
Open Problems in Rewriting

Nachum Dershowitz�

Department of Computer Science, University of Illinois

1304 West Spring�eld Avenue, Urbana, IL 61801, U.S.A.

nachum@cs.uiuc.edu

Jean-Pierre Jouannaud

Laboratoire de Recherche en Informatique, Bat. 490

Universit�e de Paris Sud, 91405 Orsay, France

jouannau@lri.lri.fr

Jan Willem Klopy

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Department of Mathematics and Computer Science, Free University

de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

jwk@cwi.nl

1 Introduction

Interest in the theory and applications of rewriting has been growing rapidly, as evidenced in part
by four conference proceedings (including this one) [15, 26, 41, 66]; three workshop proceedings
[33, 47, 77]; �ve special journal issues [5, 88, 24, 40, 67]; more than ten surveys [2, 7, 27, 28, 44,
56, 57, 76, 82, 81]; one edited collection of papers [1]; four monographs [3, 12, 55, 65]; and seven
books (four of them still in progress) [8, 9, 35, 54, 60, 75, 84].

To encourage and stimulate continued progress in this area, we have collected (with the
help of colleagues) a number of problems that appear to us to be of interest and regarding
which we do not know the answer. Questions on rewriting and other equational paradigms have
been included; many have not aged su�ciently to be accorded the appellation \open problem".
We have limited ourselves to theoretical questions, though there are certainly many additional
interesting questions relating to applications and implementations.

Previous lists of questions in this area include one distributed by Leo Marcus and one of us
(Dershowitz) at the Sixth International Conference on Automated Deduction (New York, 1982),
the questions posed in a set of lecture notes on \Term Rewriting Systems" by one of us (Klop)
for a seminar on reduction machines (Ustica, 1985), another list by one of us (Jouannaud) in
the Bulletin of the European Association for Theoretical Computer Science (Number 31, 1987),
and electronic postings to the distribution list (rewriting@crin.crin.fr) maintained by Pierre
Lescanne. We use primarily terminology and notation of [27].

�Research supported in part by the National Science Foundation under Grant CCR-9007195.
yResearch partially supported by ESPRIT BRA projects 3020: Integration and 3074: Semagraph.

2 Problems

2.1 Rewriting

Problem 1. An important theme that is largely unexplored is de�nability (or implementabil-
ity, or interpretability) of rewrite systems in rewrite systems. Which rewrite systems can be
directly de�ned in lambda calculus? Here \directly de�ned" means that one has to �nd lambda
terms representing the rewrite system operators, such that a rewrite step in the rewrite system
translates to a reduction in lambda calculus. For example, Combinatory Logic is directly lambda
de�nable. On the other hand, not every orthogonal rewrite system can be directly de�ned in
lambda calculus. Are there universal rewrite systems, with respect to direct de�nability? (For
alternative notions of de�nability, see [75].)

Problem 2 (M. Venturini-Zilli [91]). The reduction graph of a term is the set of its reducts
structured by the reduction relation. These may be very complicated. The following notion
of \spectrum" abstracts away from many inessential details of such graphs: If R is a term-
rewriting system and t a term in R, let Spec(t), the \spectrum" of t, be the space of �nite and
in�nite reduction sequences starting with t, modulo the equivalence between reduction sequences
generated by the following quasi-order: t = t1 !R t2 !R � � � � t = t01 !R t02 !R � � � if for all
i there is a j such that ti !

�
R t0j . What are the properties of this cpo (complete partial order),

in particular for orthogonal (left-linear, non-overlapping) rewrite systems? What inuence does
the non-erasing property have on the spectrum? (A rewrite system is \non-erasing" if both sides
of each rule have exactly the same variables.) The same questions can be asked for the spectrum
obtained for orthogonal systems by dividing out the �ner notion of \permutation equivalence"
due to J.-J. L�evy (see [14, 55, 57]).

Problem 3. A term t is \ground reducible" with respect to a rewrite system R if all its ground
(variable-free) instances contain a redex. Ground reducibility is decidable for ordinary rewriting
(and �nite R) [20, 49, 80]. What is the complexity of this test?

Problem 4. One of the outstanding open problems in typed lambda calculi is the following:
Given a term in ordinary untyped lambda calculus, is it decidable whether it can be typed in
the second-order �2 calculus? See [7].

Problem 5 (A. Meyer, R. de Vrijer). Do the surjective pairing axioms

D1(Dxy) = x

D2(Dxy) = y

D(D1x)(D2x) = x

conservatively extend ���-conversion on pure untyped lambda terms? More generally, is surjec-
tive pairing always conservative, or do there exist lambda theories, or extensions of Combinatory
Logic for that matter, for which conservative extension by surjective pairing fails? (Surjective
pairing is conservative over the pure ��-calculus (see [92]). Of course, there are lots of other ��,
indeed ���, theories where conservative extension holds, simply because the theory consists of
the valid equations in some � model in which surjective pairing functions exist, e.g., D1.)

