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Rewriting is a computational process in which one term is derived from another by replacing a
subterm with another subterm in accordance with a set of rules. If such a set of rules (rewrite
system) has the property that no derivation can continue indefinitely, it is said to be terminating.
Showing termination is an important component of theorem proving and of great interest in
programming languages.

Two methods of showing termination for rewrite systems that are self-embedding are pre-
sented. These “non-simple” rewrite systems can not be shown terminating by any of what are
called simplification orderings. The first method of termination employs lexicographic combina-
tions of quasi-orderings including the ordering itself applied to multisets of immediate subterms
in a general path ordering. Two versions are presented. The well-founded and well-quasi general
path orderings respectively require their component orderings to be well-founded and well-quasi
orderings. The definitions are shown to result in well-founded and well-quasi orderings, respec-
tively. A general condition is presented for showing termination of a rewrite system with a
quasi-ordering. Conditions on the component orderings are presented which guarantee that
the general conditions are satisfied. The well-quasi general path ordering is applied to several
examples to show termination.

The second method of showing termination is to use sets of derivations called the “forward
closures” of a rewrite system. New results are derived that give syntactic conditions under

which termination of the forward closures guarantees termination of the rewrite system. A
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theorem is presented that shows the relationship of forward closures with innermost rewriting.
If there is a class of rewrite systems for which innermost rewriting implies termination, then
termination of forward closures will imply termination as well. Restricting the set of forward
closures to derivations which satisfy some strategy such as choosing an innermost redex is
explored. Syntactic conditions are given for which termination of innermost or outermost
forward closures implies termination in general. The method of forward closures is then used
to show the termination of some example rewrite systems including the string rewriting system
0011 — 111000.

A test for non-termination of a rewrite system using forward closures (FCT) is presented.
A previous method (MSP) using semi-unification is analyzed and it is shown that certain kinds
of rewrite rules may be ignored without affecting the ability of MSP to detect non-termination.
Using this result one can also show that FCT will detect non-termination in every case that MSP
will, but not vice-versa. Results are also presented showing that information can be obtained
from forward closures about the termination of innermost derivations from terms of limited size
with all subterms in normal form. A method for computing innermost and outermost forward
closures is presented which avoids extra checking of earlier parts of the derivations to guarantee
the redexes remain innermost/outermost. Also given is a completion like method for generating
an innermost locally confluent rewrite system which preserves innermost derivations of a given
rewrite system.

Finally, there are appendices describing the interface to code written in common lisp which
implements the well-quasi general path ordering and showing its usage to prove termination of

a rewrite system for insertion sort.
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1 INTRODUCTION

Rewrite systems are sets of directed equations used to compute by repeatedly replacing terms in
a given formula with equal terms, as long as possible. The theory of rewriting is an outgrowth
of the study of the lambda calculus and combinatory logic, and has important applications
in abstract data type specifications, functional programming, symbolic computation, and auto-
mated deduction. For surveys of the theory of rewriting, see Dershowitz and Jouannaud [DJ90],
Klop [Klo92] and Plaisted [Pla93b].

If no infinite sequences of rewrites are possible, a rewrite system is said to have the ter-
mination property. In practice, one usually guarantees termination by devising a well-founded
(strict partial) ordering > such that s > ¢ whenever s rewrites to t (written, s — ¢). As
suggested by Manna and Ness [MN70], it is often convenient to express reduction orderings
as a homomorphism from terms to an algebra equipped with a well-founded ordering. The
use, in particular, of polynomial interpretations which map terms into the natural numbers was
developed by Lankford [Lan79]. For a survey of termination methods, see Dershowitz [Der87].

The rule

eX(y+z) — (exy)+(zxz) (1.1)

is terminating. This can be shown by interpreting X as multiplication, + as Azy.z+y+ 1, and
constants as 2. Since z > 2 implies z(y + z + 1) > zy + #z + 1, the rule is terminating. It
can also be proved terminating by considering the multiset of “natural” interpretations of all
products in a term, letting + and X stand for addition and multiplication, and assigning some
fixed value to constants; see Dershowitz and Manna [DM79] for similar examples. Syntactic
“path” orderings (see Dershowitz [Der87]) work in this case, too. Lipton and Snyder [LS77]
gave a particular method for proving termination with interpretations (order-isomorphic to w)
for which rules are “value-preserving”, as this example is for the natural interpretation.
Virtually all orderings used in practice are simplification orderings [Der82], satisfying the
replacement property, that s > ¢ implies that any term containing s as a subterm is at least
as large (under >) as the same term with s replaced by t, and the subterm property, that any

term containing s is at least as large as s. Simplification orderings are surveyed by Steinbach



[Ste89]; their well-foundedness is a consequence of Kruskal’s Tree Theorem. (See Dershowitz
[Der82].) A non-simple rewrite system (such as ffz — fgfz) is one for which no simplification
ordering will show termination.

Knuth and Bendix [KB70] designed a particular class of well-orderings which assigns a
weight to a term that is the sum of the weights of its constituent function symbols. Terms of
equal weight and headed by the same symbol have their subterms compared lexicographically.
If they are headed by different symbols, a “precedence” ordering determines which term is
larger. Another class of simplification orderings, the path orderings were introduced around
1980. Plaisted in [Par78] defined the simple path ordering which mapped a term ¢ to multiset
of paths in the term. The recursive path ordering introduced in Dershowitz [Der82], is based on
the idea that a term w should be bigger than any term that is built from smaller terms, all held
together by a structure of function symbols that are smaller in some precedence ordering than
the root symbol of u. The notion of path ordering was extended by Kamin and Lévy [KL80]
to compare subterms lexicographically and to allow for a semantic component; see Dershowitz
[Der87].

In the thesis quasi-orderings (reflexive-transitive binary relations), rather than partial or-
derings, are used to prove termination of rewrite systems. If % is a quasi-ordering and < is its
inverse, then its strict part > (x — =) is a partial order. Its associated equivalence relation
is defined as = N =< . A quasi-ordering is well-founded if it has no infinite strictly descending
sequence of elements. A quasi-ordering is well-quasz if in addition to being well-founded it has
no infinite set of incomparable elements.

A precedence is a well-founded quasi-ordering of function symbols. An ordering can be
called syntactic if it is based on a precedence and is invariant under shifts of symbols. In other
words, one requires that consistently replacing function symbols in two terms with others of the
same arity and with the same relative ordering has no effect on the ordering of the two. The
recursive path orderings [Der82; KL80; Les90] are syntactic; the Knuth-Bendix and polynomial
orderings are not.

