
Matching and Uni�cation in Rewrite Theories

Subrata Mitra
Application Development Technology Institute

IBM Software Solutions Division
555 Bailey Avenue, San Jose, CA 95141

mitra@vnet.ibm.com

Phone [+1] 408-463-4276

Nachum Dershowitz
Department of Computer Science

University of Illinois
Urbana, IL 61801, U.S.A.
nachum@cs.uiuc.edu

Phone [+1] 217-333-4219

January 1996

Abstract

\Semantic uni�cation" is the process of generating a basis set of
substitutions (of terms for variables) that makes two given terms equal
in a speci�ed theory. Semantic uni�cation is an important component
of some theorem provers. \Semantic matching," a simpler variant of
uni�cation, where the substitution is made in only one of the terms,
has potential usage in programming language interpreters.

Decidable matching is required for pattern application in pattern-
directed languages, while decidable uni�cation is useful for theorem
proving modulo an equational theory.

In this paper we restrict ourselves to matching and uni�cation prob-
lems in theories that can be presented as convergent rewrite systems,
that is, �nite sets of equations that compute unique output values when
applied (from left-to-right) to input values. The new results presented
here, together with existing results, provide a much �ner characteriza-
tion of decidable matching and uni�cation than was available before.
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1 Introduction

Equation solving is the process of �nding a substitution (of terms for vari-
ables) that makes two terms equal in a given theory, while semantic uni�-
cation is the process which generates a basis set (for any solution to a given
goal, the basis set must contain an element that is equivalent in the under-
lying theory to one that is at least as general) of such unifying substitutions.
A simpler version of this problem, semantic matching, restricts the substitu-
tion to apply only to one of the terms (called the pattern). While semantic
uni�cation is used in some theorem provers for performing deductions mod-
ulo an equational theory (the theory of associativity and commutativity is
a prime example), semantic matching has potential applications in pattern-
directed languages. For example, in a functional language, we may de�ne
append and reverse on lists using the following equations:

append(nil; x) = x; append(x � y; z) = x � append(y; z)
reverse(nil) = nil; reverse(x � y) = append(reverse(y); x � nil)

where nil denotes the empty list, and x � y represents a list with head
x and tail y. Given such a set of equations, we could solve a query of

the form x
?
= append(nil; nil) by evaluating the right-hand side expression

append(nil; nil), using the equations as left-to-right rewrite rules, to yield
the solution fx 7! nilg. Given these equations, the following de�nition of
palindromes comes for free:

palindrome(append(x; reverse(x))) = true

palindrome(append(x; y � reverse(x))) = true

In order to use such de�nitions in a functional language, it is necessary to
match patterns of the form append(x; reverse(x)) to values like 1 � 2 � 2 � 1 �
nil. To perform such matchings (which is not possible in current functional
languages), a decidable matching algorithm is required. Similarly, if we
could unifying with respect to append, we could solve queries of the form

append(x; x)
?
=x in logic-programming languages.

We will say that a rewrite system is convergent (technically, ground
convergent) if every ground term has exactly one normal form. For such
systems, every reducible substitution is equivalent in the theory to an irre-
ducible one; hence, one can ignore reducible solutions to semantic uni�cation

and matching problems. For example, for a goal like append(1�x; 2�nil)
?
=1�2�

nil, in the theory mentioned above, the only solution of interest is, fx 7! nilg
(and not fx 7! append(nil; nil)g, and so forth). It is well-known that any
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strategy for �nding a complete set of uni�ers, or of matchings, for two
terms, with respect to a given theory, may not terminate, even when the
theory is presented as a �nite and convergent (terminating and con
uent)
set of rewrite rules; see, for example, [Heilbrunner and H�olldobler, 1987;
Bockmayr, 1987]. On the other hand, for some special classes of theories|
associativity, for instance|semantic uni�cation is decidable.

In this paper, we are interested in uni�cation and matching in theories
that have a convergent presentation. Since the general matching and uni�-
cation problems with convergent systems are known to be undecidable, we
are interested in characterizing restricted convergent systems (using mainly
simple syntactic measures) for which, either

� the uni�cation and/or matching problem is decidable, which consti-
tutes the positive cases (i.e., restrictions over and above convergence
results in decidability), or

� the uni�cation and/or matching problem continues to be undecidable,
which constitutes negative results.

Thus, as such, we are not interested in speci�c theories such as associativity
and commutativity. Our aim is to be able to characterize classes of rewrite
systems which has either a decidable uni�cation/matching problem, or for
which the problem(s) is (are) known to be undecidable. To prove undecid-
ability, we will use a single counterexample, but will ensure that the cor-
responding presentation of the theory obeys the required restrictions. The
only decidability proof of this paper would use a well-founded ordering to
show that a complete procedure for the required problem is also terminating.

We use standard terminology and notations about rewrite systems. Miss-
ing de�nitions can be found in [Dershowitz and Jouannaud, 1990], which is
a survey of the �eld. Given a set F of function symbols and a (denumerable)
set X of variables, the set of (�rst-order) terms T (F ;X ) is the smallest set
containing X such that f(t1; : : : ; tn) is in T (F ;X ) whenever f 2 F and
ti 2 T (F ;X ) for i = 1; : : : ; n. A term t is said to be linear in a variable x if
x occurs exactly once in t, while a term is linear if it is linear with respect
to each of its variables, for example, x + (s(y) � z). The depth of a term is
the length of the longest path in its tree representation.

