(X; Y) = append(reverse(X); Y), it is adequate to
consider the cases:

rev(nil; Y) = append(nil; Y)
rev(A � U; Y) = append(append(reverse(U); A � nil); Y)

The two cases are obtained by superposition with (5) and (6) respectively, by overlapping at the
subterm reverse(X) of the right hand side of the speci�cation. (Note that the right hand side is the
greater side in the speci�cation equation.) Again, the substitutions form an inductively complete
set.

The above Cases rule considers superposition at a single position of the given equation. It is
also possible to choose any position on either side of the equation for critical pairs, using ideas
from [Bac88].

10

De�nition 4 A set of equations C is said to be a cover set for an equation t = u (with respect
to E and >) if, for every irreducible ground substitution �, either t� � u� or there exist equation
r = s in C and ground substitution � such that (t� = u�)!+

E
(r� = s�).

By (t� = u�)!+
E
(r� = s�), we mean either t� !+

E
r� and u� !+

E
s� or t� !+

E
s� and u� !+

E
r� .

The general rule for Cases uses a cover set of t = u as premises.

Cases
r1 = s1 : : : rk = sk

t = u

where fri = sigi is a cover set of critical pairs of t = u. Note that the members of a cover set
cannot simply be instances of the conclusion equation. They should incorporate at least one step
of reduction using the equations of E. This de�nes a notion of \progress" for the inference. To
formalize this, we de�ne a notion of complexity measures for proofs. With each ground proof step
r� = s�, we associate a complexity measure c(r�; s�):

c(r�; s�) =

8><
>:

(fr�g; r; s�) if r � s

(fs�g; s; r�) if s � r

(fr�; s�g;?;?) otherwise

The complexity triples of proof steps are compared by the lexicographic combination of three
orderings: multiset extension of > for the �rst component, the containment ordering1 > for the
second component and > for the third component. The complexity of a proof t1 = : : : = tn is the
multiset of the individual proof step complexities, except for the rewrite steps using E which have
no cost. Let >P denote the multiset extension of the above lexicographic ordering.

Lemma 5 Given a Cases inference of the above form, for every ground instance t� = u� of the
conclusion, there is an equational proof using the premises and the equational theory E whose
complexity is strictly less than c(t�; u�).

Proof: By induction on c(t�; u�). If � is a reducible substitution with � !+
E
�0, use the inductive

hypothesis for t�0 = u�0. If � is irreducible, there is a critical pair ri = si such that t� !E ri,
u� � si, t� maximal in t� = u�, and � subsumes �. (The last property by the de�nition of cover
set.) Let � be the ground substitution such that �� = �. Then, there is a proof of the form
t� !E ri� = si� with complexity fc(ri�; si�)g. By considering the various cases, it may be veri�ed
that fc(t�; u�)g >P fc(ri�; si�)g. 2

An important question is how to test whether a given set of critical pairs is a cover set. Several
methods are possible. First, a a set of terms called test set may be computed such that every
irreducible ground term is an instance of some member of the test set [Pla85]. To check if a given
set of critical pairs is a cover set, it is enough to see if each combination of terms from the test set
is covered in the overlap substitutions. For instance, for the three-rule append system, fnil; A �Ug
is a test set. This veri�es that the critical pairs (iii) and (iv) above form a cover set.

Another method is to use a ground reducibility test. An equation t = u is said to be ground
reducible if, for every ground instance t� = u�, either t� is identical to u� or one of them is
reducible. In this case, the set of all critical pairs is a cover set. (If one of them is reducible then
the larger one is. Suppose t� is the larger term. If it is reducible by some equation in E, then t� is

1
s > t i� s is an instance of a subterm of t (and s 6= t).

11

covered by a critical pair between the equation in E and t = u.) The set of all critical pairs is often
too large a cover set. For instance, to prove the associativity property append(append(X; Y); Z) =
append(X; append(Y; Z)), the cover set need include the critical pairs (iii) and (iv), but not (i) and
(ii). The extraneous critical pairs included in the cover set generate other critical pairs so that the
proof procedures based on such cover sets may not terminate. A useful optimization that has been
suggested in [Fri86, K�uc89] is to consider a subterm s of either t or u that is ground reducible. (A
term is ground reducible if every ground instance is reducible.) Then superposition at the subterm
s is enough to obtain a cover set.

Kapur, et al. [KNZ86] suggest another optimization. Note that it is enough to restrict attention
to irreducible �'s in the de�nition of \ground reducible". Suppose t = u is not ground reducible.
Then, there is some irreducible ground substitution � such that t� and u� are distinct and they
are both not reducible by E. Thus, whenever t = u is not ground reducible, it equates some
pair of irreducible ground terms. They devise an \irreducible ground term" test set to detect this
situation. This form of a test set has the property that the equation t = u reduces an irreducible
ground term if and only if it reduces some member of the test set. The advantage of this method is
that the test set is computed only once and reused in each Cases inference. However, this method
still requires all critical pairs to be computed for the cover set.

Other methods for testing ground reducibility may found in [JK86, KZ85, BK89].

5 Induction

In synthesizing a program from a speci�cation, we must ensure that the derived program veri�es the
speci�cation. That is, the speci�cation must be an inductive theorem of the derived program. So,
inductive reasoning is an integral part of program synthesis. In this section, we brie
y outline our
inductive reasoning procedure based on term rewriting induction. This method was �rst presented
in [Red90b] and is based on the \induction by completion" method studied in [Bac88, Der85, Fri86,
JK86, KM84, K�uc89, Mus80]. The latter is also referred to by \inductionless induction" or \proof
by consistency".

