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Abstract

Two new theorem-proving procedures for equa-
tional Horn clauses are presented. The largest
literal is selected for paramodulation in both
strategies, except that one method treats pos-
itive literals as larger than negative ones and
results in a unit strategy. Both use term
orderings to restrict paramodulation to po-
tentially maximal sides of equations and to
increase the amount of allowable simpli�cation
(demodulation). Completeness is shown using
proof orderings.

1 Introduction

The completeness of positive-unit resolution for sets of
Horn clauses p1 ^ � � � ^ pn ) pn+1 is well-known. An
advantage of a unit strategy is that the number of literals
in clauses never grows; it su�ers from the disadvantage of
being a bottom-upmethod. Ordered resolution, in which
the literals of each clause are arranged in a linear order
> and only the largest literal may serve as a resolvent,
is also complete for Horn clauses [Boyer, 1971]. The
purpose here is to design Horn clause strategies that
make more comprehensive use of orderings in controlling
inference.
A conditional equation is a universally-quanti�ed Horn

clause in which the only predicate symbol is equality
('). Conditional equations are important for specifying
abstract data types and expressing logic programs with
equations. We write such a clause in the form e1 ^ � � � ^
en ) s ' t (n � 0), meaning that the equality s ' t
holds whenever all the equations ei, called conditions,
hold. If n = 0, then the (positive unit) clause, s ' t, will
be called an unconditional equation. Horn clauses with
both equality and non-equality literals can be expressed
as conditional equations with equality literals only by
turning each nonequality atom l into a Boolean equation
l ' T , for the truth constant T . A conditional equation
e1 ^ � � � ^ en ) s ' t is valid for E i� s ' t is valid for
E [ fe1; : : : ; eng; hence, proving validity of conditional
equations reduces to proving validity of unconditional
ones.
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Positive-unit resolution, or any other complete varia-
tion of resolution, could be used to prove theorems in
equational Horn theories (the equality axioms, including
functional re
exivity, are Horn), but the cost of treating
equality axioms like any other clause is prohibitive. For
this reason, special inference mechanisms for equality,
notably paramodulation [Robinson and Wos, 1969], have
been devised. In the Horn case, a unit strategy can
be combined with paramodulation [Henschen and Wos,
1974; Furbach, 1987].
In this paper, we describe two complete theorem-

proving methods for equational Horn theories. As in
[Hsiang and Rusinowitch, 1986; Kounalis and Rusinow-
itch, 1987; Zhang and Kapur, 1988; Rusinowitch, 1989;
Bachmair and Ganzinger, 1990; Nieuwenhuis and Orejas,
1990], our goal is to minimize the amount of paramodu-
lation, while maximizing the amount of simpli�cation|
without threatening completeness. Orderings, described
in detail in Section 2, are used to choose which literals
participate in a paramodulation step, and which side
of an equality literal to use. They utilize orderings
of terms and atoms to restrict inferences, and are
generalizations of ordered completion [Bachmair et al.,
1986; Hsiang and Rusinowitch, 1987], an \unfailing"
extension of the \completion procedure" in [Knuth and
Bendix, 1970] for unconditional equational inference.
Completion operates on asymmetrical equations, that is,
on rewrite rules, and has as its goal the production of
con
uent (Church-Rosser) systems of rules that can be
used to decide validity. To achieve this, the larger sides
of rules are overlapped on (non-variable) subterms of
each other, producing equations that are called \critical
pairs". Brown [1975] and Lankford [1975] �rst suggested
combining completion for oriented unconditional equa-
tions, with paramodulation for unorientable ones and
resolution for non-equality atoms. Paul [1986] studied
the application of completion to sets of Horn clauses with
equality.
Completion was extended to conditional equations by

Kaplan [1987], who turns equations into rules only if
they satisfy a certain \decreasingness" condition. The
problem is that the critical pair of two decreasing rules
can easily be nondecreasing. Like standard completion,
both these methods may fail on account of inability
to form new rules. Kounalis and Rusinowitch [1987]
suggested narrowing conditions to achieve completeness.