Simplification orderings cannot be used to prove termination of “self-embedding” systems,
that is, when a term ¢ can be derived in one or more steps from a term #', and ¢’ can be obtained
by repeatedly replacing subterms of ¢ with subterms of those subterms. For example, consider

the following contrived system for computing factorial in unary arithmetic (expanding on one



in Kamin and Lévy [KL80]):

p(s(z)) — =

fact(0) — s(0)
fact(s(z)) — s(z) x fact(p(s(2)))

Oxy — 0 (1.2)
s(z)xy — (zxy)+y

z+0 — =z

z+s(y) = s(z+y).

It would be nice to be able to use a natural interpretation, but that does not prove termination,
since the rules preserve the value of the interpretation, rather than cause a decrease. Nor can
multisets of the values of the argument of fact be used, since some rules can multiply occurrences
of that symbol. Though path orderings have been successfully applied to many termination
proofs, they suffer from the same limitation as do all simplification orderings: they are not
useful when a rule embeds as does fact(s(z)) — s(z) X fact(p(s(z))).

What is needed is a way of combining the semantics given by a natural interpretation with a
non-simplification ordering that takes the structure of terms into account. Two closely related
orderings are presented and will be called general path orderings. In Chapter 3, the well-quasi
general path ordering (WQGPO) is presented and is proven to be a a well-quasi ordering. In
Chapter 4 general conditions are given for showing termination of a well-founded quasi-ordering.
Specific conditions for composing component orderings are then given under which the WQGPO
can be use to show termination of rewrite systems (both simple and non-simple). In Chapter
5 it is shown that the WQGPO generalizes many of the above-mentioned orderings and a new
ordering called the natural path ordering is presented. In Chapter 6 extensive examples of
the use of the well-quasi general path ordering are given. Included is an example showing
termination of an insertion sort over natural numbers. The ordering used is unlike any of the
previously mentioned standard techniques for showing termination. Also included are some
conditional rewrite systems which make use of value-preserving orderings.

In Chapter 7 the second version of the general path ordering called the well-founded general
path ordering (WFGPO) is presented. It is less restrictive in that it allows orderings to be

combined which are well-founded, but not necessarily well-quasi. An additional restriction



requiring orderings which examine all subterms is needed, however. The well-founded general
path ordering is shown to be a well-founded quasi ordering and the conditions under which
it can be applied are presented. Finally, comparisons are made between the two general path
orderings.

One under-used approach to termination is the use of restricted derivations [Der81; GKMS83;
Geu89]. The forward closures of a given rewrite system are an inductively defined set of
derivations. The basic idea is to only consider derivations in which application of rules is in
that part of a term created by previous rewrites.

In general, termination of forward closures does not ensure termination of a rewrite system.
In this thesis results are presented which weaken the condition under which termination forward
closures are sufficient to show the termination of a rewrite system. One important result is a
theorem which shows the relation between forward closures and innermost termination of a
rewrite system.

Also investigated are restrictions to the set of forward closures based on rewrite strategies.
Popular strategies include restricting the position of a rewrite application to an innermost or
outermost redex. Syntactic conditions on rewrite systems are presented in Chapter 8 which
allow one to show termination via termination of a restricted set of forward closures.

In Chapter 9 an application of forward closures is investigated. Completion is the process
by which a set of equations is converted to an equivalent rewrite system which is confluent and
terminating. Typically the process of completion involves searching for a rewrite system which
allows the completion to orient all of the generated rules. This process can be using heuristics
to orient the rules independently of an ordering. In this thesis, a previous method of detecting
a non-terminating set of rules due to Purdom [Pur87] is analyzed. A new method using forward
closures is proposed which is shown to be strictly more powerful.

Termination of innermost forward closures is sufficient to guarantee innermost termination of
a rewrite system. This can be exploited in a number of cases. For example, many programming
languages are applicative, and hence innermost derivations may be all that one is interested in
when proving termination. In addition, restricting completion to innermost derivations has the
benefit of severely limiting the number of possible critical pairs to be considered. Only overlaps
at the top position need to be considered [Pla93b]. In Chapter 10, using innermost forward

closures with completion are explored. It is shown that while the set of forward closures may



be infinite, innermost termination for terms of restricted size may be determined by examining
a finite number of forward closures. In addition, methods for more efficiently computing the

the innermost and outermost forward closures of a rewrite system are presented.



2 BACKGROUND

This chapter presents the terminology and notation that will be used throughout the rest of

the thesis. Useful results are presented for well-quasi orderings.

2.1 Terminology

The following notation, definitions, and propositions are reasonably standard and usually con-

form with those presented by Dershowitz and Jouannaud in [DJ90].

2.1.1 Terms

Terms are constructed recursively from a set of function symbols F and a set of variables &'.
Each function symbol f € F has an arity which is the number of subterms that the function
f has. Constants are those function symbols with an arity of zero. A wnary function symbol
has an arity of one. A binary function symbol has an arity of two. The set of terms 7 (F, X)
contains all the constants and variables. Any term ¢t = f(¢1,...,t,) is also a member, provided
that f has arity n and each of the terms ¢, . . .,t, is also in 7 (F, X). Terms which are variable
free are denoted as ground terms. A term ¢ with a subterm s will be denoted as t = C[s] where
C is the context of the subterm. The subterm s = ¢|,, where p is the position of the subterm.
Since a term can be represented as a finite tree with all the internal nodes labeled with non-
constant function symbols, positions can be denoted as a path from the root of the tree. The
position p = A is the root of the tree. The subterm associated with the position p = p’.7 is
the 7th subterm of the subterm associated with p’. As convenience, the immediate subterms of
a term t are denoted ty,...,¢, and t = f(¢1,...,¢,). To avoid confusion subscripting will be
reserved for indicating subterms of the terms ¢, s, u, and v. Proofs that use a sequence or set
of terms will use superscripting, e.g., t°,!,#2, ... is a sequence of terms.

The set of variables in a term is denoted by Var(t). The letters a through h will be reserved
for function symbols, , y and z are reserved for variables, and [,r,s, and t are reserved for terms.
Most terms will be written in a functional notation. For example, ¢t = f(g(z,y), a, 2) is a term

composed of the variables z, y, and z, the constant a, the function symbol g (with arity two),



and the function symbol f (with arity three). The exceptions are that for function symbols
of arity one the parentheses will usually be dropped and for common binary mathematical
functions infix notation will be used. For example, the term h(h(h(a))) would be written as

hhha, and the term —(z, +(y, z)) would be written as z — (y + 2).

2.1.2 Substitutions and Unification

A substitution is a set of mappings from variables to terms denoted as {z; — s1,..., 2, — Sp}.
Any variable term z; is replaced by the corresponding term s; in the mapping. A substitution
is extended recursively to a term ¢ = f(¢1,...,t,) by applying to = f(t10,...,t,0). The
composition of two substitutions ¢ and g, is denoted ¢ o u and represents the composition of
the two mappings. Formally, to o p = (to)p. For convenience, this will usually be written as
just top. A remaming substitution is one in which the terms si, ..., s, are all pairwise different
variables. For example, the substitutions o7 = {z — y,y— 2}, 02 = {& — y,y— 2}, and
o3 = {z — w,y — z} are all renaming substitutions.