2.2 Normalization

Problem 6 (A. Middeldorp [71]). If R and S are two term-rewriting systems with disjoint vo-
cabularies, such that for each of R and S any two convertible normal forms must be identical,
then their union R[S also enjoys this property [71]. Accordingly, we say that unicity of normal
forms (UN) is a \modular" property of term-rewriting systems. \Unicity of normal forms with

respect to reduction" (UN!) is the weaker property that any two normal forms of the same
term must be identical. For non-left-linear systems, this property is not modular. The question
remains: Is UN! a modular property of left-linear term-rewriting systems?

Problem 7 (H. Comon, M. Dauchet). Is it possible to decide whether the set of ground normal
forms with respect to a given (�nite) term-rewriting system is a regular tree language? See [34,
62].

Problem 8 (A. Middeldorp). Is the decidability of strong sequentiality for orthogonal term
rewriting systems NP-complete? See [39, 58].

Problem 9 (A. Middeldorp). Thatte [87] showed that an orthogonal constructor-based rewrite
system is left-sequential if and only if it is strongly sequential. Does this equivalence extend to
the whole class of orthogonal term-rewriting systems? If not, is left-sequentiality a decidable
property of orthogonal systems? See also [58].

Problem 10 (J. R. Kennaway). Let a term-rewriting system (or more generally, a system with
bound variables [57]) have the following properties: it is \�nitely generated" (has �nitely many
function symbols and rules), it is \full" (its terms are all that can be formed from the function
symbols), and it is Church-Rosser. Does it follow that it has a recursive, one-step, normaliz-
ing reduction strategy? (There are counterexamples if any of the three conditions is dropped.)
Kennaway [50] showed that for \weakly" orthogonal systems the answer is yes. So, any coun-
terexample must come from the murky world of non-orthogonal systems.

Problem 11 (A. Middeldorp [72]). A conditional term-rewriting system has rules of the form
p) l! r, which are only applied to instances of l for which the condition p holds. A \standard"
(or \join") conditional system is one in which the condition p is a conjunction of conditions u # v,
meaning that u and v have a common reduct (are \joinable"). Is unicity of normal forms (UN)
a modular property of standard conditional systems?

2.3 Conuence

Problem 12. What is the complexity of the decision problem for the conuence of ground
(variable-free) term-rewriting systems? Decidability was shown in [22, 78]; see also [23].

Problem 13 (J.-J. L�evy). By a lemma of G. Huet [38], left-linear term-rewriting systems are
conuent if, for every critical pair t � s (where t = u[r�] u[l�] = g� ! d� = s, for some
rules l ! r and g ! d), we have t !k s (t reduces in one parallel step to s). (The condition
t !k s can be relaxed to t !k r k s for some r when the critical pair is generated from two
rules overlapping at the roots; see [89].) What if s !k t for every critical pair t � s? What if
for every t � s we have s != t? (Here != is the reexive closure of !.) What if for every
critical pair t � s, either s!= t or t!= s? In the last case, especially, a conuence proof would
be interesting; one would then have conuence after critical-pair completion without regard for
termination. If these conditions are insu�cient, the counterexamples will have to be (besides
left-linear) non-right-linear, non-terminating, and non-orthogonal (have critical pairs). See [57].

Problem 14. Parallel rewriting with orthogonal term-rewriting systems is \subcommutative"
(a \strong" form of conuence). Under which interesting syntactic restrictions do conditional
rewrite systems enjoy the same property? It is known that orthogonal \normal" conditional
rewriting systems (with conditions u !! v, where v is a ground normal form) are conuent,
while \standard" (join) ones are not [13].

Problem 15 (Y. Toyama). Consider the following extension of Combinatory Logic (CL) with
constants T (true), F (false), C (conditional):

Ix ! x

Kxy ! x

Sxyz ! (xz)(yz)

CTxy ! x

CFxy ! y

x$� y) Czxy ! x

Is this (non-terminating) \semi-equational" (or \natural", as such are called in [31]) conditional
rewrite system conuent? Note that if we take the above system plus the rule x $� y)
Czxy ! y, the resulting conditional rewrite system is conuent (cf. [57, 93]).

Problem 16 (Y. Toyama). For a \normal" conditional term-rewriting system R = fs !! t)
l ! rg, where t must be a ground normal from of s, we can consider the corresponding semi-
equational conditional rewrite system R0 = fs $� t) l ! rg. Under what conditions does
conuence of R0 imply conuence of R? In general, this is not the case, as can be seen from the
following non-conuent system R (due to A. Middeldorp):

a! b

a! c

b!! c) b! c

Problem 17 (R. de Vrijer). Is the following semi-equational conditional term rewriting system
(a linearization of Combinatory Logic extended with surjective pairing) conuent:

Ix ! x

Kxy ! x

Sxyz ! (xz)(yz)

D1(Dxy) ! x

D2(Dxy) ! y

x$� y) D(D1x)(D2y) ! x

x$� y) D(D1x)(D2y) ! y

If yes, does an e�ective normal form strategy exist for it? See [59, 92].

