
FAST EXCHANGE SORTS
1

Nachum Dershowitz Hon-Wai Leong
Department of Computer Science Department of Computer Science

University of Illinois National University of Singapore
Urbana, IL 61801, USA Singapore 0511

Abstract

We present three variations of the following new sorting theme:
Throughout the sort, the array is maintained in piles of sorted ele-
ments. At each step, the piles are split into two parts, so that the
elements of the left piles are smaller than (or equal to) the elements of
the right piles. Then, the two parts are each sorted, recursively. The
theme, then, is a combination of Hoare's Quicksort idea, and the Pick
algorithm, by Blum, et al., for linear selection. The variations arise
from the possible choices of splitting method.

Two variations attempt to minimize the average number of com-
parisons. The better of these has an average performance of 1:075n lgn
comparisons. The third variation sacri�ces the average case for a
worst-case performance of 1:756n lgn, which is better than Heapsort.
They all require minimal extra space and about as many data moves
as comparisons.

1 Introduction

The sorting problem is: Given an array a1; a2 ; � � � ; an of elements, rearrange
them so that a1 � a2 � � � � � an, where � is a given linear ordering of
elements. An exchange sort [Knut73] is one that goes about this task by
repeatedly looking for a pair of elements ai and aj (1 � i < j � n) that
are inverted (ai > aj) and exchanging them. By combining ideas fromHoare's
Quicksort algorithm [Hoar61, Hoar62] and Blum, Floyd, Pratt, Rivest, and
Tarjan's Pick algorithm [BlFP73] for linear selection, we have come up with
a new scheme for exchange sorts.

One the one hand, we were interested in the possibility of improving
the average case of Quicksort, and, on the other hand, in improving the

1This research was supported in part by the National Science Foundation under Grant

DCR 85-13417.

1

worst case of Heapsort. The model under consideration is a comparison-
based model; the cost of a method is measured by the number of compar-
isons required for sorting n elements. It is well-known [Knut73] that under
this comparison-based model, sorting has cost
(n lg n). Furthermore, there
are well-known methods that are optimal to within a multiplicative con-
stant. Heapsort [Will64] has both average- and worst-case performances of
O(n lg n); asymptotically, its worst case is 2n lg n. Quicksort [Hoar61] has
average-case performance of 1:39n lg n [Knut73]. This was improved by S-
ingleton [Sing69] to 1:19n lg n using the median-of-three method, and can
be made arbitrarily close to n lg n by increasing the sample size. However,
Quicksort su�ers from quadratic worst-case performance. In both Heapsort
and Quicksort, the number of data-moves is the same order of magnitude as
the number of comparisons. Binary-Insertion Sort [Knut73] is also optimal
for this model, since it has worst-case performance of O(n lg n) comparisons;
however, it requires O(nsup2) data-moves.

Brie
y, our scheme is as follows: The array is maintained in small piles
of sorted elements throughout the sorting process. Thus, the �rst step is to
preprocess the input array into piles of sorted elements. This step is done
only once; from then on, the piled structure is preserved. At each subsequent
step, a particular pivot element is chosen and the piles are split into two parts
so that all the elements in the left piles are smaller than all the elements in
the right piles. Then, the two parts are each sorted, recursively. The theme,
then, which we will call Pilesort, combines splitting around a pivot, as in
Quicksort, with piling to �nd a pivot, as in Pick.

The variations we consider arise from di�erent possibilities for splitting.
Two variations attempt to minimize the average number of comparisons (over
all possible input array permutations); another sacri�ces average-case per-
formance for an O(n lg n) worst-case that out-performs Heapsort [Will64,
Floy64]. They all require some extra space and about as many data moves
as comparisons; their practical value is limited to cases where comparisons
are relatively expensive.

In the next section, we elaborate on the general scheme. Section 3 ana-
lyzes its time complexity. Three variations of the scheme are considered in
Sections 4 and 5; experimental results are given in Section 6. We conclude
with a brief discussion.