Given sets of terms ¢ = {¢!,...,t"} and 5 = {s!,...,s"}, the substitution o is said to be a

unifier if the following equations are satisfied

(2.1)

Typically, one is concerned with the special case of just two terms, in which case ¢ is said to
unify with s provided that o = so. A substitution o is a most general unifier if for any unifier
[, there is some substitution 7 such that g = o o 7. Note that the most general unifier is not
unique. It is only unique up to a renaming substitution.

Sets of terms £ = {¢!,...,t"} and 5 = {s',...,s"} match if there is a substitution o where

the following equations are satisfied

(2.2)



Typically, one is concerned with the special case of just two terms, in which case ¢ is said to
match s provided that to = s for some substitution o. For example, the term ¢ = fz matches
the term s = fga with the substitution o = {z — ga}.

Sets of terms t = {t!,...,#"} and 5 = {s!,...,s"} semi-unify if there are substitutions o

and p where the following equations are satisfied

thop = s
2.1.3 Rewrite Systems

An equation is an unordered pair of terms (s,t) denoted as s = ¢. If s and ¢ contain variables
it is understood that they are universally quantified. In other words, for every substitution o
the equation so = to is true. An equational theory is induced by a set of equations E and is

denoted by =g. Two terms v and v are equal under an equational theory u =g v if
1. u = so and v = to for some substitution ¢ and equation s =t € F,
2. u=C[s] and v = C[t] and s =g t where C is a non-empty context, or
3. there is some term w such that u =g w and w =g v.

This is the standard algebraic notion that equals are replaced by equals. Suppose that one is
given the set of equations
z+0 = =
E=¢ z450) = = (2.4)
z+s(y) = s(z+y)
Since 0 =g 0 + s(0) =g s(0+ 0) = s(0) and s(0) =g s(0) + s(0) =g s(s(0) + 0) =g s(s(0)) it
is also the case that f(0) =g f(s(s(0)). Notice that in this case all of the terms s¢(0) are equal
under F.
A rewrite rule l — r is a directed equation such that the all variables on the right-hand side
are also on the left-hand side, i.e., Var(r) C Var(l). A rewrite system R is a set of rewrite
rules. A rewrite step or derivation step is obtained by application of a rule [ — r to a term

t. The rule can be applied if there is some subterm s of ¢ such that ! matches s (there is a



substitution o where s = lo.) In this case the rule matches the redez s. The derivation step
is t = C[s] — Clro]. The rewrite relation on a set of terms associated with a rewrite system
R is denoted by —g. If there is only one rewrite system, or it is clear from the context which
rewrite system is being referred to this will be shortened to just —. The derivability relation
—* is the reflexive, transitive closure of —. The notation ¢ —* ¢’ indicates that ¢ rewrites to ¢’
in zero or more steps. The notation ¢ —+T ¢ indicates that ¢ rewrites to ¢ in one or more steps.
A rewrite step t = C[s] = C[lo] — Clro] is innermost with respect to R if there is no proper
subterm u = s, of s such that u — u' for some ’. In other words, every proper subterm of s is
in normal form (can not be rewritten). A rewrite step ¢ = C[s] = C[l;0] — C[r;o] is outermost
with respect to R if there is no subterm u = t|, of ¢t where s is a proper subterm of u and
u — u' for some u'. In other words, there is no redex above s.

A left-linear rewrite system has no repeated variables on the left-hand side of a rule. Sim-
ilarly, a right-linear system has no repeated variables on the right-hand side of a rule. A pair
of rules I; =+ r; and I; — r; overlap if there is some non-variable subterm of /; which unifies
with [;. Essentially, this represents a situation where there is a term ¢ in which both of the
rules can be applied and the redexes share context. A non-overlapping rewrite system is one
where no left-hand side of a rule unifies with any non-variable subterm of the left-hand side of
another rule or with a non-variable proper subterm of itself when variables in the two rules are
renamed apart. An overlaying rewrite system is one whose only overlaps are at the topmost
position, that is, no left-hand side unifies with a non-variable, proper subterm of any left-hand
side. A rewrite system is momn-erasing if any variable on the left-hand side of a rule is also
on the right-hand side. An orthogonal rewrite system is non-overlapping and left-linear. A
ground rewrite system is one which has no variables. A locally confluent rewrite system is one
for which u — s,t implies s5,t —* v, for some v. A confluent rewrite system is one for which
u —* s,t implies s,t —* v, for some v. Note that local confluence does not imply confluence
in general. A rewrite system is said to have the unique normal form property if u —* nq, ny
where n; and my are normal forms, implies n; = mny. Certain symbols may be denoted as
constructors and must not be the topmost symbol on the left-hand side of any rule. A term
is comstructor-based if all of its proper subterms have only free constructors and variables. A
rewrite system is constructor-based if its left-hand sides are constructor-based, and a forward

closure is constructor-based if its initial term is constructor-based.



2.2 Termination

A term t is terminating (and is denoted by t € Ty) if all derivations from ¢ are finite; ¢ is
non-terminating (and is denoted by t € T) if some derivation from ¢ is infinite; and ¢ is on
the frontier (and is denoted by ¢t € FR) if t is non-terminating, but every proper subterm of
t is terminating. If a term has no frontier subterms, then it must be terminating. Conversely,
if a term has a frontier subterm, it is non-terminating. If no infinite sequences of rewrites are
possible, a rewrite system is said to have the termination property.

An well-founded ordering is a partial ordering which has no infinite descending sequences.
Such an ordering can be used to prove the termination of a rewrite relation, by showing that
the rewrite relation embeds within the well-founded ordering (and thus that every rewrite step
shows a decrease within the ordering).

Virtually all orderings used in practice are simplification orderings [Der82], satisfying

o the replacement property, that s > t implies that any term containing s as a subterm is

at least as large (under >) as the same term with s replaced by ¢, and
e the subterm property, that any term containing s is at least as large as s.

Simplification orderings are surveyed by Steinbach [Ste89]; their well-foundedness is a conse-

quence of Kruskal’s Tree Theorem [Kru60].

Definition 1. A term ¢ is homeomorphically embedded in a term s written ¢t < s if
1. t and s are identical,
2. t is homeomorphically embedded in s; an immediate subterm of s (¢ < s;), or

3. t and s have the same function symbol on top and the immediate subterms of ¢ homeo-
morphically embed in the corresponding immediate subterms of s (¢t = f(t1,...,%¢,) and

s = f(s1,...,5n) and for each pair of subterms ¢; < s;.)