Problem 18 (J. R. Kennaway, J. W. Klop, M. R. Sleep, F.-J. de Vries). If one wants to con-
sider reductions of trans�nite length in the theory of orthogonal term-rewriting systems, one
has to be careful. In [51] it is shown that the conuence property \almost" holds for in�nite
rewriting with orthogonal term-rewriting systems. The only situation in which \in�nitary con-
uence" may fail is when collapsing rules are present. (A rule t ! s is \collapsing" if s is a
variable.) Without collapsing rules, or even when only one collapsing rule of the form f(x)! x
is present, in�nitary conuence does hold. Now the notion of in�nite reduction in [51] is based
upon \strong convergence" of in�nite sequences of terms in order to de�ne (possibly in�nite)
limit terms. In related work, Dershowitz, et al. [29] use a more \liberal" notion of convergent
sequences (which is referred to in [51] as \Cauchy convergence"). What is unknown (among
other questions in this new area) is if this \almost-conuent" result is also valid for the more
liberal convergent in�nite reduction sequences?

2.4 Termination

Problem 19 (J.-J. L�evy). Can strong normalization (termination) of the typed lambda calcu-
lus be proved by a reasonably straightforward mapping from typed terms to a well-founded
ordering? Note that the type structure can remain unchanged by �-reduction. The same ques-
tion arises with polymorphic (second-order) lambda calculus.

Problem 20 (Y. Metivier [70]). What is the best bound on the length of a derivation for a
one-rule length-preserving string-rewriting (semi-Thue) system? Is it O(n2) (n is the size of the
initial term) as conjectured in [70], or O(nk) (k is the size of the rule) as proved there.

Problem 21 (M. Dauchet). Is termination of one linear (left and right) rule decidable? Left
linearity alone is not enough for decidability [21].

Problem 22. Devise practical methods for proving termination of (standard) conditional
rewriting systems. Part of the di�culty stems from the interdependence of normalization and
termination.

Problem 23 (E. A. Cochin [18]). The following system [27], based on the \Battle of Hydra and
Hercules" in [52], is terminating, but not provably so in Peano Arithmetic:

h(z; e(x)) ! h(c(z); d(z; x))

d(z; g(0; 0)) ! e(0)

d(z; g(x; y)) ! g(e(x); d(z; y))

d(c(z); g(g(x; y); 0)) ! g(d(c(z); g(x; y)); d(z; g(x; y)))

g(e(x); e(y)) ! e(g(x; y))

Trans�nite (�0-) induction is required for a proof of termination. Must any termination ordering
have the Howard ordinal as its order type, as conjectured in [18]?

Problem 24. The existential fragment of the �rst-order theory of the \recursive path ordering"
(with multiset and lexicographic \status") is decidable when the precedence on function symbols
is total [19, 46], but is undecidable for arbitrary formulas. Is the existential fragment decidable
for partial precedences?

2.5 Validity

Problem 25 (R. Treinen). Is the theory of multisets (AC) completely axiomatizable? In other
words, is it decidable whether a �rst-order formula containing only equality as predicate symbol
is valid in the algebra T (F)=AC(F)? It is known that the �3 fragment is undecidable when
there are at least one unary function symbol (besides the AC one) and one constant; the �1

fragment is decidable; the full theory is decidable even when there are no other symbols (besides
constants) [90].

Problem 26. Let R be a term-rewriting or combinatory reduction system. Let \decreasing
redexes" (DR) be the property that there is a map # from the set of redexes of R, to some
well-founded linear order (or ordinal), satisfying:
� if in rewrite step t!R t0 redex r in t and redex r0 in t0 are such that r0 is a descendant (or
\residual") of r, then #r � #r0;

� if in rewrite step t ! t0 the redex r in t is reduced and r0 in t0 is \created" (t0 is not the
descendant of any redex in t), then #r > #r0.

Calling #r the \degree" of redex r, created redexes have a degree strictly less than the degree of
the creator redex, while the degree of descendant redexes is not increased. The typical example
is reduction in simply typed lambda calculus. In [55] it is proved that for orthogonal term-
rewriting systems and combinatory reduction systems, decreasing redexes implies termination

(strong normalization). Does this implication also hold for non-orthogonal systems? If not, can
some decent subclasses be delineated for which the implication does hold?

Problem 27 (P. Lescanne). In [68] an extension of term embedding, called \well-rewrite or-
derings", was introduced, leading to an extension of the concept of simpli�cation ordering. Can
those ideas be extended to form the basis for some new kind of \recursive path ordering"?

Problem 28 (P. Lescanne). Polynomial and exponential interpretations have been used to
prove termination. For the former there are some reasonable methods [11, 63] that can help
determine if a particular interpretation decreases with each application of a rule. Are there
other implementable methods suitable for exponential interpretations?