Reasoning with equations requires replacement of subterms by other
terms. A substitution is a special kind of replacement operation, uniquely
de�ned by a mapping from variables to terms which is equal to identity
almost everywhere, and written out as fx1 7! s1; : : : ; xm 7! smg.
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A rewrite rule is an ordered equation between terms, written as l ! r,
for terms l and r. A rule is (left-) right-linear is its (left-) right-hand side
is linear, it is linear if it is both left- and right-linear, and is non-erasing
if every variable in l also appears in r. A rewrite system is a �nite set of
rewrite rules. We use ! to denote a single step of derivation (application of
a rewrite rule), and !� as its re
exive-transitive closure. A term s is said
to be irreducible or in normal form if there is no term t such that s ! t.
We write s !! t if s !� t and t is in normal form, and we say that t is
the normal form of s. A rewrite relation (!) is terminating if there exists
no in�nite chain of rewrites of the form t1 ! t2 ! : : : ! tk : : :. A rewrite
relation is (ground) con
uent if, whenever two (ground) terms s and t are
derivable from a term u, then a term v is derivable from both s and t, that
is, if u!� s and u!� t then there must be a term v such that s!� v and
t!� v. A rewrite system which is both terminating and (ground) con
uent
is said to be (ground) convergent.

It is sometimes convenient to partition F into two disjoint sets: de�ned
functions and constructors. For our purpose any function symbol that ap-
pears at the top of the left-hand side of a rule is de�ned, while all others are
constructors. A term is said to be 
at if it has at most one de�ned function
with no function symbol nested below the de�ned function. Also, we will
say that a rewrite system has a property (for example, left-linearity) if each
of its rules has the said property.

Given a convergent rewrite system R, we denote an uni�cation goal as

s
?
= t, for terms s and t. We say that the goal s

?
= t has a solution � if s� !!

w; t� !! w, for some term w. Similarly, a matching goal is written as s!? t

(where t is a normal form) and has a solution � if s� !! t. Furthermore,
since we are interested in convergent systems alone, we use the notation

s!? x; t!? x to stand for an uni�cation goal s
?
= t (x is a new variable, not

in either s or t); this pair of goals has a solution � if s� !! x�; t� !! x�.
For convergent systems, in general, semantic matching is as di�cult as

uni�cation (for example, solving the goal s
?
= t in a convergent theory R is

equivalent to solving the goal eq(s; t)!? true in the theory R [ eq(x; x)!
true). For non-erasing and left-linear rewrite systems matching is simpler
than uni�cation, as we will show in Section 3. However, these restrictions
themselves do not su�ce for decidable matching in such theories, as we will
discuss in Section 4. In Section 4 we will introduce additional restrictions
on the rewrite system such that matching becomes decidable, and show that
each additional restriction that we put is necessary (i.e., matching becomes
undecidable when we drop any of the additional restrictions). We start in

4



Section 2 by enumerating positive and negative results where the systems
under consideration could be linear and/or 
at.

2 Uni�cation in Linear or Flat Systems

In this section we discuss matching and uni�cation in convergent systems
that additionally have restrictions of linearity or 
atness (or both). Linear-
ity and 
atness are simple syntactic restrictions on the rewrite rules; it is
easy to check if a given rewrite system has these properties. Such restric-
tions have been used extensively in the study of properties such as modular
termination and con
uence of rewrite systems. In this section, we use these
restrictions to characterize decidability of matching and uni�cation problems
with convergent rewrite systems. The known results (including the new ones
presented in this section) are summarized in Table 1. Some explanations are

Restriction Decidable Some References

None no [Bockmayr, 1987] and others

Linear no [Heilbrunner and H�olldobler, 1987]
Left-linear no [Dershowitz and Jouannaud, 1990], also as an out-

come of [Heilbrunner and H�olldobler, 1987]
Right-linear no as an outcome of [Heilbrunner and H�olldobler, 1987]

Left-
at yes [Christian, 1992]
Right-
at no Theorems 1 and 2
Flat yes as an outcome of [Christian, 1992]

Table 1: Results on uni�cation and matching

in order:

� Each row of the table de�nes a new class of rewrite systems, by pre-
senting the additional restrictions, over and above convergence.

� For each of the cases listed above, both matching and uni�cation prob-
lems have the same property (i.e., either they are both decidable or
both undecidable).

� The only positive result is the one from Christian [1992]. However,
rewrite systems with 
at left-hand sides are truly restrictive, and do
not allow any recursively de�ned functions.
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� Although linearity and 
at right-hand sides do not guarantee decid-
ability (as illustrated in the proof of Theorem 2), a further restriction
does [Dershowitz and Mitra, 1993]. The additional restriction is to
allow only one rule per de�ned function which has a right-hand side
that is 
at and contains exactly one de�ned function therein (i.e., for
each de�ned function, there could be many rules with constructors and
variables in the right-hand sides, but only one with a de�ned function
on the right-hand side).

� In the results listed in Table 1 we have used 
atness and linearity as
additional restrictions on convergent systems. It is possible to combine
the two requirements: For left-
at systems there is no requirement on
linearity of any kind in the proof given in [Christian, 1992]; thus,
the problems are decidable for left-
at non-linear systems. On the
contrary, the counterexample in Theorem 2 is of a linear system with

at right-hand sides. Therefore, even for linear right-
at systems, the
matching and uni�cation problems continue to be undecidable.

In studying 
at-systems, we started with the following result:

Theorem 1. There is no decision procedure for the uni�cation or matching
problems in a convergent rewrite system, in which every right-hand side is

at.