This definition needs to be extended slightly if one wants to handle the possibility of variadic
function symbols, but in this thesis that possibility will be excluded. A rewrite derivation

t' -2 — ... t'...is said to be self-embedding if there are terms ¢* and ¢/ where #* < ¢/ and

i<

10



Proposition 1 (Kruskal’s Tree Theorem). If F is finite set of function symbols, then any in-
finite sequence t,1%, - - - of terms in the set T(F) of terms over F contains two terms t* and ¢’

such that t* <t/ and i < j.

This was shown by Kruskal in [Kru54] and [Kru60]. The special case where each of the function

symbols is of fixed arity was shown earlier by Higman in [Hig52].
Proposition 2. If a finite rewrite system is non-terminating, then it is self-embedding.

Proof. This is due to Dershowitz in [Der82]. If the rewrite system R does not terminate then
there must be an infinite derivation. Since there are only a finite number of function symbols,
by Proposition 1 there must two terms ¢* and #’ such that t* < ¢/ and ¢ < j. Therefore the

derivation self-embeds. 0

This gives one a necessary condition for termination, but it is not sufficient since there are
terminating rewrite systems which are self-embedding. For example, ffz — fgfz is self-

embedding and terminating.

Proposition 3. Given a rewrite system R and two terms t and s such that t is homeomorphi-
cally embedded in s (t < s) andt — s, R can not be shown terminating by any simplification

ordering.

A simplification ordering > extends the the relation > [Der82]. Thus, in the simplification

ordering s > ¢ and the derivation can not be shown to terminating.

2.3 Quasi-Orderings

This section reviews quasi-orderings. It contains several Propositions that will be used later in
the thesis.

A relation % on aset S is a Quast-ordering if it is transitive and reflexive. The associated
equivalence relation on S is given by s =t if s x £ and ¢ x s. The associated partial ordering
> (the strict part of the Quasi-ordering) on S is given by s > ¢ if s x ¢t but not ¢ x s.

The classic example is the set real numbers with respect to the relation greater than or

equal modulo n.
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A Quasi-ordering is well-founded if the strict part, > is well-founded. The previous example
is not well-founded since the sequence € > €/2 > ¢/4 > - - - is not well-founded. On the other

hand, if one restricts the set to the integers, it will be well-founded.

Definition 2. An ordering on S is a well-quasi-ordering if for any infinite sequence of of ele-

ments s!, s2, 5%, ..., there exist two elements s* and s’ such that, s' < s/ and i < j.

This definition was first proposed by Kruskal in [Kru60]. Any well-quasi-ordering must also be
well-founded. In addition, there can not be an infinite number of incomparable elements. For

a history of well-quasi orderings and a survey of their uses, see [Kru72].

Proposition 4. If % is a well-quasi-ordering over S, then in any infinite sequence of elements
st s2,s2,.. ., there is an infinite subsequence s*',s%2,s%, ..., such that s < s? £ s < ... and

i <t <izg< ...

Proof. This is the infinite version of Ramsey’s theorem. Assume that this is not the case.
Consider an arbitrary infinite sequence of elements. By the definition of a well-quasi-ordering,
there must be a pair of elements s* and s? such that s* < s?. From s’ construct a sequence of
terms s7, s, 572 ... sin where s7 g s/t < 52 % ... < si». This sequence must be finite by
assumption and s’» must be greater than or incomparable to all succeeding elements. Removing
the j, elements from the sequence leaves a new infinite sequence for which a new subsequence of
elements can be found. Repeating this an infinite number of times and taking the last element
in each subsequence, allows one to construct an infinite sequence of terms, such that each one

is greater than or incomparable to all the succeeding terms. But this is a contradiction. 0

Proposition 5. If %1, &9, ..., xn are well-quasi-orderings over S then any lexicographic com-

bination is a well-quasi-ordering as well.

Proof. Consider an infinite sequence of terms s!,s? s --.. By the previous Proposi-

tion, an infinite subsequence of terms can be constructed (call them t!,¢2,¢3,--) such that
2t g2 5 -

Clearly, this process can be continued with each of the n orderings until a se-
quence of terms wug,us,us,--- is obtained which is a subsequence of the original where

U1z, Ur=L2Uz, -, U1SnUs. But wuy is less than or equal to u; under the lexicographic

12



combination of the orderings and u; occurs before us in the sequence, therefore the lexico-

graphic combination is also a well-quasi-ordering. 0

Definition 3. An embedding relation >, defined on the set of finite sequences S* over the set

=
S by the quasi-order x , is given by (s1,...,5m) > (b1, tn) if s, mt;forallj=1,...,n

with 1 <4 <is<... <%, <m.

Proposition 6 (Higman’s Lemma). An embedding relation >, defined on the set of finite

x

sequences 8* over the set S is well-quast ordered if, and only if, the ordering = is a well-quast

ordering over S.

This was shown by Higman in [Hig52] and shows that the embedding relation preserves the

well-quasi ordering. The proof proceeds by a minimal counter example.

Proposition 7. If % s a well-quasi-ordering over S, the extension of = to multi-sets = m

is also a well-quasi-ordering.

Proof. This is a direct result of Higman’s Lemma.
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3 THE WELL-QUASI GENERAL PATH ORDERING
(WQGPO)

In this chapter the definition of the well-quasi general path ordering is given.! The well-quasi
general path ordering combines mappings from terms to well-quasi-ordered sets. It is shown that
the well-quasi general path ordering is, in fact, a well-quasi-ordering and hence is a candidate

for showing termination of rewrite systems.

3.1 Definitions

In this section concepts are introduced for use with the either of the general path orderings.
Included are some basic kinds of component orderings used by a general path ordering. Finally

the definition of the well-quasi general path ordering is given.

Definition 4 (Termination Function). A termination function 6 takes a term as argument and

is of one of the following types:

a. a homomorphism from terms to an algebra (set of values) A, where 6(f(s1,...,5n)) =

Jo(0(s1),-..,0(sn)), and fp is a function from A™ to A for n-ary function symbol f;

b. an extraction function from terms to multisets of selected immediate subterms, that is
6(f(s1,.--,5n)) = {85, -15jm}, such that ji,...,75m € {1,...,n} where the choice of

the subterms depends on the function symbol f.

We say that s x t for terms s and ¢ containing variables Z if so % to for all ground (variable

free) substitutions o for the variables Z.

Definition 5 (Component Order). Let 7 be a set of variable-free terms (over some alphabet).
A component order ¢ = (6,>) consists of a termination function 6 : T — A, from terms to an

algebra A along with an associated well-quasi-ordering > over A.

