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The best notation is no notation.
|Paul Halmos

Appropriate notations are important for stating complex results in a way that can be easily un-
derstood. Oftentimes, notation is crucial to carrying out correct and simple proofs.1 Our purpose
here is to contribute to the development of good notations for term rewriting and related areas. To
that end, we have engaged in many discussions with numerous colleagues,2 including algebraicists.3

The term-rewriting community has already reached agreement on many of them;4 some others are
controversial or new. Freese, McKenzie, McNulty and Taylor use (or will use) similar notations
(with only minor variations) in their series of books.5 We do not, of course, expect that everybody
will agree with all our suggestions, nor that they will all become a standard that must be followed
to have a paper accepted for an Eatcs conference. But we do hope that everyone will consider
them (and the justi�cations we give for our choices) and compare them with what he or she is
accustomed to.6 We, ourselves, enjoy using them, as do our students,7 and have adopted them in
our recent work.8

1Linear algebra is an illuminating example.
2Particulary those in \book-writing mode".
3This is the place to express our appreciation to Leo Bachmair, Claude Kirchner, Pierre Lescanne,

George McNulty, David Plaisted, Wayne Snyder, and all the others for their many constructive
suggestions. (This is not to imply that they necessarily concur with our decisions.)

4As evidenced by the papers in N. Dershowitz, ed., Third International Conference on Rewriting
Techniques and Applications, Lecture Notes in Computer Science 355, Springer, Berlin, 1989.

5R. McKenzie, G. F. McNulty and W. Taylor, Algebras, Lattices, Varieties, Vol. I, Wadsworth,
Monterey, CA, 1987; Vol. II with R. Freese, to appear.

6To keep this note reasonably self-contained, we include inobvious de�nitions in footnotes.
7At least those who have not been scared away.
8N. Dershowitz and J.-P. Jouannaud, \Rewrite Systems", in Handbook of Theoretical Computer

Science, Vol. B: Formal Methods and Semantics (J. van Leeuwen, ed.), North-Holland, Amsterdam,
to appear 1990.
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De�nition

Meaning

  \leftarrow inverse of any arrow-like binary
relation !

6! 6! \not\rightarrow complement of any arrow-like
binary relation !

< < < inverse of any greater-like ordering
>

� � \geq re
exive closure of any greater-like
ordering >

!n n
! \mathop{\rightarrow}^n n-fold composition of any binary

relation !

!+ +
! \mathop{\rightarrow}^+ transitive closure of any binary

relation !

!� �
! \mathop{\rightarrow}^* re
exive-transitive closure of any

binary relation !1

!= =
! \mathop{\rightarrow}^= re
exive closure of any arrow-like

binary relation !2

!! !
! \mathop{\rightarrow}^! normalization3 for any binary

relation !

$ $ \leftrightarrow symmetric closure of any binary
relation !

$� �
$ \mathop{

\leftrightarrow}^*

re
exive-symmetric-transitive
closure of any arrow-like binary
relation !4

1Called derivability for arrow-like relations and reachability, in general. This notation is more
adaptable than !!. A sequence s0 ! s1 ! � � � ! si � � � is called a derivation of ! issuing from s0.

2This seems more intuitive than !�.
3That is, s!! t if s!� t, but t 6! u for any u.
4I.e. the smallest equivalence relation containing !, called convertibility.



" " \uparrow common ancestor relation5

# # \downarrow common descendent relation6

R(t) R(t) R(t) set of normal forms7 of t for binary
relation R

R(T ) R(T ) R(T) normal forms of set T for binary
relation R

T (F ;X ) T (F ;X ) {\cal T(F,X)} set of (�nite, �rst-order) terms with
function symbols F8and variables X

T T {\cal T} ... for short

T 1(F ;X ) T 1(F ;X ) {\cal

T}^\infty{\cal(F,X)}

set of �nite and in�nite terms with
function symbols F and variables X

T 1 T 1 {\cal T}^\infty ... for short

T Q(F ;X ) T Q(F ;X ) {\cal T^{\bf Q}(F,X)} set of rational terms9 with function
symbols F and variables X

T Q T Q {\cal T}^{\bf Q} ... for short

5I.e. the composed relation  � � !�, also called \meetability".
6I.e. the composed relation !� �  �, also called \joinability". A binary relation ! is said

to be con
uent if any two elements with a common ancestor have a common descendent. This is
equivalent to the Church-Rosser property: any two convertible elements have a common descendent.