Recently, several restrictions of paramodulation based on
term orderings have been proposed for the full �rst-order
case, including [Zhang and Kapur, 1988; Rusinowitch,
1989; Bachmair and Ganzinger, 1990]. For a survey of
rewriting, see [Dershowitz and Jouannaud, 1990].
Section 3 presents a set of inference rules that severely

restricts resolution with paramodulation by incorporat-
ing an ordering on (atoms and) terms. Limiting inference
partially controls growth; keeping clauses fully simpli�ed
stunts growth even further. Such restrictions are of
paramount importance in any practical theorem prover,
but their (refutational) completeness has been di�cult
to establish. For our completeness proofs, sketched
in Section 4, we adapt the proof-ordering method of
[Bachmair et al., 1986] to conditional proofs. Section 4.1
demonstrates the completeness of a unit strategy (sug-
gested in [Dershowitz, 1990]) and Section 4.2 considers
a strategy based on conditional completion of decreasing
rules. Proof orderings allow us to limit narrowing
to negative literals in the unit strategy, something
that appears impossible with the recent trans�nite-tree
proof method used in [Hsiang and Rusinowitch, 1987].
The crux of our proof normalization argument is the
observation that any conditional equational proof not
in \normal form" must either have a \peak", that is,
two applications of equations such that the middle term
is the largest of all those involved and all subproofs are
in normal form, or a \drop", that is, an application of
an equation (or re
exivity of equals) to an instance of
a condition in which all subproofs are in normal form.
The strategies are designed to eliminate peaks and drops,
thereby reducing the complexity assigned to the proof.
Section 5 concludes with a short discussion.

2 Simpli�cation Orderings

Let T be a set of (�rst-order) terms, with variables taken
from a set X , and G be its subset of ground (variable-
free) terms. If t is a term in T , by tj� we signify the
subterm of t rooted at position �; by t[s]�, we denote
the term t with its subterm tj� replaced by some term s.
Term orderings are of central importance in the

proposed methods. A total ordering > on ground terms
G is called a complete simpli�cation ordering [Hsiang
and Rusinowitch, 1987] if it has (a) the \replacement
property", s > t implies that any term u[s]�, with
subterm s located at some position �, is greater under
> than the term u[t]� with that occurrence of s replaced
by t, and (b) the \subterm property", t � tj� for
all subterms tj� of t. Such a ground-term ordering
must be a well-ordering (see [Dershowitz, 1987]). A
completable simpli�cation ordering on all terms T is a
partial ordering � (c) that can be extended to a complete
simpli�cation ordering > on ground terms, such that (d)
s � t implies that s� > t� for all ground substitutions
�. Furthermore, we will assume (e) that the constant T
is minimal in �.
Imagine a total ordering of atoms and with no equa-

tions, per se. The method of Section 4.1, then, is just
selected positive-unit resolution, in which the largest
negative literal is chosen. The appropriate inference rule

would be expressed as:

E [

�
q ^ s ' T ) u ' T;

l ' T

�

E [

(
q ^ s ' T ) u ' T;

l ' T;
q� ) u� ' T

)

where � is the most general uni�er (mgu) of l and s.
Here, the positive unit clause l ' T is resolved with the
negative literal s ' T in the clause q ^ s ' T ) u ' T ,
and produces a new Horn clause q� ) u� ' T . The new
clause is a logical consequence of the two given clauses,
since s� = l��, where � renames variables in l so that
it shares none with s. The clause would be generated
only when s > q, by which we mean that s is the largest
negative literal in its clause.
A total simpli�cation ordering on non-ground literals

is not actually possible (which is why the ordering of the
parent clause is inherited in ordered resolution), but can
be approximated by a partial ordering. If only a partial
ordering � is given, we resolve negative literals that are
potentially maximal. That is, we apply the above rule
if s� 6� q�, or, in other words, if the instance s� of s
created by resolution is not necessarily smaller than the
other instantiated negative literals. Since some of the
rules we consider delete or simplify antecedent clauses,
the above format for inference rules, with the equations
that participated in the inference also appearing as part
of the consequent, is advantageous.
Suppose E is a set of Horn clauses in conditional

equation form. To handle equality literals l ' r, we
need to unify at subterms of conditions, not just at the
literal level. Note that whenever we refer to equations
in a set, we mean that it, or the symmetric equation
(with l and r exchanged), or a variant with variables
renamed uniformly, actually appears in the set. With
that in mind, if l uni�es with a non-variable subterm
sj� of a maximal term s in a condition s ' t of a
conditional equation q ^ s ' t ) u ' v, then a new
Horn clause is created by applying the most general
unifying substitution � to the conditional equation, and
then replacing l� with r�, as per the unit clause l ' r.
The conditions ensure that s� is the (potentially) larger
side of the condition that is being paramodulated into
and that the replacement yields a (potentially) smaller
condition.