! The definition of the general path ordering given in [DH95] is a little different. See Chapter 7 for a discussion.
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The following definitions are useful (~ denotes the equivalence part of >):

e A homomorphism § is value-preserving with respect to the ordering > and rewrite system

R if §(lo) ~ 6(ro) for all rules I — 7 in R and substitutions o.

e A homomorphism 6 is monotonic with respect to the ordering > if for all function symbols

fo fo(..x..)> fo(...y...) whenever z > y.

e A homomorphism 6 is strictly monotonic with respect to the ordering > if for all function

symbols f, fo(...z...) > fo(...y...) whenever z > y.

e A homomorphism € has the strict subterm property with respect to the ordering > if for

all function symbols f, fo(...z...) > .

e An equivalence relation ~ is a congruence with respect to a homomorphism @ if for all

function symbols f, ¢ ~ y implies fo(...z...) ~ fo(...y...).

e The multiset R;(S) of terms of rank ¢ (¢ > 0) with respect to the ordering > on terms in

a multiset of terms S, is inductively defined as
R;(S) = {u : wu is maximal with respect to > in L;(S)

where

Li(S)=5- |J R;(9).

0<j<s
Definition 6. Some important classes of component orders are:

a. (6,>) is a precedence when 6 is a homomorphism which returns the outermost function

symbol of a term and > is a precedence ordering;

b. (8,>) is value-preserving when 6 is a value-preserving homomorphism with respect to >

and > is a well-quasi-ordering;

c. {#,>) is monotonic when 6 is a monotonic homomorphism with the strict subterm prop-

erty (with respect to >) and > is a well-quasi-ordering;

d. (8,>) is strictly monotonic when 0 is a strictly monotonic homomorphism with the strict

subterm property (with respect to >) and > is a well-quasi-ordering;
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e. (0, >) is multiset extracting when 6 is an extraction function which depending on the out-
ermost function symbol returns a multiset of the immediate subterms Z(t) = {¢1,t2,...}

of a term ¢, of the following types:

1. amultiset (including the empty multiset) whose elements are the immediate subterms
at specified positions K (Px(t) = {t; : ¢ € K}),
2. a multiset whose elements are the immediate subterms of rank Gk,

Ri(Z(t)), or

3. a multiset whose elements are the immediate subterms of rank k or less (R<x(Z(t)) =
Uis: B5(Z(1))

and > is the multiset ordering % s induced by a well-quasi-ordering % on terms. (See

Dershowitz and Manna [DM79] for more on multiset orderings.)

Simple examples of homomorphisms from terms to the natural numbers are size (number
of function symbols, including constants), depth (maximum nesting of function symbols), and
weight (sum of weights of function symbols). Size and weight are strictly monotonic; depth is
monotonic. A simple example of a precedence uses the ordering 4+ > s > 0 with +4 = Az.“+”,
s = Az.“s”, and 0y = Az.“0”. (The subterm property is guaranteed for strictly monotonic
homomorphisms into well-ordered sets [Der82].) An example of a multiset component ordering
is § = Ry; it extracts the maximal immediate subterms in >. Another example is § = Py

which gives the leftmost subterm.

Definition 7 (Well-Quasi General Path Ordering). Let ¢o = {(00,>0), ..., ¢ = (O,
>r) be component orders, where for multiset extraction #, component orders, >, is the well-
quasi general path ordering x itself. The induced well-quasi general path ordering = is

defined as follows:

s=f(s1,..,8m) = g(t1,...,tn) =1
if either of the two following cases hold:
(1) s; x t for some s;,2=1,...,m, or
(2) s > t1,...,t, and O(s) >t O(t), where O(s) = (6o(s),...,0k(s)), and >, is the

lexicographic combination of the component orderings >..
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The equivalence part of the ordering is given by s~ tif s x t and t x s.

3.2 Quasi-ordering Proofs

In this section a series of lemmata will be presented which allow one to prove that the well-quasi

general path ordering is a quasi-ordering.

Lemma 8 (Exclusion). If s~ t then s x t and t x s are either both true by Case (1) or both
true by Case (2).

Proof. Suppose that s x t by Case (1). Then there is an immediate subterm s; of s such that
s; = t. If t = s by Case (2) then for all immediate subterms s; it must be that ¢t > s;. Thisis a
contradiction.

The other case is shown by a symmetric argument. O

The notation £|, is used to refer to the subterm of ¢ at position p and the notation u[s] (or
u[s]p) indicates that u contains s as a subterm (at position p).

In some cases, it is more convenient to give the position of a subterm in the following
manner. The notation s; refers to the ith immediate subterm of s. The notation s; ; refers to
the jth immediate subterm of the ¢th immediate subterm of s.

The following two lemmata must be shown by simultaneous induction over the height of a

term.

Lemma 9 (Strict Subterm). The well-quasi general path ordering satisfies the strict subterm

property s = f(...,s;,...) > s;, for all i.

Proof. By inductive application of Reflexivity s; ~ s; and therefore by Case (1) of the
ordering s x s;.

Now suppose that s = s;. By the previous lemma (Exclusion) it must be that s; % s by
Case (1).

This implies that s; ; x s for some immediate subterm s; ; of 5;. By induction s; > s;; and
Case (1) of the ordering can be applied to show that s ik s; ;. But this means that s; ; ~ s and

by Exclusion that s; ; x s by Case (1).
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This implies that s; ; % s for some immediate subterm s; ; of s; ;. By induction s; ; > s; &
and a series of applications of Case (1) of the ordering can be used to show that s x s; ;. But
this means that s; j; ~ s and by Exclusion that s; j; % s by Case (1).

Eventually one reaches a subterm of height one where this argument fails and hence by

contradiction s % s; leaving s > s;. d
Lemma 10 (Reflexivity). The well-quasi general path ordering = 1is reflexive (s = s).

Proof. This can be shown by proving that s x s.

By the previous lemma (Strict Subterm) it is known that s > s; for all s;. Case (2) can be
applied if ©(s) ~ O(t)

But this is true for the homomorphism components since they must be quasi-orders and
by application of induction on the immediate subterms returned by the extraction components

one has t; % t; and therefore the multiset ordering on immediate subterms is reflexive as well.

({tj, - timt =~m {tjy, - -t} for any ju,...,dm € {1,...,n}).

Therefore Case (2) applies. 0

Lemma 11. For the well-quasi general path ordering, s = t implies u[s] > t for each non-empty

enclosing context u|-] of s.

Proof. Consider the subterm u|, which contains s as an immediate subterm. By Case (1),

ulp > t. Repeated application of the preceding argument leads to u[s] > t. 0

Lemma 12 (Transitivity). For terms s, t, and u and well-quasi general path ordering x:
(i) s xtx u implies s x u;
(1) s x t > u implies s > u;
(111) s >t = u implies s > u;
(iv) s ~t~ u implies s ~ u.