Proof. We show that the undecidable problem of emptyness of the inter-
section of two simple context-free languages can be encoded as a matching
goal using a rewrite system with the given restrictions. See [Heilbrunner
and H�olldobler, 1987] for the de�nition of a simple context free language,
and a construction which motivated the following example:

Example 1. Consider the simple grammar in Greibach Normal Form
(GNF) G:

G � fG) aBC;B ) b; C ) cg;

and the convergent rewrite system (the rewrite system has one de�ned func-
tion f ; cons, �, each terminal, non-terminal and the end symbol, $, of G are
constructors):

f(G � x; cons(x0; x00); a � z) ! fG(x
0; x0; x; x00; z) (1)

fG(B � (C � x); x0; x; y; z) ! f(x0; y; z) (2)

f(B � x; cons($; y); b � z) ! f(x; y; z) (3)

f(C � x; cons($; y); c � z) ! f(x; y; z) (4)
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For the construction of f , we have

f(G � $; x; z)
?
! f($; $; $) if and only if z 2 G:

In general, given two simple context-free grammars F and G, both in
GNF (with start symbols F and G, respectively), we can construct a rewrite
system with two de�ned functions, say f and g, such that f simulates a top-
down parser for F , and g for G. The construction is similar to the one given
for Example 1 above; we have to use two rules (similar to Rules 1 and 2)
to simulate each production of the grammar (except when the production
takes a non-terminal to a terminal string, in which case a single rule, such
as Rule 3, would su�ce). We need two rules for any general production
(unlike [Heilbrunner and H�olldobler, 1987]) in order to ensure that the right-
hand sides of rules are 
at. With this construction, a goal of the form

c(f(F � $; x; z); g(G � $; x0; z))
?
! c(f($; $; $); g($; $; $))

(where c is a constructor) has a solution if and only if z is a string in the
intersection of the two grammars, i.e,

c(f(F �$; x; z); g(G�$; x0; z))
?
! c(f($; $; $); g($; $; $)) if and only if z 2 F and z 2 G:

Since it is undecidable if the intersection of two simple context free languages
is empty [Heilbrunner and H�olldobler, 1987], matching (and therefore uni�-
cation) in such a rewrite system is also undecidable.

The proof of termination and con
uence of the rewrite system with de-
�ned functions f and g can be done based on observations about production
rules of a simple grammar in GNF.

In the construction of Theorem 1 we had to use non-linear rules to get
undecidability. However, even for strictly linear systems, the matching and
uni�cation problems continue to be undecidable:

Theorem 2. There is no decision procedure for the uni�cation or matching
problem in a (left- and right-) linear convergent rewrite system, in which
every right-hand side is 
at.

Proof. We show that semantic uni�cation in such theories can be used to
simulate the undecidable Post's Correspondence Problem (PCP, [Hopcroft
and Ullman, 1979]).

7



An instance of PCP consists of two lists A = w1; : : : ; wk and B =
x1; : : : ; xk, of strings over some alphabet �. This instance has a solution
if there exists a sequence of integers i1; : : : ; im; m � 1, such that

wi1 ; : : : ; wim = xi1 ; : : : ; xim :

The following example illustrates how semantic uni�cation can be used to
generate solutions to a particular instance of the Post's Correspondence
Problem:

Example 2. Let � = fs; pg, while A and B are as given below:

List A List B

i wi xi
1 s sss

2 spsss sp

3 sp p

We construct the following convergent rewrite system R:

eq(s(x); s(y)) ! eq(x; y)
eq(p(x); p(y)) ! eq(x; y)

firsts(nil) ! nil

firsts(1 � x) ! s(firsts(x))
firsts(2 � x) ! s(p(s(s(s(firsts(x))))))
firsts(3 � x) ! s(p(firsts(x)))

snds(nil) ! nil

snds(1 � y) ! s(s(s(snds(y))))
snds(2 � y) ! s(p(snds(y)))
snds(3 � y) ! p(snds(y))

It is easy to see that this instance of PCP has a solution if and only if the
matching goal

eq(firsts(x � y); snds(x � y))
?
! eq(nil; nil)

is satis�able.

>From the construction, it is evident that, given any instance of PCP, we can
similarly construct a convergent rewrite system with the required syntactic
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restrictions, such that the matching problem described above has a solution
if and only if the instance of PCP under consideration has one. The proof
of convergence of the resulting rewrite system is based on the fact that no
two left-hand sides unify, and that the system is terminating which can
be shown using the recursive path ordering with the following precedence:
firsts > snds > s > p > nil. Therefore, a decision procedure for matching
(and thus uni�cation) in such rewrite systems could be used to decide the
Post's Correspondence Problem, which is impossible [Hopcroft and Ullman,
1979].

3 A Complete Matching Procedure

For convergent systems, the uni�cation (and therefore matching) problem
is recursively enumerable. In other words, there exists a procedure that can
�nd a uni�er (match) whenever one exists. Such uni�cation (matching) pro-
cedures have been studied extensively in the literature; see, for example [Fay,
1979; Hullot, 1980; H�olldobler, 1987; Dershowitz and Sivakumar, 1987;
Martelli et al., 1989; Gallier and Snyder, 1990; Dershowitz et al., 1990],
and [Jouannaud and Kirchner, 1991], which is a survey of uni�cation.

If we restrict ourselves to convergent rewrite systems that are, addition-
ally, either non-erasing or left-linear, then the non-deterministic transforma-
tion rules of Table 2 constitutes a complete set for the matching problem:

Theorem 3 (Completeness). Let R be either a left-linear or a non-erasing
convergent rewrite system. If the goal s!?N has a solution � (that is,
s� !! N), then there is a derivation of the form

fs
?
!Ng

!
; �;

such that � is a substitution at least as general as �.

Proof. See Appendix.

In fact, for non-erasing systems, Bind can be further simpli�ed, as shown
in [Mitra, 1994]. The system of Table 2, however, is incomplete for general
uni�cation: For example, if we have the goals s!? x; t!? x, for terms s and t
and variable x, such that both s and t have a constructor at the root position,
then none of the transformation rules apply (Eliminate or Bind doesn't
apply, since s and t are non-variable terms; furthermore, we cannot mutate,
since the root symbols are constructors, and we cannot decompose since the
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Eliminate fx!? tg
;

fx 7! tg
where x is a free-variable that does not occur in t

Bind fx!? s; x 7! tg
;

x 7! s;mgu(s; t)
if x does not occur in s

Mutate ff(s1; : : : ; sn)!
? tg

;

fs1!
? l1; : : : ; sn!