2

2 The Theme

The �rst step is to preprocess the input array, creating piles of three elements,
each pile sorted. The result is shown in Figure 1, assuming (for simplicity)
that n is a multiple of 3. This step costs at most n comparisons; on the aver-
age, it costs 8n=9. From this point on, the piled structure will be maintained
by the algorithm.

To sort a piled array, a pivot-pile is �rst selected, and its middle is used
as the pivot element . Then the piles themselves are rearranged so that the
middle elements of the left-piles are less than (or equal to) the pivot element,
while the middle elements of the right-piles are greater than or equal to the
pivot element. This is similar to Hoare's Partition except that key compar-
isons are based on the pile middles and that entire piles are being moved
around. Di�erent ways of choosing the pivot lead to di�erent algorithms, as
will be described in subsequent sections. We shall refer to this rearrangement
as Pile-Partition. After Pile-Partition, the situation is as depicted in Figure
2.

At this point, note that elements in W [Z are on the proper side of the
partition, while elements in X [Y may be greater or smaller than the pivot
element. To complete the partitioning process, two things need to be done:
(a) The elements in X [Y must be compared with the pivot element to de-
termine if they are in the proper partition. This step takes n=3 comparisons.
(b) Restoring the pile structure.
In order to e�ciently restore the pile structure, we note the following:
(i) A loose element can be merged with a pile of two sorted elements in 2
comparisons at most, and 5/3 comparisons on the average.
(ii) Three loose elements can be repiled in 3 comparisons at most, and 8/3
comparisons on the average.
(iii) Three piles of two elements can be merged into two piles of three elements
by �rst comparing two maximal elements to form one pile of three, and then
comparing the remaining loose element with the smaller, and, if necessary,
the larger element of the remaining pile of two. This takes 3 comparisons at
most, and 232/90 comparisons on the average (the average is over all possible
arrangements of three piles of two elements).

The following procedures sketch the whole sorting scheme:

procedure Sort;

3

begin

Initial-Piling (1,N);

Pilesort (1,N)

end;

procedure Pilesort (L, R);

begin

if (R - L) <= Threshold

then Smallsort (L,R)

else begin

Pile-Partition (L,R,T);

Partition-Cleanup (L,R,T);

Pilesort (L, T-1);

Pilesort (T+1, R)

end

end;

As in Quicksort [Knut73], a Smallsort routine is used whenever the array
segment is so small that the overhead does not justify recursive calls. The
Partition-Cleanup procedure does tasks (a) and (b) simultaneously. It is
similar to the Partition phase of Quicksort and is applied to the X and Y
elements. The elements in X are scanned until an element that is greater
than the pivot (i.e. in the wrong partition) is found; then the Y -elements
are scanned until one smaller than the pivot is encountered. These elements
are broken o� from their respective piles, interchanged, and inserted into
the remaining piles of two. By (i) above, this takes at most 2 comparison
per element moved and 5/3 comparisons on the average. This process is
continued until all the elements of either X or Y are exhausted. Without
loss of generality, assume that the elements in Y are exhausted. At this
point, the remaining elements in X are scanned until three elements are
found out of place. These form a pile that is moved to the right partition
and the remaining remaining three piles of two are repiled into two piles of
three. This will take, in the worst-case, 2 comparisons per element moved,
and (8=3 + 232=90)=3 = 472/270 comparisons per element moved, on the
average.

To summarize, Partition-Cleanup takes n comparisons in the worst case,

4

n=3 to decide whether the element is in the proper partition and 2n=3 for the
actual moves. The average case, however, depends on how many elements
get moved and on how they are moved.

Finally, once the piles are completely partitioned, the algorithm recur-
sively sorts each of the two parts.

3 Analysis

Let cm be the cost to partition m piles in the Pile-Partition procedure. We
assume that the pivot pile falls in the interval [xm : (1 � x)m] where 0 �
x � 0:5. Note that x is the split of the piles, not of the elements themselves.
Let � be the fraction of the elements in X [Y that are interchanged in the
Partition-Cleanup phase, and let A be the cost per element for such a move.
Let � be the fraction of X[Y that are moved from the larger partition to the
smaller partition, and B, the cost per element for such a move. Thus, � is in
the range 0 � � � 2x and � is in the range �(x��=2) � � � (1�x)��=2
(� is negative if the elements are moved in the opposite direction). Then the
cost for one pass is the sum of the following:
(i) cn=3 to select the pivot-pile and in the process, partition the piles them-
selves;
(ii) n=3 comparisons to compare the elements in X [Y without repiling;
(iii) A�n=3 for interchanging elements in X and Y ; and
(iv) Bj � j n=3 for moving the elements from one side to the other.