Proof. The proof proceeds by induction over the triple of terms (s, ¢, u) with respect to the

sum of the heights of the three terms.
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(i) Suppose that s x ¢ by Case (1) of the ordering, then s; x t for some 3. Since ¢ < u, one
can apply induction on the triple (s;, ¢, u) to get s; x u. Therefore s x u. by Case (1) of

the ordering.

Suppose that s % ¢ by Case (2) of the ordering, then s > t;,...,t, and O(s) >, O(2).
Now if t = u by Case (1) of the ordering, then ¢; x u for some j. But one may apply
induction to the triple (s,t;,u) to show s > u. If £ x u by Case (2) of the ordering,
then t > uy, ..., Un and O(t) >, ©(u). One may apply induction to each of the triples
(s,t,ur) to show that s > wug for each k. If each of the component orders is transitive
then O(s) >z ©(u). When >, is a well-quasi-ordering there is no problem; when >, is
a multiset ordering on immediate subterms, the induction hypothesis is needed. Finally,

s % u by application of Case (2).

(ii) By application of the Part (i), one knows that s x u.

Suppose that s &~ u. Then u x s. Combined with s % ¢ and applying Part (i), one gets

u % t. But this contradicts the premise that ¢ > u, hence s > u.
(iii) Essentially the same argument as for (ii).

(iv) Applying Part (i) for s x ¢ x u and u x t x s results in s x u and u % s. Therefore, by

definition, s ~ u.

Theorem 13. The well-quasi general path ordering is a quasi-ordering.

Proof. By the previous lemmata X is reflexive and transitive. O

3.3 Well-Quasi-Ordering Proof

This section contains the proof that the well-quasi general path ordering is a well-quasi-ordering.
First, however, some simple, but useful lemmas will be shown which give conditions under
which it is easy to determine if two terms are strictly ordered. An alternate definition for the

equivalence part of the relation is also presented.

Lemmma 14 (Strictness of Case 1). If s x t via case (1), then s > t.
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Proof. One needs to show that ¢ ¥ s.

It must be the case that there is some subterm s; of s such that s; i . Therefore Case (2)
can not apply.

By the strict subterm property one has that s > s; x t > t; for every subterm ¢; of . By
transitivity, one sees that for every immediate subterm ¢; of ¢ it must be that ¢; < s and Case

(1) does not apply. 0

Lemma 15 (Definition of Equivalence). The associated equivalence relation = is given by the

condition

s=f(s1,--,8m) = g(ts,...,tn) =1
if and only if s = t1,...,tn, L > S1,...,8m and Op(s) g o(%), ..., 0k(s) =~k Or(t).

Proof. If s =~ t, then s x ¢t and ¢t x s. But by the previous lemma, it can not be that s x ¢

by Case (1). Therefore, Case (2) must have been applied in both directions. 0
Lemma 16. If s x t by Case (2) and O(s) > O(t) then s > t.

Proof. Suppose that s ~ ¢, then by Lemma 8 it must be the case that ¢ x s by Case (2). But
since O(s) > ©O(t) Case (2) is not applicable, and by contradiction s > ¢. 0

Notice that Case (1) of the ordering is always strict. Case (2) of the ordering is always
strict if the lexicographical comparison is strict. When the terms are equivalent under the
lexicographical comparison, Case (2) of the ordering may result in the terms being either strict

or equivalent.
Theorem 17. The well-quasi general path ordering is a well-quasi-ordering.

Proof. Consider an infinite sequence of terms #!,¢2,¢3, - - - which comprise a minimal counter
example (minimal in the sense that each of the terms is smallest in height that begins a counter
example).

Each of the subterms must be well-quasi-ordered with respect to x or the sequence wouldn’t
be minimal. Therefore, since © is composed of homomorphisms which are well-quasi-orderings
and extractions of subterms over which % is also well-quasi-ordered, the lexicographic ordering

O is well-quasi-ordered over the terms in the minimal counter example.
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Therefore, in the sequence ©(t!), ©(¢%), ©(¢3), - - - by Proposition 4 there must be an infinite
subsequence such that O(s!') < O(s?) < O(s®) < ---.

Now consider the multisets of the subterms of each of the terms s*. By Proposition 7, the
ordering % extended to the multisets of the immediate subterms is also well-quasi-ordered
(since % is well-quasi-ordered with respect to the subterms themselves.) Therefore, there are
i and j such that ¢ < j and {s’i, .. .,sfn} 2 M {s{', .. .,sf;}. Furthermore, for every subterm sf]
of s' there is some subterm s/ such that sf] < sJ. By application of the strict subterm property
one gets s7 - sg. Applying transitivity, one sees that every subterm sf] of s* satisfies s7 > sf].
By construction ©(s?) > ©(s') and Case (2) is applied to get s’ % s®. But this contradicts
the assumption that the original sequence of terms was a counterexample. Therefore x is a

well-quasi-ordering. 0
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4 TERMINATION PROOFS

A general path ordering can be used to prove termination if certain general conditions are met.
The first lemma presented guarantees a strict decrease in the multiset ordering induced by a
quasi-ordering. Next a theorem is shown which gives general conditions under which a quasi-
ordering can be used to show termination of a rewrite system. Finally, the last theorem gives
specific conditions for the component orderings of a well-quasi general path ordering to ensure

that the the general conditions are satisfied.

Lemma 18. If = is a quasi-order with the strict subterm property,

s—tandsxt mmply f(...,s,..) = f(-..,¢...),

for all terms s, t, ... and function symbols f, and lo > ro for all rulesl — r and substitutions
o, then for any rewrite step u — v Upg - VA where = aq is the multiset ordering induced by

%, Um = {t|t is a subterm of u}, and Va = {t|t ts a subterm of v}.

Proof. To begin, note that given a position p, the multiset of subterms can be split into three
parts: the subterms at or below p, the subterms above p, and the subterms disjoint from p.

If u — v then there is some subterm u|, of u such that u|, = lo. Therefore

u=ullo], = ulrol, = v.

By assumption lo > ro. In addition, repeated application of the strict subterm property with
transitivity gives ro > ro|, for all proper subterms of ro. Thus the subterm lo in Upq is
replaced in V4 by the strictly smaller ro and its subterms.

The only other subterms which are affected by the rewrite are those rooted at symbols on
the path from lo to the top of u. One can show that w[lo], < w[ro], for all contexts w by
induction on the depth of position p in w. If w is the empty context, it is given that lo > ro.
Otherwise, let w = f(---s[lo]y---). By induction s[lo], > s[ro]q, and by the given implication

wllolp = f(---slloly ) = f(---slrolg--) = wlraly. 0
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Theorem 19 (General Termination). Let % be a general path ordering. A rewrite system R

terminates if
o lo > ro for all rulesl — r in R and substitutions o and,

e s—>tandsxtimplies f(...,s,...) % f(-..,¢t,...).