An equation t = u is said to be an inductive consequence of an equational theory E, written
E j=ind t = u, if every ground instance t� = u� follows from E. When E is ground con
uent (with
respect to >), this is equivalent to requiring that t� = u� have a rewrite proof using E. Note that
adding such an inductive theorem to E does not a�ect its ground con
uence. This is one way to
build ground con
uent equational theories.

The proof of E j=ind t = u involves three kinds of steps: we can simplify t = u using the
equations in E, we can instantiate it using the Cases rule of Section 4, or we can use t = u as an
inductive hypothesis in proving one or more of its cases. Notice that, whenever we use the Cases
rule, we always reduce a maximal side of t = u. Since simpli�cation and Cases always reduce the
ground instances of the equation (by the well-founded order >), the original equation t = u can be
used for simpli�cation of the cases as if it were an \ordinary" equation. This method di�ers from
the conventional induction method in that one never needs to check that the inductive hypothesis
is used for a smaller instance than the one being proved. The proof method itself takes care of
the condition. Such implicit application of induction may also be found in a variety of program
veri�cation methods such as Hoare logic (especially, the treatment of recursion [Hoa71]) and �xed
point induction [Man74, Sco76].

We make these ideas precise by the following inference procedure. We formulate it in terms of

12

judgments of the form H ` C where C is a set of inductive theorems and H is the set of inductive
hypotheses which may be assumed in the proof of C.

Axiom
H ` ;

Delete
H ` C

H ` C [ft = tg

Simplify
H ` C [ft0 = ug
H ` C [ft = ug

if t!E t0

Cases
H [ft = ug ` C [C0

H ` C [ft = ug
if C0 is a cover set of critical pairs of t = u

Induct
H ` C [ft0 = ug
H ` C [ft = ug

if t!H t0 by l = r in H and t > l

Subsume
H ` C

H ` C [ft[l]� = t[r]�g
if (l = r) 2 H

Hypothesize
H ` C [ft = ug

H ` C

Induct and Subsume both apply an inductive hypothesis, but slightly more general treatment is
possible for rewrites than for unoriented equational steps. Essentially, a hypothesis can be used
for rewriting any number of times, but an unoriented use is possible at most once for each case.
The procedure is used by starting with a goal of the form ; ` C0 and using some inference rule
backwards in each step. If, eventually, a goal of the form H ` ; is obtained, the initial theorems
in C0 are all proved and H contains a useful representation of the theorems as well as any lemmas
generated in the process.

What if a goal of the form H ` ; cannot be obtained? That means that there is an equation
t = u in C for which none of the rules Delete through Subsume are applicable. This means, in
particular, that there is no cover set of critical pairs C0 for t = u. We have already seen that if
t = u is ground reducible then the set of all critical pairs with E would be a cover set. So, we
conclude that t = u is not ground reducible, i.e., there is a ground instance t� = u� such that t�
and u� are distinct normal forms by E. Since E is assumed to be ground con
uent, t� = u� does
not follow from E and, hence, t = u is not an inductive theorem. Thus, whenever an equation
t = u cannot be eliminated from C, we have disproved the equation.

Consider proving the associativity property of append using the rewrite program (1{3). We
start with the goal:

` fappend(append(X; Y); Z) = append(X; append(Y; Z))g

Using Cases, we can reduce it to

fappend(append(X; Y); Z) ! append(X; append(Y; Z))g `(
append(Y; Z) = append(nil; append(Y; Z));

A � append(append(U; Y); Z) = append(A � U; append(Y; Z))

)

The �rst equation simpli�es to the identity append(Y; Z) = append(Y; Z) and is deleted. The
second one simpli�es to

A � append(append(U; Y); Z) = A � append(U; append(Y; Z))

13

Using the inductive hypothesis (by Subsume), this too reduces to an identity and is deleted. The
inductive hypothesis in H is now an inductive theorem and it can be added to the equational theory
as a domain fact.

As another example, assume the following program for rev :

rev(nil; Y) ! Y

rev(A � U; Y) ! rev(U;A � Y)

We would like to prove that it satis�es the correctness condition:

rev(X; nil) = reverse(X)

We start with this as the only conjecture in the goal. However, we immediately notice that we
require a more general inductive hypothesis. Hypothesize another conjecture (to be proved as a
lemma):

rev(X; Y) = append(reverse(X); Y)

(We postpone to Section 7 the issue of how such lemmas may be invented.) Assume that the
function symbols are ordered as rev > reverse > append > � > nil in the precedence order. We can
use Cases to reduce the two-equation goal to:

frev(X; Y) ! append(reverse(X); Y)g `8><
>:

Y = append(reverse(nil); Y);
rev(U;A � Y) = append(reverse(A � U); Y);
rev(X; nil) = reverse(X)

9>=
>;

The �rst equation simpli�es to identity and is deleted. The second equation simpli�es to

rev(U;A � Y) = append(append(reverse(U); A � nil); Y)
= append(reverse(U); A � Y)

The two sides are equal by the inductive hypothesis. Finally, the third equation reduces, using the
inductive hypothesis (which is really an inductive \theorem" at this stage), to

append(reverse(X); nil) = reverse(X)

and this too reduces to an identity. The proof is now complete, and we obtain a more general
version of the original equation as a useful rewrite rule to be added to the domain theory of the
program.

