
Function Inversion

Nachum Dershowitz�

University of Illinois, Urbana, IL 61801, USA

Tel-Aviv University, Ramat-Aviv, Israel

and

Subrata Mitra

III Phase, Bangalore, India

Abstract

An algorithm is given for inverting functions de�ned by left-linear ground con-
vergent rewrite systems, with left sides restricted in depth and right sides not
having de�ned symbols at the top.

1 Introduction

We are interested in the problem of solving equations of the form t = N , where
t is an arbitrary term containing de�ned function symbols, constructors (that
is, unde�ned function symbols), and variables, while N is a ground constructor
term, by which we mean a term containing only constructors and constants. For
example, given a de�nition of squaring, the square root of 9 is found by solving
x2 = sssssssss0 (using the unary successor constructor s to represent integers),
and the solution is x = sss0. We describe a broad class of functions that can
be inverted in this manner.

To solve such problems, we restrict ourselves here to equational theories
that can be presented as (rather typical) functional programs in the form of
ground convergent left-linear rewrite systems, that is, �nite sets of equations
that compute unique output values when applied (from left-to-right) to input
expressions, and whose de�ning equations do not have multiple occurrences of
variables on their left side. For non-left-linear systems, function inversion is
known to be as hard as equation solving. Even for arbitrary linear systems,
the problem is still unsolvable. By placing (not wholly unrealistic) syntactic
restrictions on the sides of rules, we can, however, show termination of our
inversion algorithm.

�Supported in part by the National Science Foundation under grant CCR-97-00070.

1



The following is a program for squaring meeting our criteria (with standard
abbreviating conventions):

0 + x ! x

sx+ y ! s(x+ y)
0� x ! 0
x� 0 ! 0

sx� sy ! s(y + x� sy)
02 ! 0

(sx)2 ! s(x2 + ss0� x)

Function inversion has widespread applications in symbolic computation,
functional-logic programming languages, and automated deduction.

2 Nomenclature

A rewrite system is a �nite set of ordered equations between terms, called rewrite
rules. A rule l ! r, equating terms l and r, applies to a term t if t contains a
subterm s such that l� = s for some matching substitution � . We write t ! t0

to indicate that t0 is obtained from t by replacing the subterm s of t with r� . A
term N is said to be in normal form if there is no term N 0 such that N ! N 0.

A constructor, for our purposes, is a function symbol not heading any left
side. A term is ground if it has no variables. The depth of a term t is the
maximal number of nodes in a path in its tree representation. For example, the
term f(g(x); 0) is of depth 3.

A rewrite system R is ground convergent if every ground term has exactly
one normal form and all computations terminate. A system is left-linear if no
variable appears more than once on a left side. Most functional programs have
these properties.

A (sub)goal of our procedure takes the form s !? t, where s and t share no
variables, and has a solution �, assigning terms to variables in s, if and only if
s� ! � � � ! t� , for some substitution � of terms for variables in t. There may of
course be more than one solution to a goal. We need not compute all solutions:
we can ignore less general solutions than ones we do compute (e.g. x 7! sz

subsumes x 7! sss0); we can ignore solutions that are not themselves normal
forms, since they must be equal to normal-form solutions (e.g. x 7! 0 � z is
covered by x 7! 0 for the equational theory de�ned by the squaring example).
If a rewrite system R is ground convergent, then an equation s = N , for normal
form N , has a solution � in the equational theory of R, if and only if � is a
solution to the goal s !? N .

3 The Algorithm

We give an algorithm for function inversion for any theory presented by a left-
linear ground convergent rewrite system R with the following additional condi-
tions on its rules:

2



1. Each left side is of depth at most 3.

2. If a right side is a variable or constant, then the left side of that rule is of
depth at most 2.

3. Whenever a right side is not a variable, it is headed by a constructor at
its root.

The above de�nition of squaring obeys the restrictions, and therefore has a
solvable inversion problem.

At each stage of the algorithm, we have a set of subgoals. We (don't care)
non-deterministically choose one, s !? t, and consider the following cases.

1. If s and t are identical (in particular, if they are identical constants), the
subgoal may be removed.

2. If t is a variable, just remove this subgoal.

3. Suppose s is a variable x:

(a) If x is already bound to a term u, then bind it instead to the most
general uni�er of u and t.

(b) If u and t are not uni�able, fail.

(c) If x is unbound, add the binding x 7! t.

4. If neither s nor t is a variable, try both of the following:

(a) Whenever s = f(s1; : : : ; sn) and t = f(t1; : : : ; tn), for the same lead-
ing function symbol f , replace the goal with the multiset of goals,
s1 !? t1,. . . , sn !? tn.

(b) Suppose s = f(s1; : : : ; sn) and there is a rule f(l1; : : : ; ln) ! r in R

(with all its variables renamed apart from those in the goal), then do
one of the following:

i. If r and t are the same constant, then replace the goal with the
subgoals s1 !