Since the resultant split of the elements (not just the piles) is x + �=3,
the cost T (n) for sorting n elements satis�es the following recurrence:

T (n) =
(c + 1) n

3
+

(A� + Bj � j) n

3
(1)

+ T

(3x+ �) n

3

!
+ T

(3� 3x� �) n

3

!
(2)

A recurrence of the form T (n) = kn + T (yn) + T ((1 � y)n) has a
solution T (n) =
n lg n where

 =
�k

y lg y + (1� y) lg(1 � y)
:

5

Therefore, the solution to recurrence (3.1) is given by

 =
� (c+ 1+ A�+ Bj � j)

3�
3x+�
3

�
lg
�
3x+�
3

�
+

�
3�3x��

3

�
lg
�
3�3x��

3

� (3)

It follows that the performance of the algorithm depends on two factors: the
repiling cost (A� + Bj � j) which depends on � and �, and the �nal split
(3x+ �)=3 which depends only on �. We note that the worst (maximum)
repiling cost occurs when all the undetermined elements change sides in which
case � = 2x, � = 1� 2x, but in this case the �nal split is (x+1)=3. On the
other hand, the worst �nal split occurs when all the undetermined elements
in the smaller part move to the larger part, namely � = 0, � = �x and the
split is 2x=3. Thus, we have

T (n) =

8><
>:
�
c+ 1+ 2Ax+B(1�2x)

3

�
n + T

�
(x+1)n

3

�
+ T

�
(2�x)n

3

�
�
c+ 1+ Bx

3

�
n + T

�
2xn
3

�
+ T

�
(3�2x)n

3

� (4)

More generally, with piles of height 2h+1, the worst case recurrences are

T (n) =

8><
>:
�
c+ h+ 2hAx+Bh(1�2x)

2h+1

�
n + T

�
(x+h)n
2h+1

�
+ T

�
(h+1�x)n

2h+1

�
�
c+ h+ Bhx

2h+1

�
n + T

�
(h+1)xn
2h+1

�
+ T

�
(2h+1�(h+1)x)n

2h+1

� (5)

But it turns out that h = 1 (giving piles of height 3) is usually optimal.
Though taller piles reduce the cost of pivot selection, they cost more to build
and maintain, and make X [Y proportionally larger.

4 Linear Selection

In this section, we present the �rst variation of our basic sorting scheme.
We describe an (unimplemented) algorithm with worst-case performance of
1:756n lg n comparisons, which is better Heapsort.

We �rst note that if, in the Pile-Partition procedure, the median of the
pile middles (i.e. x = 0:5) can be found in linear time in the worst-case, then
the procedure to divide the piles would take linear time in the worst-case.
Furthermore, at least one third of the elements would be in each of the two
parts. This guarantees that the resultant sorting algorithm is O(n lg n) in

6

the worst-case. In fact, any linear time selection procedure that partitions
the m piles so that the worst-case split is proportional to m will guarantee
an O(n lg n) worst-case sorting method.

The fastest linear median selection algorithm is that of Schonhage, Pa-
terson, and Pippenger [ScPP76] (improved in [Eber79]; see also [Knut73]). It
has a 3k asymptotic upper bound on the number of comparisons to �nd the
median of k elements. Thus, for worst-case performance, we have x = 0:5,
c = 3:0, A = B = 2, and by (3.3) the worst case of this sorting algorithm
is then given by
 = max(2, 1.815). In other words, T (n) = 2n lg n in the
worst-case, as for Heapsort. The average case should be considerably lower.