Problem 29. Any rewrite relation commutes with the strict-subterm relation; hence, the union
of the latter with an arbitrary terminating rewrite relation is terminating, and also \fully in-
variant" (closed under instantiation). Is subterm the maximal relation with these properties? Is
\encompassment" (\containment", the combination of subterm and subsumption) the maximal
relation which preserves termination (without full invariance)?

Problem 30 (W. Snyder). What are the complexities of the various term ordering decision
problems in the literature (see [25])? Determining if a precedence exists that makes two ground
terms comparable in the recursive path ordering is NP-complete [61], but an inequality can
be decided in O(n2), using a dynamic programming algorithm. Snyder [85] has shown that the
lexicographic path ordering can be done in O(n logn) in the ground case with a total precedence,
but the technique doesn't extend to non-total precedences or to terms with variables.

Problem 31. Is there a decidable uniform word problem for which there is no variant on
the rewriting theme (for example, rewriting modulo a congruence with a decidable matching
problem, or ordered rewriting) that can decide it|without adding new symbols to the vocab-
ulary? There are decidable theories that cannot be decided with ordinary rewriting (see, for
example, [86]); on the other hand, any theory with decidable word problem can be solved by
ordered-rewriting with some ordered system for some conservative extension of the theory (that
is, with new symbols) [30], or with a two-phased version of rewriting, wherein normal forms of
the �rst system are inputs to the second [10].

Problem 32. Is there a �nite term-rewriting system of some kind for free lattices?

Problem 33. Completion modulo associativity and commutativity (AC) [79] is probably the
most important case of \extended completion"; the general case of �nite congruence classes is
treated in [43]. Adding an axiom (Z) for an identity element, however, gives rise to in�nite
classes. This case was viewed as conditional completion in [6], and solved completely in [45].
The techniques, however, do not carry over to completion with idempotence (I) added; how to
handle ACZI-completion e�ectively is open.

Problem 34. Ordered rewriting computes a given convergent set of rewrite rules for an equa-
tional theory E and an ordering > whenever such a set R exists for >, provided > can be made
total on ground terms. Unfortunately, this is not always possible, even if > is derivability (!+

R)
in R. Is there a set of inference rules that will always succeed in computing R whenever R exists
for >?

2.6 Theorem Proving

Problem 35. Huet's proof [37] of the \completeness" of completion is predicated on the as-
sumption that the ordering supplied to completion does not change during the process. Assume
that at step i of completion, the ordering used is able to order the current rewriting relation
!Ri

, but not necessarily !Rk
for k < i (since old rules may have been deleted by completion).

Is there an example showing that completion is then incomplete (the persisting rules are not
conuent)?

Problem 36 (H. Zhang). Since the work of Hsiang [36], several Boolean-ring based methods
have been proposed for resolution-like �rst-order theorem proving. In [48], superposition rules
were de�ned using multiple overlaps (requiring uni�cations of products of atoms). It is unknown
whether single overlaps (requiring only uni�cations of atoms) are su�cient in these inference
rules. Also, it is not known if uni�cations of maximal atoms (under a given term ordering) su�ce.
(The same problem for Hsiang's method was solved positively in [73, 94].) In other respects, too,
the set of inference rules in [4, 48] may be larger than necessary and the simpli�cation weaker
than possible.

Problem 37 (U. Reddy, F. Bronsard). In [17] a rewriting-like mechanism for clausal reasoning
called \contextual deduction" was proposed. It specializes \ordered resolution" by using pattern
matching in place of uni�cation, only instantiating clauses to match existing clauses. Does
contextual deduction always terminate? (In [17] it was taken to be obvious, but that is not clear;
see also [74].) It was shown in [17] that the mechanism is complete for refuting ground clauses
using a theory that contains all its \strong-ordered" resolvents. Is there a notion of \complete
theory" (like containing all strong-ordered resolvents not provable by contextual refutation) for
which contextual deduction is complete for refutation of ground clauses?

2.7 Satis�ability

Problem 38 (J. Siekmann [83]). Is satis�ability of equations in the theory of distributivity
(uni�cation modulo a distributivity axiom) decidable?

Problem 39. Rules are given in [42] for computing dag-solved forms of uni�cation problems in
equational theories. The Merge rule x � s; x � t) x � s; s � t given there assumes that s is
not a variable and its size is less than or equal to that of t. Can this condition be improved by
replacing it with the condition that the rule Check* does not apply? (In other words, is Check*
complete for �nding cycles when Merge is modi�ed as above?)

Problem 40. Fages [32] proved that associative-commutative uni�cation terminates when
\variable replacement" is made after each step. Boudet, et al. [16] have proven that it ter-
minates when variable replacement is postponed to the end. Does the same (or similar) set of
transformation rules terminate with more exible control?