3 Inference Rules

We formulate our theorem-proving procedure as an infer-
ence system operating on a set of conditional equations,
and parameterized by a completable ordering �. We
de�ne a symmetric binary relation $, for a particular
set of conditional equations E, as the smallest relation
satisfying t[l�]� $ t[r�]� for all u1 ' v1 ^ � � � ^
un ' vn ) l ' r in E such that ui� $� vi�
for each i, where $� is the re
exive-transitive closure
of $. This relation corresponds to \substitution of
equals" according to the axioms in E. We also de�ne
a decreasing rewrite relation !E on terms T . An
instance p� ) u� ' v� of a conditional equation is



\decreasing" if u� � v� in the completable ordering
and the proofs of the conditions only involve terms
smaller than u�. We write u !e v (with respect to
a partial ordering �), if u $e v using a decreasing
instance of e. For unit equation e, !e is just the
intersection of $e and �. Decreasingness is essentially
the same condition as imposed on conditional rewrite
rules by the completion-like procedures of [Kaplan, 1987;
Ganzinger, 1987]. In these methods, superposition
is used when the left-hand side is larger than the
conditions; narrowing, when a condition dominates the
left-hand side. As theorem provers, however, they are
refutationally incomplete, since they make no provision
for \unorientable" equations s ' t such that s 6� t and
t 6� s.
The inference rules we present may be classi�ed into

three \expansion" rules and four \contraction" rules.
Contraction rules signi�cantly reduce space require-
ments, but make proofs of completeness much more
subtle.

Superpose:

E [

�
p) l ' r;
q ) u ' v

�

E [

(
p) l ' r;
q ) u ' v;

p� ^ q�) u�[r�]� ' v�

)

if

(
uj� 62 X
� = mgu(uj� ; l)
u� 6� p�; q�; v�; u�[r�]�

Superposition (i.e. oriented paramodulation of posi-
tive equational literals) is performed only at non-variable
positions (uj� 62 X ). Only positive equations are used
in this rule, and only in a decreasing direction (u� 6�
p�; q�). Either side of an equation may be used for
superposition, but only if, in the context of the paramod-
ulation, it is potentially the largest term involved (u� 6�
v�; u�[r�]�). Note that the two conditional equations
may actually be the same (except for renaming). Here
and later, when a rule refers to a clause of the form
q ) u ' v, an unconditional equation (u ' v) is
also intended. When both participating equations are
unconditional, an unconditional \ordered" critical pair
is generated.
We need, additionally, a rule that paramodulates into

maximal negative literals:

Narrow:

E [

�
p ) l ' r;

q ^ s ' t ) u ' v

�

E [

(
p ) l ' r;

q ^ s ' t ) u ' v;
p� ^ q� ^ s�[r�]� ' t� ) u� ' v�

)

if

(
sj� 62 X
� = mgu(sj� ; l)
s� 6� p�; q�; t�; s�[r�]�

Whenever this or subsequent rules refer to a conditional
equation like q ^ s ' t) u ' v, the intent is that s ' t
is any one of the conditions and u is either side of the
implied equation.

The last expansion rule in e�ect resolves a maximal
negative literal with re
exivity of equals (x ' x):

Re
ect:

E [ f q ^ s ' t ) u ' v g

E [

�
q ^ s ' t ) u ' v;

q� ) u� ' v�

�

if

�
� = mgu(s; t)
s� 6� q�

The contraction rules all simplify the set of conditional
equations. The �rst deletes trivial conditional equations:

Delete: E [ f q ) u ' u g
E

The next rule allows for deletion of conditions that are
trivially true:

Condense:
E [ f q ^ s ' s ) u ' v g

E [ f q ) u ' v g

The last two contraction rules use decreasing instances
to simplify other clauses. One rule simpli�es conditions;
the other applies to the equation part. In both cases, the
original clause is replaced by a version that is logically
equivalent, assuming the rest of E.