To improve on the worst case, we need an approximation of the medi-
an that costs less to compute and that still guarantees O(n lg n) worst-case
running time. This may be accomplished by piling the middle elements them-
selves. First, the middle elements are grouped into piles of �ve elements (�ve
turns out to be better than 3, as we will see below) and, then, the median of
their medians is used as the pivot element. To be more precise, we expand
Pile-Partition as follows:
P1: Pile the middle elements into piles of �ves, so that the center element is
their median.
P2: Use the median �nd algorithm to partition the piles of center elements.
P3: Move undetermined piles into the correct partition with respect to the
median of medians. At the end of Step P2, we have the Hasse diagram shown
in Figure 3 where each node in the diagram is a pile of three elements. Step
P3, then moves the piles in Q [R into the proper partition.

Step P1 costs 6(n=15) = 2n=5, since it takes at most 6 comparisons to
�nd the middle of �ve elements [Knut73]. Step P2 costs 3n=15 = n=5, using
the 3m worst-case median �nd algorithm. Lastly, Step P3 costs just 2n=15
comparisons. Therefore, Pile-Partition costs 11n=15 comparisons. Also, this
method guarantees a worst-case split of the piles at x = 3=10 which occurs
when all the undetermined piles in Q moves to the other side. Thus, the
corresponding recurrence is given by

T (n) =

8><
>:

11n
15 + n

3 + 2n
3 + T

�
13n
30

�
+ T

�
17n
30

�
11n
15 + n

3 + n

5 + T
�
n

5

�
+ T

�
4n
5

� (6)

giving
 = max(1:756; 1:755). Accordingly, the worst case is 1:756n lg n,
which is better than Heapsort's worst-case performance of 2n lg n.

7

If we replace the 3m median �nd algorithm of [ScPP76] by the slow-
er 5:4305m Pick algorithm [BlFP73], the worst case of the sort will be
max(1:920; 1:979)n lg n = 1:979n lg n which is just under 2n lg n.

We can also consider grouping the middle elements into piles of three,
instead of �ve. Then it costs 3n=9 to pile the middles into groups of three,
3n=9 to �nd median of middles, and n=9 to move undetermined piles, and
the worst-case split of the piles is x = 1=3 and the recurrence is

T (n) =

8><
>:

7n
9

+ n

3
+ 2n

3
+ T

�
4n
9

�
+ T

�
5n
9

�
7n
9

+ n

3
+ 2n

9
+ T

�
2n
9

�
+ T

�
7n
9

� (7)

and
 = max(1:794; 1:745). Thus, the resultant sort has worst-case perfor-
mance of 1:794n lg n, which is still better than Heapsort.

5 Fast Selection

In order to improve the average case of Pilesort, we look for a median �nd-
ing algorithm that has faster average-case performance. The best of these
methods has an average case of 1:075n lg n, which is better than 1.19n lg n
of Singleton's median-of-three Quicksort.

The idea here is to always split the piles evenly into two parts using a
fast median selection algorithm for Pile-Partition. We use the fastest known
method, Select, by Floyd and Rivest [FlRi75a, FlRi75b] as modi�ed by Brown
[Brow76] which requires 1:5m comparisons on the average, to �nd the median
of m elements. This variation of the sorting method is called Select-Pilesort.

The average case can be partially analyzed as follows: The worst-case
split of the piles is x = 0:5. Substituting the average values for each of
c, A and B, (viz. c = 1:5, A = 5=3, and B = 472=270) into (3.3),
we get
 = max(1:389; 1:223). This analysis, however, assumes the worst
distribution of undetermined elements. In order to get a better estimate, we
have run extensive experiments to measure the empirical values of � and �.
The results suggest that � is approximately 0:75 and � is small enough to
be negligible. Substituting these into (3.2), we get the value
 = 1:25.

This variation of Pilesort can be signi�cantly improved by eliminating
the top-level recursive calls to Select from Pile-Partition. This is based
on the observation that Select �rst uses the median of a random sample

8

to partition the piles. If the sample median is indeed the exact median,
Select terminates; otherwise, it calls itself recursively to �nd the exact median
within the appropriate part. In most cases, however, there is already a fairly
good partitioning of the piles and so there is little point in partitioning the
piles further to get the exact median.