Proof. Since the general path ordering is a quasi-order with the strict subterm property,
by Lemma 18 one knows that each rewrite results in a strict decrease in 4. Since > is a
well-quasi-order it is well-founded as well. Therefore, > a4 is also well-founded and termination

follows. 0

Theorem 20 (Specific Termination). Let ¢g,...,¢;—1 (¢ > 0) be monotonic, all but possibly
the last strict, and let ¢;, . .., ¢, be precedence, value-preserving, or multiset extraction compo-
nent orders. A rewrite system terminates if lo > ro in the corresponding general path ordering

% for all rules | — r and ground substitutions o, provided
(i) if 6. = Ry there is some y < z such that 0, = Ry_; or 6, = R<x_1; and

(i) ~ is a congruence for each homomorphism 0.

Note that whenever >, is a partial-order, congruence is guaranteed.

4.1 Examples

Before giving a proof, consider the following examples illustrating the need for restrictions on
the components: (Parentheses are omitted for the unary function symbols 0, 1, f, g.)

Consider the non-terminating two rule rewrite system

0011z — 111000z
(4.1)
0z — 1lz.
A well-quasi general path ordering with first component, the precedence 0 > 1, and the second,
the strictly monotonic homomorphism which counts the number of symbols in a term, shows

a decrease for both rules. But this violates the condition requiring monotonic homomorphisms

to precede the other types of component orderings.
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Consider the non-terminating two rule rewrite system

ffe — fgfz

gr — .

(4.2)

A well-quasi general path ordering with first component, a monotonic homomorphism 67; which
counts the number of pairs of f’s, and second, the precedence f > g, shows a decrease for both
rules. But this violates the condition requiring that homomorphisms be congruences, since

077(f(g(a))) # 077(f(f(a))) even though 054(g(a)) = 055(f(a)).

Consider the non-terminating two rule rewrite system

h(a,b) — h(a,a
@Y = haa) s
a — b.
A well-quasi general path ordering with first component, the precedence f > a > b, and second,
the multiset extraction of rank two, shows a decrease for both rules, since {b} > . But this

violates the condition requiring that the rank extracting component be preceded by a rank

extracting component which extracts terms of rank one.

4.2 Proof of Termination of GPO with Restrictions
The following is the proof of Theorem 20. It proceeds by considering =~ and > separately.

Proof. By Theorem 19, it suffices to show

s—tand skt imply u=f(...s...) = f(...t..)=v,

for all terms s, ¢, ... and function symbols f.

Consider the case that s ~ t. To complete the proof it will be shown that u ~ v. If s = ¢,
then by lemma 15 s > #1,...,ty and ¢ > s1,...,8, and O(s) ~e, O(f). For each of the
subterms v; # t, it is the case that u; = v;. For the subterm ¢ itself, s ~ ¢, and consequently
u= f(...s...) > v; for each ¢ by Case (1) of the ordering. Similarly, v = f(...t...) > u; for
each j. One just needs to show that 0, (u) ~, 6,(v) for each component order so that lemma

15 can be applied.
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For precedence and value-preserving component orders this is trivial. For monotonic compo-
nent orders, the extra condition guarantees that ~, is a congruence and hence 0,(f(...s...)) =
Joo (0. 0x(s) .. ) >~z fo (.. 0:(8)...) = 0:(F(...¢..))).

For 6; that return multisets, one needs to consider each of the extraction functions sepa-

rately:

1. Extract subterms at positions K. If s # wug for any & € K, then each up = vg and
Px(u) = Px(v). Otherwise, the multisets are identical except that s is replaced by ¢ and
therefore Py (u) ~m Px(v).

2. Extract subterms of rank k. Since s is equivalent to ¢, they have the same rank. Therefore

Ri(ZS8(u)) ~m Re(ZS(v)) for all k.

3. Extract terms of rank k or less. By the same argument as in the previous case,

Rep(IS(u)) ~m R<r(ZS(v))-

The proof now turns to the strict case, s > £. As before one can show that u > v; for each
i. It just remains to be shown that ©(u) >z ©(v) in order to apply Case (2) of the well-quasi
general path ordering. Note that for the recursive definition to give s > ¢, there must be some
subterm (possibly non-proper) s|, of s such that s|, x t by Case (2) of the ordering and hence
O(5|p) >iex O(t). Consider a monotonic homomorphism ¢,. There are two cases:

Case A (s|, = s): Suppose that 0, with y < z is the first monotonic homomorphism which
shows an increase. For each of the preceding homomorphisms 8,(s) ~, 6,(¢) and therefore
6.(f(...,s,...)) =~ 0.(f(...,¢,...)) by congruence for z < y, while for the yth homomorphism
6, (s) >y 0y(t). If the homomorphism is strict, this implies 6,(f(...,s,...)) >y 0,(f(...,¢,...))
and the lexicographic comparison is strictly greater. If the homomorphism is not strict, then
0,(f(...,8,...)) >y 0,(f(...,%,...)) and the status of the lexicographical comparison may de-
pend on the succeeding component orderings.

Case B (s|, # s): Consider 6. By repeated application of the strict subterm property of
the monotonic homomorphism components, one has 6y(s) >q 0o(s|p) >0 00(t). If g is strict,
this implies 6o(f(...,s,...)) >0 6o(f(...,%,...)) and the lexicographic comparison is strictly
greater. If 6y is not strict, then o(f(...,s,...)) >0 6o(f(--.,¢,...)) and the status of the

lexicographical comparison may depend on the succeeding component orderings.
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In either case, any component orderings following a non-strict homomorphism need not
show an increase for s or s|p, respectively, compared with . As a consequence, none of the
succeeding component orderings may safely rely on the lexicographic status of s or its subterms.
In addition, since the monotonic homomorphisms depend on the lexicographical status of sub-
terms, it is not safe to have other types of component orders preceding. This is the reason for

the restrictions:

e there may only be one non-strict monotonic homomorphism and each of the strict mono-

tonic homomorphisms must precede it, and

e no other type of component ordering may precede a monotonic homomorphism.

Consider now a value-preserving homomorphism and a rewrite s = ¢[lo]
— c[ro] = t. It is given that §(lo) ~, 6(ro). Combined with congruence of the ordering
this results in 6(f(...,s,...)) ~= 0(f(...,¢,...).

When the termination function is a precedence, its value does not depend on subterms and
trivially 0(f(...,s,...)) ~= 0(f(...,¢,...).

Now consider component orderings that compare multisets of subterms:

1. Extract subterms at positions in . If s # wug for all & € K, then each u; = v and
Px(u) = Px(v). Otherwise the multisets are identical except that s is replaced by ¢ and

therefore Py (u) >am Px(v).