7A normal form for t is any element s such that t !! s. A relation ! is said to be normalizing
if every element has at least one normal form, terminating if its graph has no in�nite chains, and
convergent if it is both terminating and con
uent. Several alternatives to \terminating" have been
used in the literature, including \Noetherian" (after the algebraicist Emily Noether), \Artinian"
(after E. Artin), \�nitely terminating", \uniformly terminating", and \well-founded". As there is
a potential source of confusion between terms used for \no in�nite ascending chain" and for \no
in�nite descending chain", we chose the more meaningful \terminating", and reserve well-founded
for orderings. Poorer alternatives to \convergent" include \canonical" (cf. note 50) and \complete".

8It is convenient to write F = [nFn, where Fn is the set of symbols of arity (or \rank") n.
9Rational terms are possibly in�nite terms with �nitely many di�erent subterms (ft 2 T1 :

jftjp2Pos(t)gj <1g). They are solutions of equations between terms in the sense of Prolog II.



G(F) G(F) {\cal G(F)} set of ground terms10 with function
symbols F11

G G {\cal G} ... for short11

Head(t) Head(t) {\cal H}ead(t) function symbol heading term t

Var(t) Var(t) {\cal V}ar(t) set of variables occurring in a term t

Pos(t) Pos(t) {\cal P}os(t) set of positions in a term t12

FPos(t) FPos(t) {\cal FP}os(t) set of non-variable positions in a
term t13

VPos(t) VPos(t) {\cal VP}os(t) set of variable positions in a term t14

� � \mbox{\footnotesize

$\Lambda$}

top-most position15

p � q p � q p \leq q position p is above q16

p k q p k q p \parallel q disjoint positions17

p 6k q p 6k q p \not\parallel q non-disjoint positions18

tjp tjp t|_p subterm of t at position p19

10Ground terms are terms without variables.
11G can be superscripted to designate in�nite, or rational, terms.
12A positionmay be represented as a sequence of positive integers pointing to a particular subterm

in a term (seen as an ordered labeled tree). Positions have often been called \occurrences" in the
literature, thereby confusing a position with the subterm it designates. We prefer to restrict the
use of occurrence to the latter. This suggests the use of Pos for the set of all positions in a term,
rather than Dom.

13I.e. fp : tjp =2 Xg in the notation below.
14I.e. fp : tjp 2 Xg in the notation below.
15The position of the root or outermost symbol. Alternate symbols, e.g. �, are overused.
16A position p is above position q (and q is below p), if p is a pre�x of q.
17Two positions are disjoint, or parallel, if neither is above the other.
18Two positions are non-disjoint if one is above the other. That is, 6k= (� [ �).
19This notation for subterm possesses a nice symmetry with the notations that follow: t[tjp]p =

t = s[t]pjp.



t[�]p t[�]p t[\cdot]_p context t with designated
position p20

t[s]p t[s]p t[s]_p subterm of t at position p is
replaced by s21

t[s] t[s] t[s] ... for short

t[s1; . . . ; sn]p1;...;pn t[s1; . . . ; sn]p1;...;pn t[s_1,\ldots,s_n]

_{p_1,\ldots,p_n}

subterms of t at disjoint
positions pi are replaced by si

t[s]� t[s]� t[s]_\Pi subterms of t at set � of
disjoint positions are replaced
by s

Dom(�) Dom(�) {\cal D}om(\sigma) variable-domain of substitu-
tion �22

VRan(�) VRan(�) {\cal VR}an(\sigma) variable-range of substitution
�23

f. . .xi 7! si . . .g f. . .xi 7! si . . .g \{\ldots x_i \mapsto

s_i \ldots\}

substitution with �nite
domain f. . .xi . . .g24

�jV �jV \sigma_{|V} substitution � restricted to
variables in set V

t� t� t\sigma application of substitution �
to term t25

�� �� \sigma\rho composition of substitutions
� and �26

20A context is a term with a bound variable. The above notation is preferable to the more precise
lambda-notation �x:t[x]p.

21This notation avoids extra arrows and allows for convenient abbreviation.
22By variable-domain, or just domain, is meant the variables in X for which something else is

substituted, i.e. fx 2 X : x� 6= xg.
23By variable-range, or just range, is meant the variables in X that are introduced by the substi-

tution, i.e. VRan(�) = [x2VDom(�)Var(x�).
24The symbol 7! is exactly what's called for here. A substitution is called a renaming (\conver-

sion" is also used) when all si are distinct variables.



25Many authors prefer pre�x notation. Sometimes, as here, intuitiveness should take precedence
over prevalent mathematical usage.