To further reduce the cost of Pile-Partition, we consider another vari-
ation, called Random-Pilesort . In our implementation, the middle pile is
always chosen. To complete the procedure, the piles are partitioned about
this pivot element. Thus, the cost of partitioning the piles is only n=3. How-
ever, we have no guarantee as to the worst-case split of the piles and so the
analysis in Section 3 cannot be applied. Since the entire array is always par-
titioned around the median of three elements, it is natural to compare this
sort with Singleton's variation of Quicksort, which requires an average cost
of 1.19n lg n comparisons. Empirical results (see the next section) show that,
on the average,
 is approximately 1:105 for Random-Pilesort.

To push this method further, one can use the median of three pile-middles
as the pivot element. In our experiments, we uses the �rst, middle and last
piles. This version of Random-Pilesort was found to perform slightly better.

6 Experimental Results

We implemented and tested the algorithms described in Section 5 in or-
der to evaluate their average-case performances. Select-Pilesort uses the
Select algorithm for choosing the pivot; Fast-Pilesort is the improved ver-
sion using Select; Random-Pilesort uses Partition; Random-Pilesort-3 is the
variation using three piles. For comparison, we also implemented Quicksort
[Hoar61] and Singleton's median-of-three variation [Sing69], which we will
call Quicksort-3. The implementations are all in Pascal and were tested on
a CDC Cyber 175. A summary of the implemented algorithms is given in
Figure 4.

The data used to test the programs were randomly generated real numbers
uniformly distributed over [10000.0 , 100000.0). This large range was chosen
to minimize any chance of duplication of data values. For each sort, we ran
the program on various data-sets of sizes n = 1024, 2048, 4096, 8192. For
each size, we ran the program on sixteen di�erent sets of random data. The
mean values for
 obtained in these experiments are shown in the table below,

9

along with their standard deviations. We use the formula
 � ts�1;0:025 � �p
s

to obtain a 95% con�dence interval for the values of
 where
 is the mean
of
, s is the sample size, � is the standard deviation, and t is Student's
distribution. These intervals are also given in Figure 4.

As is to be expected, the values of
 for Quicksort (1:338 � 0:014) and
Quicksort-3 (1:144�0:008) are quite close to their theoretical values of 1.386
and 1.19, respectively. For Select-Pilesort, the overall average value of
 is
1:415 � 0:006. The discrepancy between this and the value 1:25, obtained
in the previous section, is due to the fact that the actual cost of Select over
the range of values m � 8192=3 was approximately 2m, which is higher than
the asymptotic average cost of 1.5m used in the previous section. With the
more realistic value, the value of
 should be 1.417, in close agreement with
the experimental results.

For Fast-Pilesort, where top-level recursive calls to Select are omitted,
the value of
 drops dramatically to 1:093 � 0:003, which is better than the
performance of Quicksort-3. The reason for the dramatic improvement is
that after Select has partitioned the array about the median of a random
sample, the split of the piles is reasonably close to 0.5. Insisting on �nding
the exact median, as in Select-Pilesort, requires an additional ck, where k
is the size of the larger partition, which|with high probability| is about
n=2. The e�ect of this variation is to choose as pivot element the median of a
random sample of the elements, which explains why this algorithm performs
better than Quicksort-3.

In Random-Pilesort the pivot element is just the middle of a random pile.
Thus, Random-Pilesort e�ectively partitions the elements about the median
of three elements. We found that Random-Pilesort has
 = 1:105 � 0:006,
which is slightly better than Quicksort-3.

In Random-Pilesort-3, the median of three pile middles is chosen as the
pivot element, and so the pivot element is, in e�ect, the median of between
7 and 9 elements. As expected, the corresponding value of
 for Random-
Pilesort-3 is 1:075 � 0:003, better than that of all the other sorting methods
we tried.