Simplify:
E [ f p ) u ' v g
E [ f q ) u ' v g

if p!E q

Compose:
E [ f q ) u ' v g
E [ f q ) w ' v g

if

�
u!p)l'r w; p) l ' r 2 E
v � u _ (u ' v) > (l ' r)

By u ' v > l ' r we mean that the larger of u
and v, say u, is strictly greater than the larger side of
l ' r, say l, in the encompassment ordering (wherein
a term is larger than its proper subterms and smaller
than its proper instances), or that u = l but v is strictly
greater than r under �. This allows the larger side of
an equation to be simpli�ed by a more general equation,
and the smaller side to be rewritten in any case.
We use the notation E ` E0 to denote one inference

step, applying any of the seven rules to a set E of
conditional equations to obtain a new set E0. The
inference rules are evidently sound, in that the class of
provable theorems is unchanged by an inference step.

4 Strategies

Let > be any complete simpli�cation ordering extending
the given partial ordering �. A proof of an equation
s ' t between ground terms (any variables in s and t
may be treated as Skolem constants) is a \derivation"

s = t1
�1 !
e1�1

j

P1

t2
�2 !
e2�2

j

P2

� � �
�m !

em�m

j

Pm

tm+1 = t

of m + 1 terms (m � 0), each step tk $ tk+1 of
which is either trivial (tk+1 = tk), or else is justi�ed



by a conditional equation ek in E, a position �k in
tk, a substitution �k for variables in the equation, and
subproofs Pk (of the same form) for each conditions
uk;j�k ' vk;j�k of the applied instance ek�k. Steps em-
ploying an unconditional equation do not have subproofs
as part of their justi�cation. (By the completeness of
positive-unit resolution for Horn clauses, any equation
s ' t that is valid for a set E of conditional equations is
amenable to such an equational proof.)
We use for the inverse of!, and!� and � for the

re
exive-transitive closures of ! and  , respectively.
By a peak, we mean a proof segment of the form
s  u ! t; by a valley, we mean a proof segment of
the form u!� w � t; by a drop, we mean a step s! t
with valley subproofs; a plateau is a trivial subproof of
form s $ s. The depth of a proof is the maximum
nesting of subproofs; it is one more than the maximum
depth of its subproofs.

4.1 Unit Stratgey

The inference rules of the previous section are designed
to allow any equational proof to be transformed into
normal form. A strategy based on these rules is complete
if we can show that, with enough inferences, any theorem
has a normal-form proof. For the unit strategy, a
normal-form proof is a valley proof of depth 0. That
is the same as saying that a normal-form proof has no
peaks, no drops, and no plateaus. Normal-form proofs
may be thought of as \direct" proofs; in a refutational
framework the existence of such a proof for s ' t
means that demodulation of s and t using positive unit
equations su�ces to derive a contradiction between the
Skolemized negation s0 6' t0 of the given theorem and
x ' x.
We must demonstrate that for any proof s $� t of

s ' t in E0, there eventually exists an unconditional
valley proof s !� w  � t. In the unit strategy,
only expansions involving an unconditional equation
are necessary. Speci�cally, both equations used by
superpose are unconditional and the positive literal
used in narrow is a unit. Were it not for contraction
rules, it would be relatively easy to show that narrow
and re
ect eventually provide an unconditional proof of
s ' t, and that superpose eventually turns that into a
valley.
We call an inference \fair" if all persistent superpo-

sitions of unit clauses, narrowings via unit clauses, and
re
ections have been considered:

Unit Strategy: An inference sequence E0 ` E1 ` � � �
is fair with respect to the unit strategy if

exp1(E1) �
[

i�0
Ei;

where E1 is the set lim infj Ej = [i�0 \j�i Ej of
persisting conditional equations and exp1(E1) is the
set of conditional equations that may be inferred from
persisting equations by one application of superpose
with p and q empty, narrow with p empty, or re
ect.

Theorem 1. If an inference sequence E0 ` E1 ` � � � is
fair for the unit strategy, then for any proof of s ' t in
E0, there is a normal-form proof of s ' t in E1.

This is shown by trans�nite induction on proofs. The
term ordering > is extended to the transitive closure
of it and the proper subterm ordering. This in turn is
extended to equations by considering the equation as a
multiset of two terms, and using the multiset extension
of this ordering. (In the multiset ordering [Dershowitz
and Manna, 1979], a multiset is decreased by replacing
an element with any �nite number of smaller elements.)
An equation is greater than a term if and only if one
of its sides is. Conjunctions of equations are compared
as multisets of these multisets, and a conjunction is
larger than a term if one of its conjuncts is. Proofs are
measured in the following way: Consider a step

s = w[l�]�
�
 !
e�

w[r�]� = t

in a ground proof or its subproofs, where e is the
conditional equation q ) l ' r justifying the step, �
is the substitution, and s is the larger of s and t (in the
complete simpli�cation ordering > extending �). To
each such step, we assign the weight

