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Let Li
n be the set of lattice paths from (0; 0) to (n; n) that have exactly

i steps up (") and i steps to the right (!) below the diagonal. We use Ln

as short for L0n, those paths wholly above the diagonal. Let Tn be the set
of ordered (plane planted) trees with n edges and Bn the set of binary trees
with n internal nodes. These sets are all in 1-1 correspondence (the Li

n by
the Chung-Feller Theorem) and are counted by the Catalan numbers. In
what follows, we assume that they are uniformly distributed.

De�ne �h(L) to be the expected height (meaning, distance from the di-
agonal) of a step in the lattice paths in some set L, ĥ(L) be the expected
height of a path in L (that is, the maximum height of its steps), ĥ(T ), the
expected height (length of maximum path from root) of a tree in T , and
�h(T ), the expected level of a node (length of path from root) in T . De�ne
the girth at a node of a tree to be the number of nodes on the same level to
its right, plus nodes on the next level that are to its left. De�ne the girth
of a tree to be the maximum girth at its internal nodes. Let g(b) denote
the girth of tree b, ĝ(B) the expected girth of a tree in B, and �g(B) the
expected girth at an internal node in B.

Consider the following correspondence between lattice paths in Ln and
binary trees: Traverse the path and build a binary tree in level-order. Each
step up " corresponds to an internal node � of the binary tree, with left and
right slots; each step right ! corresponds to a leaf �. Level-order means
that the nodes are placed in the next available slot going from left-to-right,
moving to a lower level after the current one is �lled (see [9]). When we're
done, we have one slot that must be �lled with a leaf to complete the tree.

More generally, one can build a k-tree forest of binary trees in level-order
from a sequence s1; : : : ; sm of subtrees with slots. Start with k slots in a row
and list the slots from left-to-right in a �rst-in-�rst-out queue. Repeatedly
place the next tree si in the sequence in the slot at the head of the queue,
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and add the slots in the frontier of si (from left-to-right) at the rear of the
queue. As long as each of the subsequences s1; : : : ; si has at least i�k slots,
we end up with a forest of k trees with k + s�m remaining slots, where s

is the total number of slots in the given sequence.
Thus, every path in Ln (contributing 2n nodes with a total of 2n slots)

corresponds to a k-tree forest with k slots (that can be �lled with leaves
at the end). Let bk(l) denote the k-tree forest obtained from path l in this
manner. The construction can be described recursively: Suppose l has d
subpaths l1; : : : ; ld, each one starting at a point (i; i+ 1) one step after the
path touched the diagonal and ending one step before the path is next at
the diagonal, then bk(l) is the forest obtained by glueing the sequence �,
bk+1(l1), �, �, bk+1(l2), �, . . . , �, bk+1(ld), and � together in level-order.

The girth of the resulting forest bk(l) is the maximum of the girths of
the forests corresponding to the subpaths li. By induction on the length of
the path, it can be shown that the height of l (which is one more than the
height of its tallest subpath) is equal to g(bk(l))�k+1, for all k. Thus, the
height of l is equal to the girth of the corresponding binary tree b1(l), and,
hence, the distribution of height of lattice paths|and of ordered trees|is
the same as the distribution of girth for binary trees:

Theorem 1

�g(Bn) = �h(Ln) = �h(Tn)

ĝ(Bn) = ĥ(Ln) = ĥ(Tn)

It is the case (cf. the argument in [6]) that the average heights ĥ(Li
n) for

i = 0; : : : ; n can di�er by at most 1. Using the following facts:

�l(Tn) = 1

2

�
4n=

�
2n

n

�� 1
�

[11, 10, 1, 5]

� 1

2
[
p
�n� 1]

ĥ(Bn) � 2
p
�n [7]

ĥ(Tn) � p
�n [2, 7, 6]

we get
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Corollary 1

�g(Bn) � 1

2

p
�n

ĝ(Bn) � p
�n

ĥ(Li
n
) � p

�n

The above result implies that the expected (average and worst case)
space requirements for the queue needed to implement a level-order traversal
of a binary tree is half the expected requirements for the stack used in a naive
preorder traversal, since ĥ(Bn) � 2

p
�n, and the same as an intelligent

preorder traversal, in which the parent is removed before the second child is
explored.

The Strahler (register) number of a binary tree b is the height of the
largest complete binary tree homeomorphically embeddable in b. It gives
the maximum height of a traversal stack, when the branch with smaller
Strahler number is always chosen to be traversed �rst. See [8]. Using the
above correspondence, we can show that the number of binary trees with
Strahler number r is equal to the number of lattice paths (or ordered trees)
with height greater than 2r � 2 and less than 2r+1 � 1.

Since the Strahler number of a binary tree b is equal to

dlg g(b)e
it follows that the number of lattice paths with height h is equal to the
number of binary trees with Strahler number dlg he (and that the number of
binary trees with Strahler number r is equal to the number of lattice paths
with height 2r).

Note. Given the opportunity, we would also like to mention some related
published results from [3, 4, 5, 6] on lattice paths, tree statistics, and the
Narayana numbers
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(which count the number of trees in Tn with exactly k leaves).
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