Note that Quicksort and Quicksort-3 have average cost
 n lg n, while all
the new algorithms require an additional 8n=9 preprocessing cost, giving a
total average cost of 8n=9 +
 n lg n. Finally, we note that the new sorting
methods showed consistent performance: the value of
 did not change very

10

much either for di�erent data sets, nor for di�erent values of n. The standard
deviations for all the new methods were consistently less than 0.04 and are
smaller than those for Quicksort and Quicksort-3. As is to be expected,
the variances are smallest for Random-Pilesort and Select-Pilesort, which
partition about the median of a small subset of the elements.

7 Conclusion

We have studied the performance of a new sorting scheme, called Pilesort,
under the comparison-based model where the cost function is the number
of comparisons needed to sort. The scheme combines ideas from Hoare's
Partition algorithm and the linear time selection algorithm by Blum et al. It
is robust in the sense that it can be implemented to obtain good worst-case
or average-case performances.

Several variations of the scheme were studied. The �rst variation, using
linear selection, was aimed at improving on the worst case of Heapsort, and is
of theoretical interest. A simple implementation has a worst case of 2n lg n,
the same as Heapsort. An improved version gave a worst-case performance
of 1:756n lg n which is better than Heapsort.

The other variations sacri�ce O(n lg n) worst case for a faster average
case. A simple implementation, using a fast median-�nd algorithm, was
found (empirically) to have 1:417n lg n average-case performance, which is
comparable to that of Hoare's Quicksort. With a small change, this was
improved to 1:093n lg n. Using a random partition, the average case was
found to be 1:105n lg n, which is slightly better than that of Singleton's
Quicksort. By selecting the median of three piles, rather than a pile at
random, the performance improved to 1:075n lg n.

The number of data-moves required by the new methods tends to be
between two to three times that of Quicksort because of the need to moves
piles of elements rather than one element at a time. Therefore, the new
algorithms could be practical only in situations where key comparison is
more expensive than data movement.

11

References

[BlFP73] Blum, M., R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan,
\Time Bounds for Selection," Journal of Computer and System Sciences,
(1973), Vol. 7, pp. 448-461.

[Brow76] Brown, T., \Remarks on Algorithm 489," Trans. on Mathematical
Software, (1976), Vol. 3, No. 2, pp. 301-304.

[Floy64] Floyd, R.W., \Algorithm 245 (Treesort3)," Comm. of ACM, (1964),
Vol. 7, No. 12, p. 701.

[FlRi75a] Floyd, R. W., and R. L. Rivest, \Expected Time Bounds for Se-
lection," Comm. of ACM, (1975), Vol. 18, No. 3, pp. 165-172.

[FlRi75b] Floyd, R. W., and R. L. Rivest, \Algorithm 489 (The Algorithm
SELECT { for Finding the i-th Smallest of n Elements)," Comm. of ACM,
(1975), Vol. 18, No. 3, p. 173.

[FrMc70] Frazer, W. D. and A. C. McKellar, \Samplesort: A Sampling Ap-
proach to Minimal Tree Sorting," Journal of ACM, (1970), Vol. 17, No. 3,
pp. 496-507.

[Hoar61] Hoare, C. A. R., \Algorithm 63 (Partition); 64 (Quicksort); 65
(Find)," Comm. of ACM, (1961), Vol. 4, No. 7, pp. 321-322.

[Hoar62] Hoare, C. A. R., \Quicksort," Computer Journal, (1962), Vol. 5,
No. 1, pp. 10-15.

[Knut73] Knuth, D. E., The Art of Computer Programming, Vol. 3 (Sorting
and Searching), (1973), Addison-Wesley, Reading, MA.

[ScPP76] Schonhage, A., M. S. Paterson, N. Pippenger, \Finding the Medi-
an," Journal of Computer and System Sciences, (1976), Vol. 13, pp. 184-199.

[Sing69] Singleton, R. C., \Algorithm 347 (An E�cient Algorithm for Sorting
with Minimal Storage)," Comm. of ACM, (1969), Vol. 12, No. 3, pp. 185-
187.

[Will64] Williams, J. W. J., \Algorithm 232 (Heapsort)," Comm. of ACM,
(1964), Vol. 7, No. 6, pp. 347-348.

12