? ln; r!
? tg

where f(l1; : : : ; ln)! r is a renamed rule in R

Decompose ff(s1; : : : ; sn)!
? f(t1; : : : ; tn)g
;

fs1!? t1; : : : ; sn!? tng

Table 2: Transformation rules for semantic matching with left-linear or non-
erasing convergent systems

right-hand sides are variables). However, if we augment the transformation
rules of Table 2 with those of Table 3, the resulting system is su�cient for
generating a complete set of uni�ers in theories de�ned by convergent rewrite
systems [Mitra, 1994]. In fact, Imitate is the only new transformation rule
that we need, since Apply is used for matching whenever bindings take
place (see the proof of Theorem 3). In this sense, matching is simpler than
uni�cation for such restricted convergent systems.

4 Decidable Matching

For convergent systems, in general, semantic matching is as di�cult as se-

mantic uni�cation. For example, solving the goal s
?
= t in a convergent

theory R is equivalent to solving the goal eq(s; t)!? true in the theory
R [ eq(x; x) ! true, for a new function symbol eq and constant true; the
augmented theory is convergent since eq is a new symbol, not in R. However,
in Theorem 3 we have identi�ed two classes of (those of left-linear and non-
erasing) systems for which matching is simpler than uni�cation. Therefore,
one natural question is: Under what conditions is matching decidable (inde-
pendent of uni�cation) for such classes of systems? Unfortunately, as listed
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Imitate f(s1; : : : ; sn)!? x

;

s1!
? x1; : : : ; sn!

? xn; x 7! f(x1; : : : ; xn)
where x is an unbound variable, and x1; : : : ; xn are new variables

Apply s!? t; �

;

s!? t�; �

Table 3: Additional transformation rules for semantic uni�cation

in Table 1, left-linearity alone is not enough to ensure decidability of match-
ing; in fact, the rewrite system constructed to simulate PCP in Example 2
is linear and non-erasing; therefore, neither linearity, nor non-erasing (nor a
combination of the two) is a strong enough criterion to guarantee decidabil-
ity of matching. On the positive side, Proposition 4 identi�es one class of
rewrite systems (with additional restrictions, over and above non-erasing)
for which the matching problem is indeed decidable:

De�nition 1 (Non-Decreasing). A function symbol f is de�ned to be non-
decreasing (with respect to depth) if whenever f(s1; : : : ; sn) !

! N , where
each si and N are ground normal forms, depth(si) � depth(N). Any function
which does not have this property is said to be a (potentially) decreasing
function.

Proposition 4 ([Dershowitz et al., 1992]). Let R be a convergent non-
erasing rewrite system. If all right-hand sides for rules in R are either
variables, or have a constructor at the root, and all right-hand sides are
such that no de�ned function is nested below any decreasing function, then
the semantic matching problem is decidable for R.

Furthermore, it was shown, in [Dershowitz et al., 1992], that each of the
restrictions listed in Proposition 4 is necessary to have decidable matching.
In the same spirit, we have Theorem 5 for left-linear systems. For this
theorem, we will assume that constants and variables have depth one:

Theorem 5. Let R be a convergent left-linear rewrite system. If for every
rule f(l1; : : : ; ln)! r in R

1. each li; 1 � i � n, is of depth at most two,
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2. r is either a variable or has a constructor at the root, and

3. whenever at least one lj has depth greater than one, r has depth greater
than one,

then the semantic matching problem is decidable for R.

Proof. See Appendix.

Example 3. The following de�nition of squaring using + and � obeys all
the syntactic restrictions of Theorem 5, and therefore has a decidable match-
ing problem:

0 + x ! x

s(x) + y ! s(x+ y)

0 � x ! 0
x � 0 ! 0

s(x) � s(y) ! s(y + (x � s(y)))

sq(0) ! 0
sq(s(x)) ! s(sq(x) + (s(s(0)) � x))

Example 4. As another example, consider inserting a number in its correct
place, in a list of numbers:

min(x; 0) ! 0
min(0; x) ! 0

min(s(x); s(y)) ! s(min(x; y))

max(x; 0) ! x

max(0; x) ! x

max(s(x); s(y)) ! s(max(x; y))

insert(x; nil) ! x � nil
insert(x; y � z) ! min(x; y) � insert(max(x; y); z)

We now show that each of the restrictions used in Theorem 5 is neces-
sary for decidability: If we drop the requirement of left-linearity, then we
could get undecidability, essentially, by encoding the more general uni�ca-
tion problem in left-linear systems as a matching problem (see Section 4
of [Dershowitz et al., 1992] for examples). In the remaining cases, we show
that matching of certain goals would result in uni�cation in the theories of
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addition (+) and multiplication (�). (Notice that the de�nitions of + and
� in Example 3 obey all the syntactic restrictions of Theorem 5. Thus, the
matching problem is decidable for this system. However, the uni�cation
problem is undecidable, due to the undecidability of the Hilbert's Tenth
Problem.) First of all, we relax Condition 3, that is, we allow subterms of
depth greater than one below the root on the left-hand side, without requir-
ing that the right-hand side be of depth at least two. The following example
illustrates the problem:

Example 5. Consider the rewrite system consisting of the rules for addition
and multiplication (�rst 5 rules from Example 3) together with the following
rewrite rules (the collective system can be proved to be convergent):

f(1) ! 1 (5)

f(s(1)) ! 1 (6)

g(1; 1) ! s(1) (7)

g(s(x); s(y)) ! s(f(g(x; y))) (8)

Rule 6 is the only one which violates the nesting criterion.