26That is, � followed by �.



s = t s = t s = t syntactic equality of s and t27

P ?(� � �) P ?(� � �) P^?(\cdots) satis�ability of a predicate P (� � �)

s=? t s
?
= t s \mathop{=}^? t syntactic uni�ability of s and t28

l � r l � r l \approx r equational axiom with left-hand
side l and right-hand side r29

l ' r l ' r l \simeq r equational axiom with one side l
and other side r30

s$p
e t s

p
$
e
t s \mathop{

\leftrightarrow}_e^p t

application of axiom e at position
p31

s$E t s$
E
t s \mathop{

\leftrightarrow}_E t

... for short

s=E t s=
E
t s \mathop{=}_E t equality of s and t in the models

of the axioms E32

`I `
I

\mathop{\vdash}_I inference using system I

s$�
E t s

�
$
E
t s \mathop{

\leftrightarrow}_E^* t

provability of equality of s and t
with equational axioms E33

27I.e. s and t are identical terms in T .
28I.e. 9� s� = t�. This notation treats uni�cation as satis�ability of the equality predicate.
29Here, equational axioms are ordered pairs; l and r do not play the same role. Their usual appli-

cation, however, is symmetric: the equational theory associated with a set of axioms is the re
exive,
symmetric, transitive closure of the relation s[l�]p � s[r�]p, for all contexts s[�]p, substitutions �
and axioms l � r.

30Here, the axioms are viewed as unordered pairs, which is also very useful. In this case, the
equational theory is simply the re
exive-transitive closure of the same relation as in the previous
footnote. Accordingly, we use ' (and not �) when we wish to stress that l and r play the same
role.

31If e = l � r, then sjp = l� and t = s[r�]p, for some substitution �. If e = l ' r, then either
sjp = l� and t = s[r�]p or sjp = r� and t = s[l�]p, for some substitution �.

32I.e. j=E s � t.
33I.e. `E s � t (s � t is in the theory of E). By Birkho�'s Completeness Theorem for equational

logic, =E and $�
E coincide.



s0$
p0
e0 s1 � � �sn s0

p0
$
e0
s1 � � �sn s_0 \mathop{

\leftrightarrow}^{

p_0}_{e_0} s_1

\cdots s_n

equational proof of s0 ' sn
34

I(E) I(E) {\cal I}(E) inductive theory of E35

s=I(E) t s =
I(E)

t s \mathop{=}_{{\cal

I}(E)} t

equality of s and t in the initial
model of E

s=?
E t s

?
=
E
t s \mathop{=}_E^? t semantic uni�ability of s and t in

the models of E36

l! r l! r l \rightarrow r rewrite rule with left-hand side l
and right-hand side r

l$ r l$ r l \leftrightarrow r two-way rewrite rule with one
side l and other r

l *) r l *) r l\rightleftharpoons

r

either-way rewrite rule with one
side l and other r37

c j l! r c j l! r c \mid l \rightarrow

r

conditional rewrite rule with
condition c, left-hand side l and
right-hand side r

!p
r

p
!
r

\mathop{

\rightarrow}_r^p

rewriting with rule r at position
p38

34That is, a proof is a �nite derivation of the relation$, \justi�ed" by axiom and position. When
necessary, the speci�c instance ei�i of an axiom can be indicated.

35By de�nition, an equation is true in I(E) if all its ground instances are true in E.
36That is, satis�ability of s =E t, or 9� s� =E t�.
37Ordered rewriting uses equational axioms in one direction or the other, depending on the in-

stance under consideration. For example, one may use the associativity axiom (x+y)+z � x+(y+z)
from left to right to rewrite (c+ b) + a to c+ (b+ a), or from right-to-left to rewrite a+ (a+ b) to
(a+ a) + b. See note 43.

38By de�nition, s!p
l!r t if sjp = l� and t = s[r�]p, for some substitution �. The term sjp is the

redex. This notation adapts conveniently to give the relative position of a redex: !6=p
r if the redex

is other than p; !<p
r if it's strictly above p; !>p

r if it's strictly below; !?p
r if it's either above or

below; !
kp
r if it's neither. To specify the substitution �, called the match of pattern l to the redex,



we subscript by rule instance instead: s!p
r� t. For two-way rules, s!

p
l$r t if s!

p
l!r t or s!

p
r!l t.



!R !
R

\mathop{\rightarrow}_R rewrite closure of binary relation
R on terms39

�!p1;...;pn
R

p1;...;pn
���!