To prove the soundness of the induction proof procedure, we need to show that all ground
instances of the equations in C have proofs using E.

Theorem 6 Let H ` C be a derivable judgment. If all ground instances r� = s� of equations in
H have proofs using E [C of complexity smaller than c(r�; s�), then all ground instances of C
have proofs using E.

Proof: By induction on the derivation of H ` C. The proof is trivial for Axiom. Suppose

H ` C
H 0 ` C0

14

is an inference. The plan is to show that the hypothesis of the theorem holds for H ` C whenever
it holds for H 0 ` C0 and that the conclusion holds for C0 whenever it holds for C.

For the inferences Delete, Simplify and Hypothesize, the proof is trivial. Consider the Cases
inference:

Cases
H [ft = ug ` C [C0

H ` C [ft = ug

where C0 is a cover set of critical pairs of t = u. Assume that the hypothesis holds for H ` C[ft =
ug. To see that it holds for H [ft = ug ` C [C0, note that ground instances of H already have
the required form of proofs using C (by assumption). By Lemma 5, a ground instance of t = u also
has a required form of proof using C0.

Next, consider Induct:

Induct
H ` C [ft0 = ug
H ` C [ft = ug

if t!H t0 by l = r in H and t > l

Assume the hypothesis for H ` C [ft = ug. We show below that every ground instance t� = u�

has a proof using C [ft0 = ug of complexity less than or equal to c(t�; u�). Then, clearly, the
hypothesis holds for H ` C [ft0 = ug (because all the steps using C are retained and those using
t = u are transformed without increase in complexity).

To show the required property for t� = u�, we use induction on c(t�; u�). The step t� = u�

has a corresponding proof t� !H t0� = u� using the premise of inference. Verify that c(t�; u�) �P
c(t0�; u�), considering the various cases in the de�nition of c. Secondly, suppose the step t� !H t0�

is by some l = r 2 H with a substitution � . By assumption, l� = r� has a proof using C [ft = ug
of complexity complexity less than c(l�; r�). Verify that c(t�; u�) �P c(l�; r�), considering the
various cases and using the fact t > l. So, any use of t = u in the proof of l� = r� is necessarily of
complexity less than c(t�; u�) and, by inductive hypothesis, it has a proof using C [ft0 = ug. So,
the step t� !H t0� has a corresponding proof using C [ft0 = ug of complexity less than c(�; u�).

Instances of Subsume can be veri�ed similarly. 2

6 Program Synthesis

Let us return to the problem of program synthesis. To start with, we have an alphabet �, an
equational axiomatization E and a complete reduction order over T� such that E is ground
con
uent. The synthesis problem is speci�ed in terms of a new alphabet �0, an equational
speci�cation C, and an extension of the reduction order > to T�[�0 . The reduction order must be
extended to �0 in such a way that, for each new symbol f 2 �0, f is given higher precedence than
the symbols which may appear in its program and lower precedence than the other symbols. For
example, considering the synthesis problem for rev , given by (1{7), the initial alphabet � consists
of reverse, append , � and nil (listed in the decreasing order of precedence). The alphabet �0 consists
of rev and the precedence order is extended to

reverse > append > rev > � > nil

This indicates that � and nil may appear in the program for rev , but not reverse and append .
The program synthesis task is then to derive a program P such that

15

� P is a consistent enrichment of E, i.e., does not a�ect the ground equivalences of T� given
by E, and

� E [P j=ind C.

We have already seen, in Section 5, how to verify E [P j=ind C. To infer P given only E and
C, we run the inductive proof procedure with P as an \unknown". The equations (t = u) 2 C

which cannot be eliminated by any of the inference rules (called \persisting" equations) require
knowledge of P . By accepting the set of all persisting equations of C as P , we can trivially satisfy
the requirement E [P j=ind C. Of course, not all such P 's satisfy the consistent enrichment
condition. We return to that issue below.

Consider synthesizing rev . The speci�cation is

rev(X; Y) = append(reverse(X); Y)

Here, the right hand side is greater than the left hand side (because append and reverse are given
higher precedence than rev). So, the equation cannot be used as the program for rev . Instead, the
synthesis procedure must reduce it to simpler equations which have instances of rev(X; Y) as the
greater side. We consider superposition at the subterm reverse(X), and derive the following cover
set by Cases:

rev(nil; Y) = append(nil; Y)
rev(A � U; Y) = append(append(reverse(U); A � nil); Y)

At this stage, we have the speci�cation as an inductive hypothesis in H . The cases simplify to

rev(nil; Y) = Y

rev(A �U; Y) = append(reverse(U); A � Y)

Using Induct, we can use the inductive hypothesis to reduce the second right hand side to rev(U;A �
Y). (Note that this corresponds to a \folding" step in Burstall-Darlington terminology.) No more
rules are applicable to these equations. So, the two orientable equations

rev(nil; Y) ! Y

rev(A � U; Y) ! rev(U;A � Y)

form the candidate program for rev .
To check for the consistent enrichment condition, we use the following result:

Theorem 7 Let E and E [P be ground con
uent sets of equations over alphabets � and � [�0

respectively. Then, P is a consistent enrichment of E if, for every ground instance t� = u� of an
equation in P such that t� > u�, either t� 62 T� or t�; u� 2 T� and t� is reducible by E.