Lemma 6. Given the rewrite system of Example 5, we have

g(x; y) = s(1) if and only if x = y = sn(1); n � 0;

where s0(1) = 1; sn+1(1) = s(sn(1)).

Proof. Let > be the ordering on terms such that s > t if either s ! t or
t is a proper subterm of s. Since ! is well-founded, so is >. We prove the
lemma by induction on the ordering >:

Base When n = 0, we have g(1; 1)! s(1). Therefore, the proposition holds
for the base case.

Induction We now establish the proposition for n + 1:

g(sn+1(1); sn+1(1)) � g(s(sn(1)); s(sn(1)))! s(f(g(sn(1); sn(1)))):

Therefore, using the inductive hypothesis (since g(sn+1(1); sn+1(1)) >
g(sn(1); sn(1))), we get:

g(sn+1(1); sn+1(1))!� s(f(g(sn(1); sn(1)))) = s(f(s(1)))! s(1);

which completes the proof (we have used � to denote syntactic equal-
ity, while = has been used for the inductive step).
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Theorem 7. The matching problem is undecidable for the rewrite system
of Example 5.

Proof. Suppose t and t0 are general terms involving + and � alone. There-
fore, by Lemma 6, a goal of the form g(t0; t)!? s(1), would, in general, be
undecidable, since a decision procedure for this problem could be used to
solve the Hilbert's Tenth Problem, which is impossible.

Thereafter, we relax Condition 2, by allowing de�ned functions to appear
as the root of the right-hand sides of rules. We get the following variant of
Example 5:

Example 6. As in Example 5, consider the convergent rewrite system con-
sisting of the rules for addition and multiplication, together with the follow-
ing additional rewrite rules:

f(1) ! 1 (9)

g(1; 1) ! 1 (10)

g(s(x); s(y)) ! f(g(x; y)) (11)

Notice that Rule 11 is the only one which violates Condition 2. Therefore,
we have the following:

Lemma 8. Given the rewrite system of Example 6, we have:

g(x; y) = 1 if and only if x = y = sn(1); n � 0:

Theorem 9. The matching problem is undecidable for the rewrite system
of Example 6.

Finally, we relax Condition 1, and allow depths greater than two below
the root function on left-hand sides of rules (but in order to make sure
that the last condition not be violated, we would insist that whatever depth
we have on the left-hand side must show up on every path on the right-
hand side, by way of leading constructors). Consider the following example,
wherein, we encode f from Example 5 using new rules:
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Example 7. Consider the convergent rewrite system consisting of the rules
for addition and multiplication, together with the following additional
rewrite rules:

F (s(x)) ! s(1) (12)

G(s(s(1)); s(s(x))) ! s(s(s(x))) (13)

g(1; 1) ! s(s(1)) (14)

g(s(x); s(y)) ! s(F (G(g(x; y); s(s(1))))) (15)

Notice that none of the rules have an immediate subterm on the left-hand
side that is of greater depth than the depth of the corresponding right-hand
side. However, Rule 12 erases x; while Rule 13 is the only one which violates
the depth criterion for left-hand sides (it allows immediate subterms of depth
3 on its left-hand side).

For this rewrite system, we have:

F (G(s(s(1)); s(s(x))))! F (s(s(s(x))))!! s(1);

where x is a variable. Therefore, like in the previous cases, we have:

Lemma 10. Given the rewrite system of Example 7, we have:

g(x; y) = s(s(1)) if and only if x = y = sn(1); n � 0:

Theorem 11. The matching problem is undecidable for the rewrite system
of Example 7.

5 Conclusion

Semantic uni�cation and matching are useful in incorporating logic-
programming capabilities in a functional language, in constraint based sys-
tems and in theorem proving. Even when a system admits a convergent
presentation, the corresponding uni�cation or matching procedure may be
undecidable.

In this paper we have studied restricted convergent systems for which
matching is simpler than uni�cation. In particular, we have provided a
positive result for a special class of left-linear convergent rewrite systems
for which the matching problem is decidable. In fact, we have shown, by
way of counterexamples, that matching becomes undecidable (as it usually
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is) when any of the conditions that we have proposed is weakened. The
result is similar in spirit to one given in [Dershowitz et al., 1992] which
was for restricted non-erasing systems. Since we have shown that these two
classes (i.e., left-linear and non-erasing) are the ones for which matching
is simpler than uni�cation, the current result completes the characteriza-
tion of decidable matching by providing the dual of the result from [Der-
showitz et al., 1992]. One di�erence between the two characterizations is
that the current theorem uses the syntactic property of depth, while the
one from [Dershowitz et al., 1992] used a semantic property of decreasing
functions. Recently [Aguzzi and Modigliani, 1994] have extended the de-
cidability criterion of [Dershowitz et al., 1992] by introducing the notion of
P-increase (P-non-decrease) to replace increase (non-decrease), using which
one could talk about the positional increase (non-decrease) of a suitable
property like depth, with recursive calls (rather than use the property on an
entire function). By using positional information, it is also possible to han-
dle certain rewrite systems which does not have leading constructors on the
right-hand sides of rules (for example, the usual presentation of � contains
rules fx�0! 0; s(x)�y ! y+(x�y)g, instead of the 3 rules of Example 3).
We believe that a similar re�nement (of using positional depth, rather than
depth of the whole term) is possible for the new result on semantic matching
presented in this paper. In fact, with this extension, we should be able to
handle insertion-sort by adding the following rules to those of Example 4:

sort(nil)! nil; sort(x � y)! insert(x; sort(y)):