R
\mathop{\mbox

{\rightarrowfill}}

_R^{p_1,\ldots,p_n}40

rewriting with set of rules R at n
successive positions p1 . . .pn

41

!�
R

�
!
R

\mathop{\rightarrow

}_R^\Pi

rewriting with set of rules R at set
of disjoint positions �

!
k
R

k
!
R

\mathop{\rightarrow

}_R^\|

parallel rewriting with set of rules
R42 (without specifying positions)

!p
r�

p
�!
r�

\mathop{\longrightarrow}_{

r^\succ}^p

ordered rewrite relation with
either-way rewrite rule r at
position p and ordering �43

!E� �!
E�

\mathop{\longrightarrow

}_{E^\succ}

ordered rewrite relation with
either-way rewrite rules E and
ordering �

!� !
�

\mathop{\rightarrow}_\succ ... for short

!R=S �!
R=S

\mathop{\longrightarrow

}_{R/S}

rewrite relation with rules R
modulo equations S44

39The rewrite closure !R is the smallest relation containing R having the replacement property
(s ! t implies u[s]p ! u[t]p, for all terms s and t and contexts u[�]p) and full invariance property
(s ! t implies s� ! t�, for all terms s and t and for all substitutions �). There is no reason to
use the overabused adjective \monotonic" for relations with these closure properties. A term t is
reducible (with respect to a system R) if a subterm of t is a redex, and is ground-reducible if every
ground instance is reducible.

40In in-line usage, we use the regular-length arrow; in displayed equations, we usually use long
ones or variable length ones as here.

41The notions of derivation and proof as justi�ed derivation carry over to sequences of rewrites.
42In parallel rewriting, zero or more disjoint redexes may be rewritten in one step. The Parallel

Moves Lemma can accordingly be phrased:  k
r � !

k
s � !

k
s �  

k
r when r and s are orthogonal

rules. Rules are orthogonal (formerly called \regular") if they are left-linear and their left-hand
sides do not overlap.

43By de�nition, s !p
r� t if s $p

r t and s � t. (This is the prefered de�nition.) We're tempted to
suggest the symbol ����p

r instead, but this arrow requires a complicated de�nition in LaTEX.
44By de�nition, s!R=S t if s$�

S �!R �$
�
S t. This is (congruence-) class rewriting.



!SnR �!
SnR

\mathop{\longrightarrow}_{S

\backslash R}

extended rewrite relation with
rules R and equations S45

;
p
r

p
;

r
\mathop{\leadsto}_r^p narrowing with rewrite rule r at

position p46

> > \rhd proper subterm ordering

�� �� \stackrel{\scriptscriptstyle

\bullet}{}\!\!\!\geq 47
subsumption ordering on terms or
substitutions48

�

=
�

= \stackrel{\scriptscriptstyle

\bullet}{}{=}

literal similarity of terms or
substitutions49

�� �� \stackrel{\scriptscriptstyle

\bullet}{}\!\!\!\!\!\!\unrhd

encompassment ordering on
terms50

��E ��E \stackrel{\scriptscriptstyle

\bullet}{}\!\!\!\geq_E

subsumption ordering modulo E51

45By de�nition, s !p
SnR t if s (

�p
 !
S

)� �
p
!
R
t. The suggested notation is meant to draw attention

to the stipulation that all S-steps take place before the rewrite and at positions at or below it; it
is more meaningful than !R;S .

46By de�nition, s ;p
l!r t, if t = s�[r�]p, where � is the most general uni�er of sjp and l, with

p 2 FPos(s). Many of the same variations as used for ! apply to ;; e.g. s ;(l�!r�)=S t means
that � is the most general uni�er of l and s0jp, for some s0 =S s, p 2 Pos(s0), and t =S s0�[r�]p.
A normal narrowing step is ;R � !!

R. A basic narrowing step operates on pairs of terms and
substitutions: s� ;p

l!r t� , if t = s[r]p and � = ��, for � as above.
47Backward motions \! and sizes may need �ne-tuning in size-changing situations, like footnotes.
48By de�nition, t �� s if t = s�, for some �. Subsumption is extended to a quasi-ordering on

substitutions: � �� � if x� �� x� , for all x 2 VDom(�)[ VDom(�).
49Literal similarity is the equivalence associated with ��. That is s

�

= t, sometimes read as s is a
\variant" of t, if s = t�, for some renaming �. This explains the dot the two notations share.