hfq�; s; l�g; ei

Steps are compared in the lexicographic ordering of these
pairs. The �rst components of pairs are compared in the
multiset extension of the ordering on conjunctions and
terms described above. (Note that s is always greater
or equal to l�, and that for decreasing instances it is
also greater than q�.) Second components are compared
using the extension > of the encompassment ordering
described earlier. Proofs are compared in the well-
founded multiset extension of the lexicographic ordering
on steps. We use� to denote this proof ordering. It can
be shown by standard arguments (see, e.g., [Dershowitz
and Jouannaud, 1990]) that � is well-founded.
Note that if s!e t, then the cost of this step is always

greater than the cost of the steps in its subproofs. Also,
if s! t! u, then the cost of the �rst step is larger than
that of the second.
We need to show that inferences never increase the

complexity of proofs and, furthermore, that there are
always inferences that can decrease the complexity of
non-normal proofs. Then, by induction with respect to
�, the eventual existence of a normal-formproof follows.

Lemma 1. If E ` E0, then for any proof P in E of an
equation s ' t, there exists a proof P 0 in E0 of s ' t,
such that P � P 0 or P = P 0.

This is established by consideration of the e�ects of
each contracting inference rule that deletes or replaces
equations, since for expansion rules, E � E0, and we
can take P 0 = P . The conditions imposed on compose
are essential for showing a decrease in �. (A more
general contraction rule would simply allow deletion of
any equation that admits a smaller proof vis-a-vis �.)

Lemma 2. If P is a non-normal-form proof in E, then
there exists a proof P 0 in E [ exp1(E) such that P �
P 0.

The argument depends on a distinction between \non-
critical" subproofs, for which there is a proof P 0 in E



itself, and \critical" subproofs, for which equations in
exp1(E) are needed. A peak

t0  �
p�)l�'r� t!�

q�)u�'v� t00

where t = w[l�]�[u� ]�, is critical if the position � is at
or below the position � in w at which u ' v is applied,
but not at or below a position corresponding to any
variable in u, or (symmetrically) if � falls within the
non-variable part of the occurrence of l in w. Similarly,
a drop t !�

q�)e� t00 is critical if the �rst or last step
of one of the subproofs for q� takes place within the
non-variable part of the condition q.
Since any proof must have at least one subproof of

depth 0, any non-normal proof must have a plateau,
an unconditional peak, or a drop of depth 1 with
(unconditional) valley subproofs. Thus, we need not
worry about peaks involving a conditional rule, nor
drops in which the proof of some condition is not
unconditional. All plateaus can be spliced out. Criti-
cal unconditional peaks, critical drops with non-empty
unconditional valley subproofs, and drops with empty
proofs of conditions can each be replaced by a smaller
proof, using the conditional equation generated by a
required application of superpose, narrow, or re
ect
inference, respectively. Narrowing can be restricted to
the maximal side of the maximal condition, since a drop
with non-empty subproofs must have a step emanating
from the larger side of its largest condition.
Non-critical unconditional peaks t0  t ! t00 have

alternative, smaller proofs t0 !� t  � t00 in E by the
version of the Critical Pair Lemma in [Lankford, 1975].
Consider a non-critical drop w[u�] $q�)u�'v� w[v�],
with unconditional subproof p� ! p0 !� p00  � p000,
where p� is no smaller than any other term in the
subproof q�. Suppose p has a variable x at position
� and the �rst step applies within the variable part
pj�. That is, p� = p�[x�]� ! p�[r]� = p0. Let �
be the same substitution as � except that � : x 7! r.
There is a smaller proof (smaller, vis-a-vis �) in E:
w[u�]  � w[u� ] $q�)u�'v� w[v� ] !� w[v�]. Any
rewrites x� ! r that need to be added to turn a proof
of q� into a proof of q� are also smaller.
Theorem 1 follows: If s ' t is provable in E0,

then (by Lemma 1) it has a proof P in the limit E1.
If P is non-normal, then (by Lemma 2) it admits a
smaller proof P 0 using (in addition to E1) a �nite
number of equations in exp1(E1). By fairness, each
of those equations appeared at least once along the way.
Subsequent inferences (by Lemma 1) can only decrease
the complexity of the proof of such an equation once it
appears in a set Ei (and has a one-step proof). Thus,
each equation needed in P 0 has a proof of no greater
complexity in E1 itself, and hence (by the multiset
nature of the proof measure), there is a proof of s ' t in
E1 that is strictly smaller than P . Since the ordering
on proofs is well-founded, by induction there must be a
normal proof in E1.