Linearity and 
atness of rewrite rules are common syntactic properties
which have been used for many di�erent characterizations of rewrite sys-
tems (for example, con
uence and termination). In this paper we have
shown how these criteria a�ect uni�cation and matching in convergent sys-
tems. In most cases the results turn out to be negative, as was the case with
the new result of this paper. However, with this new information, we have
been able to complete the characterization of uni�cation and matching for
systems with these two syntactic restrictions. Comon et al. [1991], use the
idea of proving termination of a system of transformation rules for charac-
terizing decidable uni�cation, but with no assumption of convergence. In
their case, both sides of the given equations must satisfy a slightly di�er-
ent non-nesting requirement than that of 
atness as described here. (Since
equations can be used in either direction, it is intuitive to use the restriction
on both sides.) The resulting theories are simpler than the ones for con-
vergent systems with 
at right-hand sides (in fact, they bear similarity to
the systems that are convergent and left-
at, for which a positive result was
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proved in [Christian, 1992]). Other characterizations of decidable uni�ca-
tion appear in [Kapur and Narendran, 1987] (every right-hand side of a rule
must be a proper subterm of the corresponding left-hand side) and [Hullot,
1980] (every right-hand side must be a variable or a ground term). Unfortu-
nately, none of these systems are powerful enough to capture truly recursive
functions. Decidability results for uni�cation in convergent systems was
extended in [Dershowitz and Mitra, 1993], where the problems considered
could potentially have in�nite solutions, which were captured as indexed
terms, along the lines of [Comon, 1992]. The main di�erence between the
requirements of the result from [Dershowitz and Mitra, 1993] and the one
presented here is that we allow multiple 
at terms with de�ned functions as
right-hand sides for rules de�ning a given function. For instance, the de�-
nition of eq, in Example 2, used two rules, each of which has eq (a de�ned
function) on its right-hand side, which would not be allowed by [Dershowitz
and Mitra, 1993].
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6 Appendix: Proofs

6.1 Completeness of Matching

We start with Theorem 3, which we prove in two parts, Theorems 12 (for
non-erasing systems) and 13 (for left-linear systems).

Theorem 12 (Completeness). Let R be a non-erasing convergent rewrite
system. If the goal s!?N has a solution � (that is, s� !! N), then there
is a derivation of the form

fs
?
!Ng

!
; �;

such that � is a substitution at least as general as �.

The proof is similar to one given for the Completeness of uni�cation (i.e.,
of transformation rules from Tables 2 and 3) given in [Mitra, 1994]. The
only di�erence is that in this proof we have to use a selection strategy to
select the next goal from a collection of yet unsolved goals, whereas in the
proof of [Mitra, 1994], the choice could be non-deterministic. We start with
a few de�nitions:

De�nition 2 (Node). Let G � fs1!
? t1; : : : ; sn!

? tng be a set of goals
and � � fx1 7! u1; : : : ; xm 7! umg be a substitution. Then the collection

fs1
?
! t1; : : : ; sn

?
! tn; x1 7! u1; : : : ; xm 7! umg

is called a node.

With G and � as de�ned above, we write nodes as hG; �i.

De�nition 3 (Ordering ��). Let > be the smallest ordering on terms
such that s > t if and only if s ! t or t is a proper subterm of s.
We de�ne the ordering �� on nodes, with respect to a solution �: Let
hG1; �1i and hG2; �2i be two nodes, each of which admit a solution �; then,
hG1; �1i �� hG2; �2i if and only if fs1�; : : : ; sn�g � fu1�; : : : ; un�g; where
G1 � fs1!

? t1; : : : ; sn!
? tng, G2 � fu1!

? v1; : : : ; um!
? vmg and � is the

multiset extension of >.

Proof. (Sketch) In the statement of Theorem 12 we have started with a
single matching goal of the form s!?N . However, in general, we will have
a collection of goals to be solved, together with a substitution (which is the
partial computed solution).
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Given that we start with a goal of the form s!?N (that has a ground
term N as the right-hand side) it su�ces to only consider goals of this form:
If we were to decompose this starting goal, then all the subgoals would be
of the same form, and therefore the proposition holds. However, if we were
to mutate s � f(s1; : : : ; sn)!

?N , using the rule f(l1; : : : ; ln) ! r then we
would have a collection of subgoals of the form

s1
?
! l1; : : : ; sn

?
! ln; r

?
!N:

Thereafter, we have a subgoal r!?N which has the required property, and
can be solved next. Suppose r!?N produces a solution �. Then, each
variable of r must have been bound to a ground term in � (if not, we would
have the situation that a non-ground term r� rewrites to a ground normal
form N , using non-erasing rules alone, which is impossible). Furthermore,
by the requirements of the theorem, every variable in f(l1; : : : ; ln) is also in
r. Thus, using the previous two observations, we have that li�; 1 � i � n;

must be ground. At this point, it su�ces to solve any of the goals from

s1
?
! l1�; : : : ; sn

?
! ln�;

each of which has a ground right-hand side.
Therefore, we are going to use the following selection strategy for solving

goals: whenever we use Mutate on a goal s!? t, we will solve the r!? t

subgoal �rst to get a solution; we apply the solution to the right-hand sides
of the remaining subgoals, and then select one of s1!

? l1; : : : ; sn!
? ln. At

other times, we will always have a subgoal with a ground right-hand side,
which we select (if there are several such subgoals, we do not care as to
which one is picked).