Problem 41. The complexity of the theory of �nite trees when there are �nitely many symbols
is known to be PSPACE-hard [69]. Is it in PSPACE? The same question applies to in�nite trees.

Problem 42 (H. Comon). Given a �rst-order formula with equality as the only predicate sym-
bol, can negation be e�ectively eliminated from an arbitrary formula � when � is equivalent to a
positive formula? Equivalently, if � has a �nite complete set of uni�ers, can they be computed?
Special cases were solved in [20, 64].

Problem 43. Design a framework for combining constraint solving algorithms.

Problem 44 (H. Comon). \Syntactic" theories enjoy the property that a (semi-) uni�cation
algorithm can be derived from the axioms [42, 53]. This algorithm terminates for some particular
cases (for instance, if all variable occurrences in the axioms are at depth at most one, and cycles
have no solution) but does not in general. For the case of associativity and commutativity (AC),
with a seven-axiom syntactic presentation, the derivation tree obtained by the non-deterministic
application of the syntactic uni�cation rules (Decompose, Mutate, Merge, Coalesce, Check*,
Delete) in [42] can be pruned so as to become �nite in most cases. The basic idea is that one
uni�cation problem (up to renaming) must appear in�nitely times on every in�nite branch of
the tree (since there are �nitely many axioms in the syntactic presentation). Hence, it should
be possible to prune or freeze every in�nite branch from some point on. The problem is to
design such pruning rules so as to compute a �nite derivation tree (hence, a �nite complete set
of uni�ers) for every �nitary uni�cation problem of a syntactic equational theory.

3 Afterword

This list is by no means exhaustive. Please send any contributions by electronic or ordinary
mail to the �rst author. We will periodically publicize new problems and solutions to old ones.

Acknowledgements

We thank all the individuals mentioned above who contributed questions, F.-J. de Vries for
helping prepare this list, and Ron Book, for going out of his way to make it possible.

References

[1] H. Ait-Kaci and M. Nivat, eds. Resolution of Equations in Algebraic Structures. Vol. 2:
Rewriting Techniques, Academic Press, New York, 1989.

[2] J. Avenhaus and K. Madlener. Term rewriting and equational reasoning. In R. B. Banerji,
editor, Formal Techniques in Arti�cial Intelligence: A Sourcebook, pp. 1{41, Elsevier, Am-
sterdam, 1990.

[3] L. Bachmair. Canonical Equational Proofs. Birkh�auser, Boston, 1991. To appear.

[4] L. Bachmair and N. Dershowitz. Inference rules for rewrite-based �rst-order theorem prov-
ing. In Proceedings of the Second IEEE Symposium on Logic in Computer Science, pp. 331{
337, Ithaca, NY, June 1987.

[5] L. Bachmair and J. Hsiang, eds. Rewrite Techniques in Theorem Proving (Special Issue).
Vol. 11 (1) of J. Symbolic Computation, Academic Press, 1991. To appear.

[6] T. Baird, G. Peterson, and R. Wilkerson. Complete sets of reductions modulo Associativity,
Commutativity and Identity. In N. Dershowitz, editor, Proceedings of the Third Interna-
tional Conference on Rewriting Techniques and Applications, pp. 29{44, Chapel Hill, NC,
Apr. 1989. Vol. 355 of Lecture Notes in Computer Science, Springer, Berlin.

[7] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, eds., Handbook of Logic in Computer Science, Oxford University Press,
Oxford, 1991. To appear.

[8] H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-Holland, Ams-
terdam, second edition, 1984.

[9] H. P. Barendregt. The Typed Lambda Calculus, its Syntax and Semantics. North-Holland,
Amsterdam, 1991.

[10] G. Bauer. n-level rewriting systems. Theoretical Computer Science, 40:85{99, 1985.

[11] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by polynomial inter-
pretations and its implementation. Science of Computer Programming, 9(2):137{159, Oct.
1987.

[12] B. Benninghofen, S. Kemmerich, and M. M. Richter. Systems of Reductions. Vol. 277 of
Lecture Notes in Computer Science, Springer, Berlin, 1987.

[13] J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Conuency and termination. J.
of Computer and System Sciences, 32:323{362, 1986.

[14] G. Berry and J. L�evy. Mimimal and optimal computations of recursive programs. J. of
the Association for Computing Machinery, 26:148{175, 1979.

[15] R. Book, ed. Proceedings of the Fourth International Conference on Rewriting Techniques
and Applications (Como, Italy), Springer, Berlin, Apr. 1991.

[16] A. Boudet, E. Contejean, and H. Devie. A new ac uni�cation algorithm with an algorithm
for solving diophantine equations. In Proceedings of the Fifth Annual IEEE Symposium on
Logic in Computer Science, pp. 289{299, Philadelphia, PA, June 1990.

[17] F. Bronsard and U. S. Reddy. Conditional rewriting in Focus. In M. Okada, editor, Pro-
ceedings of the Second International Workshop on Conditional and Typed Rewriting Systems,
Springer, Montreal, Canada, 1991. To appear.