50The encompassment ordering is de�ned as the subterm ordering composed with the subsumption
ordering, i.e. t ��s if tjp = s�, for some position p and substitution �. \Encompassment" conveys
the notion that s \appears" in t, but with context t[�]p \above" and substitution � \below" (and
is therefore a better term than \containment" or \specialization"). This is why the notation for
encompassment combines those for subterm and subsumption. Encompassment is used to de�ne
(inter-) reduced sets of rules, that is sets R of rules such that for every rule l ! r, r is in normal
form, as are all terms smaller than l in the encompassment ordering. (This coincides with the
usual de�nition of \reduced" when R is convergent.) Since reduced convergent sets of rules enjoy



(�
�1

; . . . ;�
�n

) (�
�1

; . . . ;�
�n

) ({\mathop{\succ }\limits_

\sim}_1,\ldots,{\mathop{

\succ}\limits_\sim}_n)

component-wise extension of
orderings �

�1
; . . . ;�

�n

52

(�
�1

; . . . ;�
�n

)lex (�
�1

; . . . ;�
�n

)lex ({\mathop{\succ }\limits_

\sim}_1,\ldots,{\mathop{

\succ}\limits_\sim}_n)_{lex}

lexicographic extension of
orderings �

�1
; . . . ;�

�n

53

�
�

n

lex
�
�

n

lex
{\mathop{\succ}

\limits_\sim}^n_{lex}

lexicographic extension of
ordering �

�
to n-tuples54

�
�

�

lex
�
�

�

lex
{\mathop{\succ}

\limits_\sim}^*_{lex}

lexicographic extension of
ordering �

�
to arbitrary

sequences55

�mul �
mul

\mathop{\succ}_{mul} extension of ordering � to
multisets56

�
� emb

�
� emb

{\mathop{\prec

}\limits_\sim}_{emb}

homeomorphic embedding
relation for well-quasi
ordering �

�
on F57

a uniqueness property, we term them canonical.
51By de�nition, t ��E s if t =E s�, for some �. This ordering, too, extends to an ordering on

substitutions. So, the subsumption ordering modulo E on substitutions restricted to variables in
some set V amounts to �jV ��E �jV .

52By de�nition, (s1; . . . ; sn) (�
�1

; . . . ;�
�n

) (t1; . . . ; tn) if si�
� i
ti for all i = 1; . . . ; n.

53 Let �i and �i be the equivalence and (strict) partial ordering associated with the quasi-ordering
�
� i
, respectively. By de�nition, (s1; . . . ; sn) (�

�1
; . . . ;�

�n
)lex (t1; . . . ; tn) if s1 �1 t1, or s1 �1 t1 and

(s2; . . . ; sn) (�
�2

; . . . ;�
�n

)lex (t2; . . . ; tn). If the �i are well-founded, then so is the strict part of

(�
�1

; . . . ;�
�n

)lex|denoted (�1; . . . ;�n)lex.
54An abbreviation of (�

�
; . . . ;�

�
)lex. We write �n

lex for the associated strict partial-ordering.
55The strict part ��lex of this ordering is not well-founded, since sequences may be of arbitrary

length.
56By de�nition, �mul is the smallest partial ordering containing the following relation between

multisets: S [ fsg �mul S [ ft1; . . . ; tng for s � t1; . . .tn (n � 0). If � is well-founded, so is �mul.
57By de�nition, s�

� emb
t if s�

� emb
tjp2Pos(t) or if Head(s)��

Head(t), and there exist 1 � j1 < � � � <

jarity(Head(s)) � arity(Head(t)) such that sji�
�emb

tjji . By Kruskal's Tree Theorem, homeomorphic

embedding is a well-quasi ordering of T if �
�
is a well-quasi-ordering of F .



�lpo �
lpo

\mathop{\succ}_{lpo} lexicographic path ordering
with precedence �58

�mpo �
mpo

\mathop{\succ}_{mpo} multiset path ordering with
precedence �59

�rpo �
rpo

\mathop{\succ}_{rpo} recursive path ordering with
precedence �60

58By de�nition, s�
� lpo

t if s�
� lpo

tjp2Pos(t) and one of the following holds: Head(s) � Head(t),

or sjp2Pos(s)�� lpo
t, or Head(s) � Head(t) and (sj1; . . . ; sjn) (�

� lpo
)nlex (tj1; . . . ; tjn), where n =

arity(Head(s)) = arity(Head(t)).
59This is the original \recursive path ordering", with multiset \status" of opera-

tors, for which the last case in note 58 is replaced by a comparison of multisets:
fsj1; . . . ; sjarity(Head(s))g (�

�mpo
)mul ftj1; . . . ; tjarity(Head(t))g. Equivalence of multisets means that

they are the same up to equivalence of elements under �mpo (that is, under the intersection of
�
�mpo

and its inverse �
�mpo

).

60With multiset and/or lexicographic \status" of operators.