The rest of the proof is as follows: Once we pick a subgoal (say s!? t)
using the selection strategy above, we apply the non-deterministic transfor-
mation rules from Table 2. For example, if s � x; x being a variable, then
one of Eliminate or Bind would apply. In either case, the new collection of
goals can be shown to be smaller (in ��) than the original one. Further-
more, each such application is solution preserving (i.e., any solution to the
collection before application of the transformation rule, is also a solution
to the collection generated by applying the transformation). Of course, if
s � f(s1; : : : ; sn) (i.e., s is not a variable) then it may be possible to use
Decompose and Mutate on this goal (in fact, it may be possible to Mutate
with di�erent rules from R); for completeness, each such possibility has to
be attempted. In this case, we could demonstrate similar properties, i.e.,
that the generated goals are smaller (in ��) than the original ones, and that
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some solution preserving transformation rule applies. Details are the same
as in the proof of uni�cation given in [Mitra, 1994].

Theorem 13 (Completeness). Let R be a left-linear convergent rewrite sys-
tem. If the goal s!?N has a solution � (that is, s� !! N), then there is a
derivation of the form

fs
?
!Ng

!
; �;

such that � is a substitution at least as general as �.

We would continue to use the same selection strategy, as mentioned be-
fore, for proving completeness for left-linear rewrite systems. We need the
following lemmata for the proof:

Lemma 14. Let R be a left-linear convergent rewrite system. Then, for
the initial goal fs!?Ng, where N is ground, if G [ ft!? t0g is the set of
subgoals generated by the procedure at some point and x is a variable in t0,
then t0 must be linear with respect to x; furthermore, x does not occur in
any right-hand side of a subgoal in G.

Proof. If �!? t is a subgoal generated by the procedure for the initial goal
s!?N , then the variables of t must come either from N or from the left-
hand side of some rule in R. For our case, N is ground, and R is left-linear,
thus this variable cannot occur in any other right-hand side in the goal set,
and again t itself must be linear in this variable.

Lemma 15. Let R be a left-linear convergent rewrite system. Then, in
solving ft!?Ng, a subgoal of the form s!? x can be ignored without having
to solve it any further.

Proof. Let G denote the remaining set of subgoals when s!? x is encoun-
tered. By Lemma 14, x cannot appear in any right-hand side in G. Further-
more, we always solve subgoals of mutation using the following strategy (as
was used in the proof of Theorem 12): solve the r!? t subgoal �rst, to get
a solution �, and then solve the remaining subgoals si!

? li� in any order.
Therefore, if we ever encounter a goal of the form s!? x, then x must be
a variable which does not require instantiation (that is, x does not appear
anywhere in the remaining subgoals). Thus, any such goal is trivially solv-
able (that is, it has a solution for any substitution for the variables in s), and
can be ignored. (As a result, all the variables in s would have indeterminate
solutions, unless they appear on the left-hand side of some other goal which
causes instantiation.)
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We now state a proof of the theorem 13:

Proof. Notice that the major di�erence between the transformation rules
for semantic uni�cation (i.e, the collective rules from Tables 2 and 3) and
those for matching in left-linear systems (those from Table 2 alone) is that
the latter does not have the rule for imitation. However, by Lemma 15,
whenever the right-hand side of a goal is a variable, that goal is trivially
solvable. Therefore, the remaining transformation rules are enough to enu-
merate a complete set of solutions of any matching goal in this case (given
that the collective system from Tables 2 and 3 is complete for semantic
uni�cation in convergent rewrite systems [Mitra, 1994]).

Note that, as in the case of non-erasing systems, we could apply partial
solutions as required, and therefore do not have to explicitly consider Apply.

6.2 Decidable Matching

Since we are interested in left-linear systems, it is su�cient to consider only
transformation rules from Table 2. Also, the proof of Theorem 3 uses a
particular selection strategy for picking subgoals to solve (after mutation,
we always solve the r!? t subgoal �rst, before solving the si!? li in any
order; after decomposition we could solve the new subgoals in any order);
we continue to use the same selection strategy for solving subgoals. We will
use the following lemma:

Lemma 16. The most general uni�er computed in Bind need only deal with
linear terms.

Proof. We may have to use bind because the rewrite rules may have non-
linear variables on its right-hand sides, and since the left-hand side of the
starting goal may be non-linear.

Suppose we start with the goal S!?N , for a ground normal-form N ,
use the selection strategy mentioned before, and apply transformation rules.
Furthermore, consider the sequence of transformation rules before the �rst
application of Bind. In this sequence, the generated substitutions should
have been produced using Eliminate alone. Therefore, each term bound to
a variable in this substitution must be linear (such terms must have come
from N or from the left-hand sides of applied rules). Therefore, both s and
t of Bind must be linear, and of independent variables. Thus, the computed
mgu would again be a linear term. Furthermore, any of the linear variables
in either s or t that gets bound during the mgu computation can be removed,
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since they do not appear anywhere else in either goals or substitutions, due
to left-linear rules and the selection strategy.

We now state a proof of Theorem 5:

Proof. Since we have a left-linear system, it su�ces to consider transfor-
mation rules from Table 2 alone, that is, we do not have to consider Apply
and Imitate. Furthermore, due to left-linearity, we only need to solve goals
of the form s!? t, where any variable x in t is linear in t and does not occur
in the right-hand side of any other subgoal (this is true because we have
directed goals, and terms on the right-hand sides of goals could either be
left-hand sides of (left-linear) rules from previous mutations, or subterms of
the ground term N , when solving for a initial goal of the form s0!?N ; see
Lemma 14).

Let � be the well-founded ordering on goals such that s1!
? t1 � s2!

? t2
if either:

� depth(t1) > depth(t2), or

� depth(t1) = depth(t2) and s2 is a proper subterm of s1.

The proof proceeds by picking a subgoal (say s!? t) from the remaining
ones (following the selection strategy mentioned before). We show by induc-
tion on the multiset extension of the ordering� that any solution to this goal
is bounded in depth by that of t, and every application of a transformation
rule decreases the complexity of goals in this ordering.