[18] E. A. Cichon. Bounds on Derivation Lengths from Termination Proofs. Technical Re-
port CSD-TR-622, Department of Computer Science, University of London, Surrey, Eng-
land, June 1990.

[19] H. Comon. Solving inequations in term algebras (Preliminary version). In Proceedings of
the Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 62{69, Philadelphia,
PA, June 1990.

[20] H. Comon. Uni�cation et Disuni�cation: Th�eorie et Applications. PhD thesis, l'Institut
National Polytechnique de Grenoble, 1988.

[21] M. Dauchet. Simulation of Turing machines by a left-linear rewrite rule. In N. Dershowitz,
editor, Proceedings of the Third International Conference on Rewriting Techniques and Ap-
plications, pp. 109{120, Chapel Hill, NC, Apr. 1989. Vol. 355 of Lecture Notes in Computer
Science, Springer, Berlin.

[22] M. Dauchet, T. Heuillard, P. Lescanne, and S. Tison. Decidability of the conuence of �nite
ground term rewriting systems and of other related term rewriting systems. Information
and Computation, 88(2):187{201, October 1990.

[23] M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Proceedings
of the Fifth IEEE Symposium on Logic in Computer Science, pp. 242{248, Philadelphia, PA,
June 1990.

[24] N. Dershowitz, ed. Rewriting Techniques and Applications III (Special Issue). J. of Sym-
bolic Computation, Academic Press, 1992. To appear.

[25] N. Dershowitz. Termination of rewriting. J. of Symbolic Computation, 3(1&2):69{115,
February/April 1987. Corrigendum: 4, 3 (December 1987), 409{410.

[26] N. Dershowitz, ed. Third International Conference on Rewriting Techniques and Applica-
tions, Chapel Hill, NC, April 1989. Vol. 355 of Lecture Notes in Computer Science, Springer,
Berlin.

[27] N. Dershowitz and J. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science B: Formal Methods and Semantics, chapter 6, pp. 243{320,
North-Holland, Amsterdam, 1990.

[28] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In S. Shapiro, editor, Encyclopedia
of Arti�cial Intelligence, Wiley, 1991. In preparation.

[29] N. Dershowitz, S. Kaplan, and D. A. Plaisted. Rewrite, Rewrite, Rewrite, Rewrite, Rewrite,: : : .
Theoretical Computer Science, 1991. In press.

[30] N. Dershowitz, L. Marcus, and A. Tarlecki. Existence, Uniqueness, and Construction of
Rewrite Systems. Technical Report ATR-85(8354)-7, Computer Science Laboratory, The
Aerospace Corporation, El Segundo, CA, December 1985.

[31] N. Dershowitz and M. Okada. A rationale for conditional equational programming. The-
oretical Computer Science, 75:111{138, 1990.

[32] F. Fages. Associative-commutative uni�cation. J. Symbolic Computation, 3(3):257{275,
June 1987.

[33] Proceedings of an NSF Workshop on the Rewrite Rule Laboratory, Schenectady, NY, Sep.
1983. Report 84GEN008, General Electric Research and Development (April 1984).

[34] R. Gilleron. Decision problems for term rewriting systems and recognizable tree languages.
In Proceddings of STACS, 1991. To appear.

[35] J. R. Hindley and J. P. Seldin. Introduction to Combinators and �-Calculus. Cambridge
University Press, 1986.

[36] J. Hsiang. Refutational theorem proving using term-rewriting systems. Arti�cial Intelli-
gence, 25:255{300, March 1985.

[37] G. Huet. A complete proof of correctness of the Knuth-Bendix completion algorithm. J.
Computer and System Sciences, 23(1):11{21, 1981.

[38] G. Huet. Conuent reductions: Abstract properties and applications to term rewriting
systems. J. of the Association for Computing Machinery, 27(4):797{821, Oct. 1980.

[39] G. Huet and J.-J. L�evy. Computations in orthogonal term rewriting systems. In J.-
L. Lassez and G. Plotkin, eds., Computational Logic: Essays in Honour of Alan Robinson,
MIT Press, Cambridge, MA, to appear.

[40] J.-P. Jouannaud, ed. Rewriting Techniques and Applications. Academic Press, London,
1987.

[41] J.-P. Jouannaud, ed. Rewriting Techniques and Applications (Proceedings, Dijon, France),
Springer, Berlin, May 1985. Vol. 202 of Lecture Notes in Computer Science.

[42] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based
survey of uni�cation. In J.-L. Lassez and G. Plotkin, eds., Computational Logic: Essays in
Honor of Alan Robinson, MIT Press, Cambridge, MA, 1991. To appear.

[43] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations.
SIAM J. on Computing, 15:1155{1194, Nov. 1986.