? l1; � � � ; sn !
? ln.

ii. If r is a constant, but t 6= r, fail.

iii. If r is a variable x, then replace the goal with the subgoals s1 !?

l1�; � � � ; sn !? ln�, where � is x 7! t.

iv. If r is headed by a constructor that is not at the head of t, then
fail.

v. If none of the above hold, then by assumption 2, t = c(t1; : : : ; tm)
and r = c(r1; : : : ; rm), for some constructor c. First solve the goal
r !? t, by recursively solving the subgoals r1 !

? t1; : : : ; rm !?

tm in succession. For each solution � of all m subgoals, solve
s1 !

? l1�; � � � ; sn !
? ln�.

3



4 Its Correctness

To prove the correctness of the algorithm, we need to show the following:

Soundness Given a goal s !? t, if the algorithm produces a solution �, then
s� ! � � � ! t.

Completeness Given a goal s !? t, if s� ! � � � ! t for some substitution �,
then the algorithm will produce �.

Termination All paths in the algorithm terminate (either with success or
with failure).

To those ends we need the following invariants:

I Variables that appear on the right side of a goal appear only once among
all the subgoals. Such variables do not contribute to any solution.

II The size of u in each of the substitutions x 7! u of a solution to a goal
s !? t is bounded by the size of t.

To see that invariant I holds, just note that right sides are composed of pieces
of right sides (which were initially ground), or from subterms of left sides, which
are linear.

For invariant II we show by computational induction that the right sides of
subgoals are bounded in depth by that of the initial goal: By assumption 2, the
li in steps 4(b)i and 4(b)iii are of depth 1, so even after substituting t in 4(b)iii,
the right side is bounded. Step 4a and the �rst set of subgoals in step 4(b)v
have smaller right sides. We will see that the latter recursive calls terminate.
By assumption 1, the li in step 4(b)v are at most of depth 2, while t is at least
that deep. If � is bounded by the depth of ti, then li� cannot be deeper than
t, since li can contribute at most 1 to the depth.

Since the most general uni�er of two terms with disjoint variables is bounded
in depth by the maximum of their depths, all substitutions created in step 3a
or 3c will satisfy the invariant.

Indeed, it is because most general solutions are bounded in size that the
inversion problem is decidable for convergent systems.

The proof of termination uses the multiset extension of the lexicographic
measure hdepth(t); depth(s)i of a subgoal s !? t. The subgoals in step 4a
are smaller, since their right sides are each smaller than t. For step 4(b)i,
assumption 2 guarantees that each li is of depth 1, so the subgoals are smaller.
For step 4(b)iii, assumption 2 guarantees that each li is of depth 1, so after the
substitution li� is either of depth 1 or it is t. In the latter case, the subgoal is
smaller by virtue of its smaller left side. For step 4(b)v, we begin with goals
with smaller right sides, then continue with goals that have li�, which are no
deeper than t, on the right, and smaller si on the left.

4



Soundness is straightforward, except for step 2, the soundness of which fol-
lows from invariant I, since an instance of a solution is also a solution.

For the completeness argument, under the assumption of convergence, we
need only consider innermost computations, in which rules are only applied to
terms whose subterms are in normal form. Consider any normalizing derivation
s� ! � � � ! t. If it has zero steps, then one of steps 1{ 3 will �nd the solu-
tion. If it has no steps at a topmost symbol, then step 4a applies. Otherwise,
consider the �rst step at the top, and one of the cases of step 4b will work, by
assumption 3.

If a variable x has a normal form looking like u, then if it also has normal
form t, the two must unify, as in step 3a.

5 Related Work

\Semantic matching" is the process of enumerating a basis set of substitutions
� (of terms for variables in s) that make t equal to a variable-free (but not
necessarily constructor) term in a speci�ed theory, even when the function sym-
bols in t are not fully de�ned. Unlike our previous work on semantic match-
ing [Dershowitz et al., 1992], here we use a purely syntactic property of depth.
Those results were extended in [Aguzzi and Modigliani, 1994] to incorporate
positional information.

In [Christian, 1992] it is shown that narrowing (hence, inversion) terminates
for terminating systems with all left-side variables at depth 2. Perhaps the
algorithm given here can be extended in that direction.

Acknowledgement

We thank Claude Kirchner for his indispensable interest and gracious hospitality.

References

[Aguzzi and Modigliani, 1994] G. Aguzzi and U. Modigliani. A Criterion to De-
cide the Semantic Matching Problem. In Proceedings of the International
Conference on Logic and Algebra (in memory of Prof. Magari), Italy,
1995.

[Christian, 1992] J. Christian. Some Termination Criteria for Narrowing and
E-Narrowing. In Proceedings of the Eleventh International Conference on
Automated Deduction, Saratoga Springs, New York, June 1992. Volume
607, pages 582{588, of Lecture Notes in Arti�cial Intelligence, Springer-
Verlag.

[Dershowitz et al., 1992] N. Dershowitz, S. Mitra, and G. Sivakumar. De-
cidable matching for convergent systems. In Proceedings of

5



the Eleventh Conference on Automated Deduction, pages 589{
602, Saratoga Springs, NY, June 1992. Vol. 607 of Lecture
Notes in Arti�cial Intelligence, Springer-Verlag, Berlin. (On-line at
sal.cs.uiuc.edu/�nachum/papers/match-new.ps.gz.)

6