If the goal is of the form x!? t (x being a variable) then there are two
cases, either Eliminate applies (in which case the proposition is trivially true,
since the goal gets removed from the collection and a binding gets added,
but our ordering does not consider bindings) or Bind applies. In the latter
case, given Lemma 16, we need only compute the most general uni�er of
two linear terms with independent variables. Therefore, the computed mgu
is linear; furthermore, the depth is bounded by that of the deeper of the
two terms for which the mgu is being computed. For the other cases, let
s = f(s1; : : : ; sn) and t = N [�x]. (We use the notation N [�x] to denote a term
linear in variables �x and for which no other subgoal in the current set has any
of these variables on the right-hand side; Lemma 14 shows why considering
such goals is su�cient.) There are several cases to be considered:

� If N [�x] is a variable, then by Lemma 15, we do not have to solve
this goal any further. Therefore, the only solution to this goal is an
indeterminate (unbound variable) for each variable of f(s1; : : : ; sn).
Thus, the solution is of depth one, which is the same as that of N [�x].
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� If N [�x] is a constant, then for decomposition to work, f(s1; : : : ; sn)
must be the identical constant, which gives the empty substitution
as the only solution, and therefore the hypothesis holds in this case.
Decrease in complexity is caused by the removal of the subgoal under
consideration.

Next, consider mutation of the goal f(s1; : : : ; sn)!
?N [�x], N [�x] a con-

stant, using a rule of the form f(l1; : : : ; ln) ! r. The only time such
a rule could work is if depth(r) = 1. (For any other rule, by the as-
sumption of the theorem, there has to be a constructor at the root of
r, which would lead to failure when solving the r!?N [�x] subgoal.)
Furthermore, since r has depth one, by the assumption of the theorem,
each li; 1 � i � n, must be of depth one also (Condition 3). If r is
a constant (it also has to be a constructor, by Condition 2), then the
only possible solution to the goal r!?N [�x] is the empty substitution
(� = fg). However, if r is a variable, say z, then this goal has a unique
solution of depth one (the solution is � = fz 7! N [�x]g). Therefore,
the derivation looks like:

f(s1; : : : ; sn)!
?N [�x] ;

� s1!
? l1�; � � � ; sn!

? ln�; �

In either case, each of the subgoals s1!
? l1�; � � � ; sn!

? ln� is smaller
than the original goal f(s1; : : : ; sn)!

?N [�x] (since each li is either
a variable or a constant, thus depth(li�) = 1), and the proposition
follows by induction on these smaller subgoals.

� For any other case, the depth of N [�x] is at least two; let N [�x] �
g(N1; : : : ; Nm). Were we to decompose the goal, then each of the
subgoals thus generated would be smaller in the ordering �. Thus,
for decomposition, the proposition holds by induction on each of the
smaller subgoals. Finally, consider mutation of this goal using a rule
of the form f(l1; : : : ; ln)! r:

f(s1; : : : ; sn)
?
!N [�x];Mutate s1

?
! l1; � � � ; sn

?
! ln; r

?
!N [�x];

there are further cases:

{ If we require r to be of depth one, then r must be a variable,
say z. (A constant for r does not work, since the constant must
be a constructor by the requirements of the theorem, and there-
fore, the goal r!?N [�x] has no solution.) In this case the subgoal
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r!?N [�x] (that is, z!?N [�x]) is trivially solvable, and the solu-
tion is bounded in depth by that ofN [�x]. Furthermore, by the as-
sumption of the theorem, each li; 1 � i � n, has depth one (given
Condition 3, since we assumed r to be of depth one). Suppose �
is the (unique) solution to the goal z!?N [�x]. Therefore, as in
the previous case, we have depth(li�) � depth(N [�x]); 1 � i � n.
Thus, the proposition holds by applying the hypothesis on the
smaller subgoals s1!

? l1�; � � � ; sn!
? ln�.

{ If r has depth greater than one, then it must have a lead-
ing constructor (by assumption of the theorem). Suppose r �
g(r1; : : : ; rm), where g is a constructor (if the root function of
r is di�erent from g, then we get failure, so this is the only
case to be considered). Thus, it is possible to decompose the
goal r!?N [�x] at least once, leading to smaller subgoals of the
form r1!?N1; : : : ; rm!?Nm (that is, f(s1; : : : ; sn)!?N [�x] �
ri!

?Ni; 1 � i � m). Furthermore, let depth(N [�x]) = d � 2,
which means that max(depth(Ni)) = d � 1; 1 � i � m. Al-
though we could solve these subgoal in any order, for clarity of
presentation, let us assume that we solve them in left-to-right
sequence. In other words, we �rst solve r1!?N1, to get a so-
lution �1 (which, by inductive hypothesis, must be bounded in
size by d � 1). Next, we solve r2!?N2�1. Due to the linearity
requirements on N [�x], N2�1 � N2, and therefore, we could still
use the inductive hypothesis on this goal. Eventually, we would
solve rm!

?Nm�m�1, where �m�1 is the collective solution from
solving ri!

?Ni; 1 � i � m�1, and we again apply the same tech-
nique, to get the solution �m, which again should be bounded by
d�1. Notice that �m is indeed a solution to r!?N [�x]: therefore,
we have demonstrated that any solution to r!?N [�x] would be
bounded in depth by d� 1. Let � be such a solution, which gives
us the new set of subgoals as:

f(s1; : : : ; sn)!?N [�x] ;
� s1!? l1�; � � � ; sn!? ln�; �

where li�; 1 � i � n; is bounded in depth by d (only those terms
which contain variables become deeper after instantiation; how-
ever, when we substitute a variable, which could occur at at most
below one function, by a term bounded in depth by d�1, we could
get a term of depth at most d). Thus, each of the new subgoals
is smaller (in �) than the original, and the proposition follows by
induction on these smaller goals.
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