Proof: The only if direction is immediate. For the if direction, we show by induction on c(t�; u�)
that every ground instance t� = u� of an equation in P such that t�; u� 2 T� has a proof using
E. Assume, without loss of generality, that t� > u�. By hypothesis, t� is reducible by E. Let
t� !E s. By ground con
uence, the equation s = u� has a proof using E [P with complexity less
than c(t�; u�). By inductive hypothesis, for each P step in the latter proof, there is a proof using
E. 2

We use this result as follows: Given a candidate program P0, we calculate the completion of
E[P0. (Only the axioms in E need to be used in the completion. The inductive theorems in E do

16

not a�ect the ground con
uence.) Suppose the completion generates a set E [P1. If all equations
t = u in P1, with t � u, are such that t 62 T�(X), then P1 is an acceptable program. (It is enough to
ensure that t� > u�) t 62 T�, for all ground substitutions � over T�.) If P1 contains an equation
t = u such that t; u 2 T�(X) then, we need to verify that t = u is an inductive theorem of E. If
t 2 T�(X) and u 62 T�(X), then t = u is a further speci�cation of �0. We continue to derive a
program for it.

Thus, synthesis is an iterative process. After we �nd a candidate program, adding it to the
axioms generates certain equational consequences. These consequences may involve problems for
further program synthesis. However, we often �nd that no iteration is needed. For instance, adding
the above candidate program for rev to the axioms generates no new critical pairs. So, this is
indeed the �nal program for rev .

As a somewhat intricate example of the synthesis process, consider the problem of checking
two binary trees for the equality of their fringes. (This is a problem considered by Burstall and
Darlington [BD77].) We start with the following axioms:

f(tip(A)) = A � nil (17)

f(tip(A) �R) = A � f(R) (18)

f((U � V) �R) = f(U � (V �R)) (19)

nil �L nil = true (20)

A � U �L nil = false (21)

nil �L B � V = false (22)

A � U �L B � V = A � B ^ U �L V (23)

(These are used together with the list axioms (1-6) and the propositional axioms in Figure 1.) The
fringe equality of trees is then speci�ed by

X �F Y = f(X) �L f(Y) (24)

We order the function symbols by the precedence

append > �L > f > �F > � > tip > � > nil

Note that all the axioms are orientable left to right using this order.
The synthesis proceeds as follows. We can �nd a cover set for (24) by considering superposition

at the subterm f(X). This gives the cases (shown after possible simpli�cation and induction steps):

tip(A) �F Y = A � nil �L f(Y) (25)

tip(A) �R �F Y = A � f(R) �L f(Y) (26)

(U � V) �R �F Y = U � (V �R) �F Y (27)

The cases (25) and (26) need further synthesis. This time, we choose f(Y) for superposition. This
gives the cases:

tip(A) �F tip(A0) = A � A0 (28)

tip(A) �F tip(A0) �R0 = A � A0 ^ nil �L f(R
0) (29)

17

tip(A) �F (U 0 � V 0) �R0 = tip(A) �F U 0 � (V 0 �R0) (30)

tip(A) �R �F tip(A0) = A � A0 ^ f(R) �L nil (31)

tip(A) �R �F tip(A0) �R0 = A � A0 ^R �F R0 (32)

tip(A) �R �F (U 0 � V 0) �R0 = tip(A) �R �F U 0 � (V 0 �R0) (33)

Note that, at this stage, we have three inductive hypotheses in the H component of the procedure:
(24), (25) and (26). The hypothesis (25) is used in simplifying (30), and (26) is used in simplifying
(32) and (33). The only remaining cases which need further work are (29) and (31). Program
equations for them can be synthesized using the same process, but we get a clearer program if we
postulate the lemmas:

nil �L f(X) = false (34)

f(X) �L nil = false (35)

These are proved in the standard fashion. Using them to simplify the equations results in the
following �nal program:

tip(A) �F tip(A0) ! A � A0

tip(A) �F tip(A0) �R0 ! false

tip(A) �F (U 0 � V 0) �R0 ! tip(A) �F U 0 � (V 0 �R0)
tip(A) �R �F tip(A0) ! false

tip(A) �R �F tip(A0) �R0 ! A � A0 ^R �F R0

tip(A) �R �F (U 0 � V 0) �R0 ! tip(A) �R �F U 0 � (V 0 �R0)
(U � V) �R �F Y ! U � (V �R) �F Y

We also obtain the following inductive theorems as by products:

f(X) �L f(Y) ! X �F Y

A � nil �L f(Y) ! tip(A) �F Y

A � f(R) �L f(Y) ! tip(A) �R �F Y

nil �L f(X) ! false

f(X) �L nil ! false

This example is interesting in that we need to instantiate the variables X and Y of the original
speci�cation in a controlled fashion to obtain a valid program. Note that we did not need to
postulate an auxiliary function to calculate the fringe of a list of trees, as done in [BD77].

7 Generalization

Running the synthesis procedure with domain equations2

x+ 0 = x

x + sy = s(x + y)

and speci�cation
x+ x = dx

2In this section, we usually omit parentheses for unary function symbols.

18

generates an in�nite set of equations:

d0 = 0
ssx + x = dsx

ds0 = ss0
ssssx + x = dssx

dss0 = ssss0
...