[44] J.-P. Jouannaud and P. Lescanne. Rewriting systems. Technology and Science of In-
formatics, 6(3):181{199, 1987. French version: \La r�e�ecriture", Technique et Science de
l'Informatique (1986), vol. 5, no. 6, pp. 433-452.

[45] J.-P. Jouannaud and C. March�e. Completion modulo associativity, commutativity and
identity. In A. Miola, editor, Proceedings of DISCO, Capri, Italy, Apr. 1990. Vol. 429 in
Lecture Notes in Computer Science, Springer, Berlin.

[46] J.-P. Jouannaud and M. Okada. Satis�ability of systems of ordinal notations enjoying the
subterm property is decidable. 1991. Submitted.

[47] S. Kaplan and J.-P. Jouannaud, eds. Conditional Term Rewriting Systems (Proceedings,
Orsay, France, July 1987), Springer, Berlin, 1988. Vol. 308 of Lecture Notes in Computer
Science.

[48] D. Kapur and P. Narendran. An equational approach to theorem proving in �rst-order
predicate calculus. In Proceedings of the Ninth International Joint Conference on Arti�cial
Intelligence, pp. 1146{1153, Los Angeles, CA, Aug. 1985.

[49] D. Kapur, P. Narendran, and H. Zhang. On su�cient completeness and related properties
of term rewriting systems. Acta Informatica, 24(4):395{415, Aug. 1987.

[50] J. R. Kennaway. Sequential evaluation strategies for parallel-or and related reduction sys-
tems. Annals of Pure and Applied Logic, 43:31{56, 1989.

[51] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Trans�nite reductions in
orthogonal term rewriting systems (Extended abstract). In R. Book, editor, Proceedings
of the Fourth International Conference on Rewriting Techniques and Applications, Como,
Italy, Apr. 1991. In Lecture Notes in Computer Science, Springer, Berlin.

[52] L. Kirby and J. Paris. Accessible independence results for Peano arithmetic. Bulletin
London Mathematical Society, 14:285{293, 1982.

[53] C. Kirchner. Computing uni�cation algorithms. In Proceedings of the First IEEE Sympo-
sium on Logic in Computer Science, pp. 206{216, Cambridge, Massachussets, June 1986.

[54] C. Kirchner and H. Kirchner. Rewriting: Theory and Applications. North-Holland, 1991.
In preparation.

[55] J. W. Klop. Combinatory reduction systems. Vol. 127 of Mathematical Centre Tracts,
Mathematisch Centrum, 1980.

[56] J. W. Klop. Term rewriting systems: A tutorial. Bulletin of the European Association for
Theoretical Computer Science, 32:143{183, June 1987.

[57] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, eds., Handbook of Logic in Computer Science, Oxford University Press,
Oxford, 1991. To appear.

[58] J. W. Klop and A. Middeldorp. Sequentiality in Orthogonal Term Rewriting Systems. Re-
port CS-R8932, Centre for Mathematics and Computer Science, Amsterdam, 1989.

[59] J. W. Klop and R. C. de Vrijer. Unique normal forms for lambda calculus with surjective
pairing. Information and Computation, 80:97{113, 1989.

[60] J. W. Klop and R. C. de Vrijer. Term Rewriting Systems. Cambridge University Press,
Cambridge, 1991. In preparation.

[61] M. S. Krishnamoorthy and P. Narendran. On recursive path ordering. Theoretical Com-
puter Science, 40:323{328, 1985.

[62] G. Kucherov. On relationship between term rewriting systems and regular tree languages.
In R. Book, editor, Proceedings of the Fourth International Conference on Rewriting Tech-
niques and Applications, Como, Italy, Apr. 1991. In Lecture Notes in Computer Science,
Springer, Berlin.

[63] D. S. Lankford. On Proving Term Rewriting Systems are Noetherian. MemoMTP-3, Math-
ematics Department, Louisiana Tech. University, Ruston, LA, May 1979. Revised October
1979.

[64] J. Lassez and K. G. Marriott. Explicit representation of terms de�ned by counter examples.
J. Automated Reasoning, 3(3):1{17, Sep. 1987.

[65] P. Le Chenadec. Canonical Forms in Finitely Presented Algebras. Pitman-Wiley, London,
1985.

[66] P. Lescanne, ed. Rewriting Techniques and Applications (Proceedings, Bordeaux, France),
Springer, Berlin, May 1987. Vol. 256 of Lecture Notes in Computer Science.

[67] P. Lescanne, ed. Rewriting Techniques and Applications II (Special Issue). Vol. 67 (2&3)
of Theoretical Computer Science, North-Holland, 1989.

[68] P. Lescanne. Well rewrite orderings. In J. Mitchell, editor, Proceedings of the Fifth IEEE
Symposium on Logic in Computer Science, pp. 239{256, Philadelphia, PA, 1990.

[69] M. J. Maher. Complete axiomatizations of the algebras of the �nite, rational and in�nite
trees. In Proceedings of the Third IEEE Symposium on Logic in Computer Science, pp. 348{
357, Computer Society Press, Edinburgh, UK, July 1988.