4.2 Decreasing Strategy

In the above method, only unconditional equations are
used for superposition and narrowing. An alternative is

to design an inference system that distinguishes between
decreasing and nondecreasing non-unit clauses. We
give here a method based on the incomplete completion
method in [Ganzinger, 1987]. The required inferences
(using superpose and narrow) are again a stringent
restriction of paramodulation.
For the decreasing method, we rede�ne a normal-form

proof of s ' t to be a valley proof in which each subproof
is also in normal form and each term in a subproof
is smaller than the larger of s and t; see [Dershowitz
and Okada, 1988]. Any non-normal-form proof has a
peak made from decreasing instances with normal-form
subproofs, or has a nondecreasing step with normal-
form subproofs, or has a trivial step. The Critical Pair
Lemma of [Kaplan, 1987] for decreasing systems can
be adapted to ground con
uence of decreasing systems.
Superposition is needed between decreasing conditional
rules. As before, we must perform enough expansions
with persistent conditional equations for there to always
be a normal-form proof in the limit.

Decreasing Strategy: An inference sequence E0 ` E1

` � � � is fair with respect to the decreasing strategy if

exp(E1) �
[

i�0
Ei;

where exp(E1) is the set of conditional equations
that may be inferred from persisting equations by one
application of an expansion rule superpose, narrow,
or re
ect.

Theorem 2. If an inference sequence is fair for the
decreasing strategy, then for any proof of s ' t in the
initial set E0 of conditional equations, there is a normal-
form proof of s ' t in the limit E1.

5 Discussion

We presented two complete theorem-proving strategies
based on the use of term-orderings. Both strategies
provide for simpli�cation (demodulation) by what we
called \decreasing" equations.
Our unit strategy is the �rst to combine a restriction

to paramodulation with unit equations with a strategy
based on maximal terms. It limited inferences in the
following ways: (1) The functional re
exive axioms are
not needed and, at the same time, paramodulation into
variables is avoided (as for some versions of paramod-
ulation); (2) for all (resolution and paramodulation)
inferences, at least one of the equations must be uncon-
ditional (as in positive unit resolution and positive unit
paramodulation); (3) unless an equation is unconditional
only its conditional part is used for paramodulation
(analogous to positive-unit resolution); (4) only maxi-
mal terms (with respect to a given ordering) are used
(analogous to ordered resolution). Unlike [Kounalis
and Rusinowitch, 1987], we use only unit clauses when
paramodulating into conditions; unlike [Bachmair et al.,
1989], all inferences use only the maximal side of an
equation.
The second strategy prefers paramodulation between

positive literals. It requires less paramodulation and
o�ers more simpli�cation than [Kounalis and Rusinow-
itch, 1987], for example. In essence, it treats decreasing



equations like unit clauses of the �rst strategy. When
the ordering supplied to the prover is empty (the
empty ordering is completable), the method reduces
to \special" paramodulation, in which the functional-
re
exive axioms are not needed and paramodulation
into variables is not performed (see [Lankford, 1975]).
The limitations on paramodulation are like those in
[Bertling, 1990], but we give a speci�c, practical strategy
for simpli�cation.
The strength of these methods, both in minimizing

possible inferences and maximizing potential simpli�ca-
tions, is brought to bear by employing more complete
orderings than the empty one. A nonempty ordering
eliminates many potential paramodulations and allows
conditional equations that are simpli�able to be replaced
without compromising (refutation) completeness. In
practice, any e�ciently computable ordering should be
better than uncontrolled paramodulation. The polyno-
mial and path orderings commonly used in rewrite-based
theorem provers [Dershowitz, 1987] are completable. In
particular, the recursive path orderings have decidability
properties [Jouannaud and Okada, 1991] that make it
ideal for this purpose. Choosing an ordering that takes
the goal (theorem) into account can impart a top-down

avor to an otherwise bottom-up procedure.
We used the same ordering for simpli�cation as for

choosing the maximal literal. In fact, a di�erent selection
strategy can be used for choosing the literal to narrow,
as in [Bertling and Ganzinger, 1989], but then the term
ordering must be used to choose the larger side of the
equality.
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