There is, of course, little one can do with the resultant in�nite table lookup: fdsi0 = s2i0 : i � 0g.
What is needed is some way of guessing the more general equation dsx = ssdx.

We use two processes to generate hypotheses. The �rst involves generating critical pairs between
equations; the second is a syntactic form of generalization, �a la [BM77]. The intuition is that if
we are dissatis�ed from the computational point of view with the equations generated, we look for
new equations between terms containing the de�ned function symbol in the hope of discovering a
pattern.

For the �rst step, we overlap the more primitive sides of the equations in the current partial
program. For this purpose we use an ordering under which constructor terms are larger than terms
containing the de�ned function applied to non-base cases: d0 � 0, but ss0 � ds0, ssss0 � dss0, etc.
Using the equations in this direction brings patterns involving d to the fore. From the right-hand
sides of

ds0 = ss0
dss0 = ssss0

...

we get a critical pair
dss0 = ssds0

...

From
dss0 = ssss0
dsss0 = ssssss0

...

we get
dsss0 = ssdss0

...

and so on.
For the second step, we generate most speci�c generalizations of pairs of equations, by re-

placing con
icting subterms with a new variable (see [Plo70]). This process has been called
\anti-uni�cation"; given two terms s and t, it computes their greatest lower bound (glb) in the
subsumption lattice. The above two critical pairs generate the hypothesis dsx = ssdx. Applying
dx = x + x, gives sx + sx = ss(x + x), which simpli�es to s(sx + x) = ss(x + x), using the
equation x+ sy = s(x+ y), but no further (in the absence of sx+ y = s(x+ y)). Note that we are
assuming dx � x + x for the purposes of veri�cation, which is the opposite direction of what was
used for synthesis. Were this equation provable by deductive means, we would be �nished; it is

19

not, so the inductive proof method continues in the same manner, generating an in�nite sequence
of hypotheses:

s(sx + x) = ss(x + x)
ss(ssy + y) = sss(sy + y)

...

Clearly, we need to substitute the (missing) lemma sx + y = s(x + y) for these instances. We
employ the same generalization methods as for synthesis (cf. [Jan89, Lan89]). An additional helpful
technique is cancellation, as used in deduction, for example, in [Sti84]. In particular, we can take
advantage of constructors, replacing hypotheses of the from c(s1; : : : ; sn) = c(t1; : : : ; tn) with n

hypotheses si = ti, when the constructor is free [HH82]. In the above case, we are free to strip o�
matching outer s's from the generated hypotheses:

sx + x = s(x + x)
ssy + y = s(sy + y)

...

Generalizing, as before, leads to the hypothesis sx + y = s(x + y), exactly what we were looking
for.

With this added to the speci�cation, the recursive program

d0 = 0
dsx = ssdx

for d is �nally proved correct. The �rst equation is a deductive consequence of the speci�cation;
the second is an inductive consequence.

Having succeeded in producing a program for doubling, a recursive program for halving can be
generated from the implicit de�nition

hdx = x

hsdx = x

The following sequence of equations is produced:

h0 = 0
hs0 = 0
hss0 = s0
hsss0 = s0
hssss0 = ss0

...

These equations suggest at least two hypotheses, namely:

hx = hsx

shx = hssx

The former generalizes the equations

h0 = hs0
hss0 = hsss0

20

but is disproved, since (taking x = s0) it implies that s0 = 0. The second hypothesis is obtained
by looking at di�erent pairs of equations (�rst and third, second and fourth, etc.) and generalizes
the equations

sh0 = hss0
shss0 = hssss0

It is proved immediately by induction, yielding the correct and complete program

h0 = 0
hs0 = 0
hssx = shx

8 Auxiliary Procedures

Most programs require auxiliary procedures, in addition to the speci�ed top-level program. Two
heuristics come into play: The �rst is to abstract a subterm appearing in a program, creating a
subprogram to compute it (cf. [Bel91b]). The second is to compute two functions at once, or one
function for two arguments, when expanding (unfolding) the de�nition of one leads to multiple
applications of the same function (cf. [Red89, Bel91b]).

For example, suppose we have all three equations for addition, and wish to manufacture a
program qx for squaring from the following equations for multiplication:

x� 0 = 0
x� sy = (x� y) + x

sx � y = (x� y) + y

x� x = qx

The synthesis procedure will generate the following equations (among others):

q0 = 0
s((qx+ x) + x) = qsx

sss((qsy + y) + y) = qssy

Noting the repeating left-hand side pattern (x + z) + z suggests the introduction of an ancillary
function:

(x+ z) + z = p(x; z)

Synthesizing p in the same manner as we synthesized d, gives

p(x; 0) = x

p(x; sy) = ssp(x; y)

Letting p be a smaller operator symbol than q (since it is all right for q to be de�ned in terms of
p), we get

qsx = sp(qx; x)

With this equation, used from left to right, equations like sss((qsy + y) + y) = qssy simplify away.
Together, the equations for p and q constitute a program for squaring.