[70] Y. M�etivier. Calcul de longueurs de châ�nes de r�e�ecriture dans le mono��de libre. Theoretical
Computer Science, 35(1):71{87, Jan. 1985.

[71] A. Middeldorp. Modular aspects of properties of term rewriting systems related to normal
forms. In N. Dershowitz, editor, Proceedings of the Third International Conference on
Rewriting Techniques and Applications, pp. 263{277, Chapel Hill, NC, Apr. 1989. Vol. 355
of Lecture Notes in Computer Science, Springer, Berlin.

[72] A. Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis, Vrije Univer-
siteit, Amsterdam, 1990.

[73] J. M�uller and R. Socher-Ambrosius. Topics in completion theorem proving. SEKI-
Report SR-88-13, Fachbereich Informatik, Universit�at Kaiserslautern, Kaiserslautern, West
Germany, 1988. To appear in J. of Symbolic Computation.

[74] R. Nieuwenhuis and F. Orejas. Clausal rewriting. In S. Kaplan and M. Okada, eds., Ex-
tended Abstracts of the Second International Workshop on Conditional and Typed Rewriting
Systems, pp. 81{88, Concordia University, Montreal, Canada, June 1990. Revised version
to appear in Lecture Notes in Computer Science, Springer, Berlin.

[75] M. J. O'Donnell. Equational Logic as a Programming Language. MIT Press, Cambridge,
MA, 1985.

[76] M. J. O'Donnell. Programming with equations. In D. M. Gabbay, C. J. Hogger, and
J. A. Robinson, eds., Handbook of Logic in Arti�cial Intelligence and Logic Programming,
Oxford University Press, Oxford, 1991. To appear.

[77] M. Okada, ed. Proceedings of the Second International Workshop on Conditional and
Typed Rewriting Systems (Montreal, Canada), 1991. Lecture Notes in Computer Science,
Springer, Berlin.

[78] M. Oyamaguchi. The Church-Rosser property for ground term rewriting systems is decid-
able. Theoretical Computer Science, 49(1), 1987.

[79] G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational theories.
J. of the Association for Computing Machinery, 28(2):233{264, Apr. 1981.

[80] D. A. Plaisted. Semantic conuence tests and completion methods. Information and Con-
trol, 65(2/3):182{215, May/June 1985.

[81] D. A. Plaisted. Term rewriting systems. In D. M. Gabbay, C. J. Hogger, and J. A. Robin-
son, eds., Handbook of Logic in Arti�cial Intelligence and Logic Programming, Oxford Uni-
versity Press, Oxford, 1991. To appear.

[82] D. A. Plaisted. Equational reasoning and term rewriting systems. In D. M. Gabbay,
C. J. Hogger, and J. A. Robinson, eds., Handbook of Logic in Arti�cial Intelligence and
Logic Programming, Oxford University Press, Oxford, 1991. To appear.

[83] J. Siekmann. Universal uni�cation. In R. E. Shostak, editor, Proceedings of the Seventh
International Conference on Automated Deduction, pp. 1{42, Napa, CA, May 1984. Vol.
170 of Lecture Notes in Computer Science, Springer, Berlin.

[84] M. R. Sleep. An Introduction to Rewriting. John Wiley, Chichester, England, 1992. In
preparation.

[85] W. Snyder. (Computing the Lexicographic Path Ordering). Technical Report, Boston Uni-
versity, Boston, MA, 1990.

[86] C. Squier. Word problems and a homological �niteness condition for monoids. J. of Pure
and Applied Algebra, 1991. To appear.

[87] S. Thatte. A re�nement of strong sequentiality for term rewriting with constructors. In-
formation and Computation, 72:46{65, 1987.

[88] M. Thomas, ed. Term Rewriting (Special Issue). Vol. 34 (1) of Computer J., Feb. 1991.

[89] Y. Toyama. Commutativity of term rewriting systems. In K. Fuchi and L. Kott, eds.,
Programming of Future Generation Computers II, pp. 393{407, North-Holland, 1988.

[90] R. Treinen. A new method for undecidability proofs of �rst order theories. LNCS 472, 48{62.

[91] M. Venturini-Zilli. Reduction graphs in the Lambda Calculus. Theoretical Computer Sci-
ence, 29:251{275, 1984.

[92] R. C. de Vrijer. Extending the lambda calculus with surjective pairing is conservative. In
Proceedings of the Fourth IEEE Symposium on Logic in Computer Science, pp. 204{215,
1989.

[93] R. C. de Vrijer. Unique normal forms for Combinatory Logic with Parallel Conditional, a
case study in conditional rewriting. Technical Report, Free University, Amsterdam, 1990.

[94] H. Zhang. A New Strategy for the Boolean Ring Based Approach to First Order Theorem
Proving. Technical Report, Department of Computer Science, The University of Iowa, 1991.