21

Alternatively, suppose we know that + is associative:

(x+ y) + z = x+ (y + z)

with the left side greater than the right. Then

s(qx+ (x+ x)) = qsx

sss(qsy + (y + y)) = qssy

suggest an auxiliary function for doubling:

x+ x = dx

That leaves us with the following squaring program:

q0 = 0
qsx = s(qx+ dx)

Looking at this program, we note that expanding qssx, say, gives ssss(qx+dx+dx). In general,
d gets called a quadratic number of times during the computation of q(x). This suggests computing
q and d in parallel. De�ning

qx = 1strx
hqx; dxi = rx

produces
r0 = h0; 0i

hs(qx+ dx); ssdxi = rsx

Now, suppose we are (conveniently) supplied with the following functions which operate on pairs
(higher-order functions would be less ad-hoc):

s1hx; yi = hsx; yi
s2hx; yi = hx; syi
ahx; yi = hx+ y; yi

Applying these from right-to-left to simplify the equation for rsx gives the �nal program:

qx = 1strx
r0 = h0; 0i
rsx = s1s2s2arx

Assuming unit cost for addition, this version requires only a linear number of function calls.

9 Discussion

Our approach to synthesis comprises both formal and informal aspects. We use equational reasoning
and mathematical induction to guarantee correctness of the synthesized programs. On the other
hand, we apply heuristics to suggest facts for incorporation in developing programs, as well as for
forming lemmas needed in inductive proofs.

22

Rewriting is a powerful tool in equational reasoning, in which orderings on terms play a central
role. In ordered rewriting, orderings are used to determine the direction of computation, by
providing a suitable concept of what makes one term \simpler" than another. Ordered rewriting
is more
exible than standard rewriting, since it allows the same equation to be used sometimes
in one direction, and sometimes in the other. In theorem proving, as well, orderings are crucial
for incorporating powerful simpli�cation rules in complete inference systems. Last, but not least,
orderings supply us with a basis for inductive proofs, which are essential for proving properties of
programs.

An interactive program transformation system called Focus has been implemented at University
of Illionois based on the techniques presented here. The system incorporates oriented rewrite
techniques (a special case of the ordered rewriting techniques considered here) and also several
extensions to conditional and �rst-order reasoning. It has been used to synthesize several interesting
examples including some reasonably large programs [Red88, Red90a, Red91].

In this paper, we have considered rewriting with equations. Conditional rewriting and goal
solving may provide a better combination of functional and logic programming than purely equa-
tional programs; see, for instance, [DP88]. Conditional synthesis, however, would necessitate
more powerful deductive and inductive methods for handling conditional equations, such as have
been investigated in [BR91, KR90, Gan91]. More elaborate generalization methods would also be
required.

References

[ACM91] ACM. Symp. Partial Evaluation and Semantics-Based Program Manipulation. SIGPLAN
Notices, 26(9):1991, 1991.

[Bac88] L. Bachmair. Proof by consistency. In Symp. on Logic in Comp. Science. IEEE, 1988.

[BD77] R. M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24(1):44{67, January 1977.

[BDP89] L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without failure. In H. A��t-
Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures, volume 2:
Rewriting Techniques, chapter 1, pages 1{30. Academic Press, 1989.

[BEJ88] D. Bjorner, A. P. Erschov, and N. D. Jones (eds). Partial Evaluation and Mixed
Computation. North-Holland, 1988.

[Bel91a] F. Bellegarde. Program transformation and rewriting. In R. Book, editor, Fourth Intern.
Conf. on Rewriting Techniques and Applications, pages 226{239. Springer-Verlag, April
1991. Vol. 488 of Lect. Notes in Comp. Science.

[Bel91b] Francois Bellegarde. Program transformation and rewriting. In Ron Book, editor,
Proceedings of the Fourth International Conference on Rewriting Techniques and Appli-
cations, pages 226{239, Como, Italy, April 1991. Vol. 488 of Lecture Notes in Computer
Science, Springer, Berlin.

23

[BH84] W. Bibel and K. M. H�ornig. LOPS - A system based on a strategical approach to program
synthesis. In A. W. Biermann, G. Guiho, and Y. Kodrato�, editors, Automatic Program
Construction Techniques, chapter 3, pages 69{90. MacMillan Pub. Co., New York, 1984.

[BK86] J. A. Bergstra and Jan Willem Klop. Conditional rewrite rules: Con
uency and
termination. J. of Computer and System Sciences, 32:323{362, 1986.

[BK89] R. B�undgen and W. K�uchlin. Computing ground reducibility and inductively complete
positions. In N. Dershowitz, editor, Rewriting Techniques and Applications, pages 59{75.
Springer-Verlag, Berlin, 1989.

[BM77] Robert S. Boyer and J Strother Moore. A lemma driven automatic theorem prover for
recursive function theory. In Proceedings of the Fifth International Joint Conference on
Arti�cial Intelligence, pages 511{519, Cambridge, MA, 1977.

[BR91] F. Bronsard and U. S. Reddy. Conditional rewriting in Focus. In S. Kaplan and
M. Okada, editors, Conditional and Typed Rewriting Systems | Second International
CTRS Workshop, pages 2{13. Springer-Verlag, Berlin, 1991.

[BW88] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall
International, London, 1988.

[Dar81] J. Darlington. The structured description of algorithm derivations. In J. W. de Bakker
and J. C. van Vliet, editors, Algorithmic Languages, pages 221{250. North-Holland, 1981.

[Der82a] N. Dershowitz. Applications of the Knuth{Bendix completion procedure. In Proc. of the
Seminaire d'Informatique Theorique, Paris, pages 95{111, December 1982.

[Der82b] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,
17(3):279{301, 1982.

[Der85] N. Dershowitz. Computing with rewrite systems. Inf. Control, 65(2/3):122{157, 1985.

[Der89] N. Dershowitz. Completion and its applications. In Resolution of Equations in Algebraic
Structures, volume 2: Rewriting Techniques, pages 31{86. Academic Press, San Diego,
1989.

[Dev90] Y. Deville. Logic Programming: Systematic Program Development. Addison-Wesley,
Wokingham, 1990.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science B: Formal Methods and Semantics, chapter 6,
pages 243{320. North-Holland, Amsterdam, 1990.

[DK89] N. Dershowitz and S. Kaplan. Rewrite, rewrite, rewrite, rewrite, rewrite,: : : . In Sixteenth Ann.
ACM Symp. on Princ. of Program. Lang., pages 250{259. ACM, January 1989.

[DP88] Nachum Dershowitz and David A. Plaisted. Equational programming. In J. E. Hayes,
D. Michie, and J. Richards, editors, Machine Intelligence 11: The logic and acquisition
of knowledge, chapter 2, pages 21{56. Oxford Press, Oxford, 1988. To be reprinted in
Logical Foundations of Machine Intelligence, Horwood.

24

[DP90] N. Dershowitz and E. Pinchover. Inductive synthesis of equational programs. In Eighth
National Conf. on Arti�cial Intelligence, pages 234{239, Boston, MA, July 1990. AAAI.

[Fea79] M. S. Feather. A System for Developing Programs by Transformation. PhD thesis, Univ.
of Edinburgh, 1979.

[Fea82] M. S. Feather. A system for assisting program transformation. ACM Transactions on
Programming Languages and Systems, 4(1):1{20, 1982.

[FF86] B. Fronh�ofer and U. Furbach. Knuth-Bendix completion versus fold/unfold: A
comparative study in program synthesis. In C. Rollinger and W. Horn, editors, Proc. of
the Tenth German Workshop on Arti�cial Intelligence, pages 289{300, 1986.

[Fri86] L. Fribourg. A strong restriction of the inductive completion procedure. In Intern.
Colloq. Automata, Languages. and Programming, pages 105{115, July 1986. (Springer
Lect. Notes in Comp. Science, Vol. 226).

[Gan91] H. Ganzinger. A completion procedure for conditional equations. J. Symbolic
Computation, 11:51{81, 1991.

[Gra89] B. Gramlich. Induction theorem proving using re�ned unfailing completion techniques.
Technical Report SR89-14, Universit�at Kaiserslautern, Germany, 1989.

[HD83] Jieh Hsiang and Nachum Dershowitz. Rewrite methods for clausal and non-clausal
theorem proving. In Proceedings of the Tenth International Colloquium on Automata,
Languages and Programming, pages 331{346, Barcelona, Spain, July 1983. European
Association of Theoretical Computer Science. Vol. 154 of Lecture Notes in Computer
Science, Springer, Berlin.

[HH82] G�erard Huet and Jean-Marie Hullot. Proofs by induction in equational theories with
constructors. J. of Computer and System Sciences, 25:239{266, 1982.

[HO80] G. Huet and D. C. Oppen. Equations and rewrite rules: A survey. In R. Book, editor,
Formal Language Theory: Perspectives and Open Problems, pages 349{405. Academic
Press, New York, 1980.

[Hoa71] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In E. Engeler,
editor, Symp. Semantics of Algorithmic Languages, volume 188 of (Lect. Notes in Math.),
pages 102{116. Springer-Verlag, 1971. (Lect. Notes in Math. Vo. 188).

[Hog76] C. J. Hogger. Derivation of logic programs. Journal of the ACM, 23(4), 1976.

[HR86] J. Hsiang and M. Rusinowitch. A new method for establishing refutational completeness
in theorem proving. In J. Siekmann, editor, 8th Intern. Conf. on Automated Deduction,
pages 141{152. Springer-Verlag, 1986. (Lect. Notes in Comp. Science).

[HR87] J. Hsiang and M. Rusinowitch. On word problems in equational theories. In T. Ottmann,
editor, 14th Intern. Colloq. Automata, Languages and Programming, pages 54{71.
Springer-Verlag, July 1987. (Lect. Notes in Comp. Science Vol. 267).

25

[Jan89] Klaus P. Jantke. Algorithmic learning from incomplete information: Principles and
problems. In J. Dassow and J. Kelemen, editors, Machines, Languages, and Complexity
(Selected Contributions of the 5th International Meeting of Young Computer Scientists,
Smolenice, Czechoslovakia, November 1988), pages 188{207, 1989. Vol. 381 of Lecture
Notes in Computer Science, Springer, Berlin.

[JK86] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in equational theories
without constructors. In Symp. on Logic in Comp. Science, pages 358{366. IEEE, June
1986.

[Kap87] S. Kaplan. Simplifying conditional term rewriting systems: Uni�cation, termination and
con
uence. J. of Symbolic Computation, 4:295{334, 1987.

[KB70] D. Knuth and P. Bendix. Simple word problems in Universal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263{297. Pergamon Press, Oxford,
1970.

[KL80] S. Kamin and J.-J. L�evy. Two generalizations of the recursive path ordering. Unpublished
note, Department of Computer Science, University of Illinois, Urbana, IL, Feb 1980.

[KM84] D. Kapur and D. R. Musser. Proof by consistency. In Proc. of NSF Workshop on the
Rewrite Rule Laboratory, Sep 4-6, 1983, Schenectady, April 1984. G.E. R&D Center
Report GEN 84008.

[KNZ86] D. Kapur, P. Narendran, and H. Zhang. Proof by induction using test sets. In
J. Siekmann, editor, 8th Intern. Conf. on Automated Deduction. Springer-Verlag, 1986.
(Lect. Notes in Comp. Science).

[KR87] E. Kounalis and M. Rusinowitch. On word problems in Horn theories. In S. Kaplan and
J.-P. Jouannaud, editors, Conditional Term Rewriting Systems, pages 144{160. Springer-
Verlag, Berlin, 1987. (LNCS Vol 308).

[KR90] Emmanuel Kounalis and Micha�el Rusinowitch. Inductive reasoning in conditional
theories. In M. Okada, editor, Proceedings of the Second International Workshop on
Conditional and Typed Rewriting Systems, Montreal, Canada, June 1990. Lecture Notes
in Computer Science, Springer, Berlin; to appear.

[K�uc89] W. K�uchlin. Inductive completion by ground proof transformation. In H. A��t-Kaci and
M. Nivat, editors, Resolution of Equations in Algebraic Structures, volume 2: Rewriting
Techniques, pages 211{245. Academic Press, San Diego, 1989.

[KZ85] E. Kounalis and H. Zhang. A general completeness test for equational speci�cations.
Unpublished report, Centre de Recherche en Informatique de Nancy, Nancy, France,
1985.

[Lan89] Ste�en Lange. Towards a set of inference rules for solving divergence in Knuth-Bendix
completion. In K. P. Jantke, editor, Proceedings of the International Workshop on
Analogical and Inductive Inference, pages 304{316, October 1989. Vol. 397 of Lecture
Notes in Computer Science, Springer, Berlin.

26

[Man74] Z Manna. Mathematical Theory of Computation. McGraw-Hill, New York, 1974.

[MN90] Ursula Martin and Tobias Nipkow. Ordered completion. In M. Stickel, editor,
Proceedings of the Tenth International Conference on Automated Deduction, pages
366{380, Kaiserslautern, West Germany, July 1990. Vol. 449 of Lecture Notes in
Computer Science, Springer, Berlin.

[Mus80] D. R. Musser. On proving inductive properties of abstract data types. In ACM Symp.
on Princ. of Program. Lang., pages 154{162. ACM, 1980.

[MW80] Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM
Transactions on Programming Languages and Systems, 2(1):90{121, January 1980.

[NO91] R. Nieuwenhuis and F. Orejas. Clausal rewriting. In S. Kaplan and M. Okada, editors,
Conditional and Typed Rewriting Systems | Second International CTRS Workshop.
Springer-Verlag, 1991.

[Pla85] D. Plaisted. Semantic con
uence tests and completion methods. Inf. Control, 65:182{215,
1985.

[Plo70] Gordon Plotkin. Lattice theoretic properties of subsumption. Technical Report MIP-R-
77, University of Edinburgh, Edinburgh, Scotland, 1970.

[Red88] U. S. Reddy. Transformational derivation of programs using the Focus system. SIGSOFT
Software Engineering Notes, 13(5):163{172, Nov 1988. (Proceedings, ACM SIG-
SOFT/SIGPLAN Softw. Eng. Symp. on Practical Software Development Environments,
Also published as SIGPLAN Notices, Feb. 1989).

[Red89] U. S. Reddy. Rewriting techniques for program synthesis. In N. Dershowitz, editor,
Rewriting Techniques and Applications, pages 388{403. Springer-Verlag, 1989. (LNCS
Vol. 355).

[Red90a] U. S. Reddy. Formal methods in transformational derivation of programs. Software
Engineering Notices, 15(4):104{114, Sep 1990. (Proceedings of the ACM SIGSOFT
Workshop on Formal Methods in Software Development).

[Red90b] U. S. Reddy. Term rewriting induction. In M. Stickel, editor, 10th Intern. Conf. on
Automated Deduction, pages 162{177. Springer-Verlag, 1990. (Lecture Notes in Arti�cial
Intelligence, Vol. 449).

[Red91] U. S. Reddy. Design principles for an interactive program derivation system. In M. Lowry
and R. D. McCartney, editors, Automating Software Design, chapter 18. AAAI Press,
1991.

[RW69] G. Robinson and L. Wos. Paramodulation and theorem-proving in �rst order theories with
equality. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 135{150.
Edinburgh University Press, Edinburgh, Scotland, 1969.

[Sco76] D. Scott. Data types as lattices. SIAM Journal on Computing, 5(3):522{587, Sept. 1976.

27

[Smi90] D. Smith. KIDS - A knowledge-based software development system. In M. Lowry and
R. D. McCartney, editors, Automating Software Design. AAAI Press, 1990.

[Sti84] Mark E. Stickel. A case study of theorem proving by the Knuth Bendix method
discovering that x3 = x implies ring commutativity. In R. E. Shostak, editor, Proceedings
of the Seventh International Conference on Automated Deduction, pages 248{259, Napa,
CA, May 1984. Vol. 170 of Lecture Notes in Computer Science, Springer, Berlin.

[TS84] H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In Intern. Conf.
on Logic Programming, pages 127{138, 1984.

[ZK88] H. Zhang and D. Kapur. First-order theorem proving using conditional rewrite rules.
In E. Lusk and R. Overbeek, editors, 9th Intern. Conf. on Automated Deduction, pages
1{20. Springer-Verlag, 1988.

28