2. Extract subterms of rank k. Suppose that s € R;(ZS(u)). Then there is no change in
multisets of rank less than ¢. For the multiset of rank ¢, the only possible new members
are t and terms from R;,; that were dominated by s. Thus R;(ZS(u)) >m Ri(ZS(v)).
If & > i, there may be an increase, but it is guaranteed that either R; or some R<;

containing rank ¢ is before 8, lexicographically, and either of these will show an increase.

3. Extract subterms of rank less than or equal k. Suppose s € R;(u). By an argument similar
to that above, R<x(ZS(u)) = R<x(ZS(v)) for k < i and R<x(ZS(u)) >m R<r(ZS(v))
for £ = i. One just needs to consider the case k > ¢. Think of the process of going from
R<p(ZS(u)) to R<x(ZS(v)) as adding ¢ to the set of immediate subterms then removing
s. When ¢ is added other terms may move to higher rank, but not lower rank. So the only

possible new term in R<x(ZS(u)U{t})is t. When s is removed, terms may be added from
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rank k+1 (note that terms may only move one rank position when a single term is added
or deleted). Consider a term w of rank j + k + 1 which is a member of R<x(ZS(v)), but
was not a member of R<(ZS(u) U {t}). It must have been added because a term zj of
rank k moved to rank k — 1 and z; > w. Inductively, a chain of terms can be constructed
such that z; > #;41 > --- > 2z > w. But there was only the single term s which was

removed at level ¢ and therefore s = z; > w. In combination with s > ¢, it must be that

R<r(I8(u)) = R<k(IS(v)).

Whereas only lexicographic and multiset mappings are used in the general path orderings,
in [KL80], Kamin and Lévy consider the more general case of orderings based on a mapping
> from well-founded quasi-orderings to well-founded quasi-orderings. They allow a component
order 8t = (t1,...,t,) and > =D>>, where > recursively makes finitely many comparisons of

subterms. In particular, one can use weighted multisets, as in Martin [Mar89].
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5 INSTANCES OF THE WELL-QUASI GENERAL PATH
ORDERING

In this chapter it is shown that several common orderings are specific instances of the well-quasi
general path ordering. A new kind of ordering called the “Natural Path Ordering” is defined
which is a instance of a General Path Ordering. It combines precedence with a value-preserving

homomorphism. An example of its use is then presented.

5.1 Existing Simplification Orderings

The following simplification orderings are special cases of the well-quasi general path ordering
for which the conditions of Theorem 20 hold. The only caveat is that the precedences used in
the orderings must be well-quasi-orderings instead of just well-founded. The precedence used in
the recursive path ordering is well-quasi-ordered since it is required to be total. For the other
orderings, as long as the signature of the rewrite system is finite, one can restrict the precedence
to those symbols and it will be well-quasi-ordered. Therefore, they can then be applied to any

finite rewrite system.

Knuth-Bendix ordering (Knuth and Bendix [KB70]) 6, gives the sum of (non-negative inte-
ger) “weights” of the function symbols appearing in a term; > is the > ordering on the natural
numbers; ¢; gives a (total) precedence; ¢a,..., ¢ny1 give (a permutation of) the immediate

subterms.

Polynomial path ordering (Lankford [Lan79]) 6y is a strict monotonic homomorphism with
each fp a polynomial with positive integer coefficients; >¢ is the > ordering on the natural

numbers; ¢; gives a precedence; ¢s, ..., ¢, give a permutation of the immediate subterms.

Multiset path ordering (the original version of the “recursive path ordering”, Dershowitz

[Der82]) ¢y is a precedence; ¢; extracts the multiset of immediate subterms.
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Extended path ordering (Dershowitz [Der82]) ¢o extracts one of the immediate subterms;

¢1 extracts a multiset of the remaining immediate subterms.

Lexicographic path ordering (Kamin and Lévy [KL80]) ¢ is a precedence; ¢4, ..., ¢, give

a permutation of the subterms.

Recursive path ordering (“with status”, Lescanne [Les90]) ¢o is a total precedence;
@1,...,0n give a permutation of the subterms or multisets of subterms, depending on the

function symbol.

5.2 The Natural Path Ordering

The following is not a simplification ordering or an instance of the well-quasi general path
ordering, but it is an instance of the well-founded general path order (to be discussed in Chapter

7).

Value-preserving path ordering (Plaisted [Pla79], Kamin and Lévy [KL80]) 0 is a value-
preserving homomorphism and > is a well-founded quasi-order; ¢g is a precedence; 6, is 8
applied to the first subterm and >; is >; 65 is 6 applied to the second subterm and >, is >;
and so forth.

As an example of the use of the value-preserving path ordering, consider System 1.2. The
precedence is fact > X >¢ + > §; 0 interprets everything naturally: fact as factorial, s as
successor, p as predecessor, X as multiplication, + as addition, and 0 as zero. The ordering >
is the well-founded greater-than relation on natural numbers. Let all constants be interpreted
as natural numbers, making all terms non-negative. Each rule causes a strict decrease with
respect to the general path ordering and the rewrite system terminates. This approach works
for primitive-recursive functions in general.

Note that to use a natural interpretation, one must always make sure that all terms and
subterms in any derivation are interpretable as natural numbers; otherwise a rule like fact(z) —
fact(p(z)) would give pretense of being terminating.

The idea embodied in the value-preserving ordering is enlarged in the following way, intended

to mirror the standard structural induction proof method for recursive programs:
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Definition 8 (Natural Path Ordering). A natural path ordering is a special case of the well-
quasi general path ordering with two component orderings: ¢ is a precedence and ¢, is defined
for each f (of arity n), as 01 f(t1,...,tn) = fo, (61%1,...,01t,), where 6; is a value-preserving
homomorphism to some arbitrary algebra A, and fy, a mapping from A™ to a well-quasi-ordered

set (W, >).

Theorem 19 applies.

As an example, consider the following rewrite system for computing the average of two

integers:
a(se,y) — alz,sy)
a(z,sssy) — sa(sz,y)
a(0,0) — 0 (5.1)
a(0,s0) — 0
a(0,ss0) — s0.

A multiset path ordering will not work for the arguments of a in the first rule and a lexicograph-
ical path ordering will not work for the first two rules. The natural path ordering is sufficient
for proving termination with ¢y as a >¢ s >¢ 0 and ¢; given by 8;(a(z,y)) = 26(z) + 6(y),

where 6 is the value-preserving homomorphism: ag = Amy.L%J, sg = Az.z + 1, and 0y = Az.0.
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6 WQGPO EXAMPLES

In this section several examples are presented applying the well-quasi general path ordering to
specific rewrite systems to prove termination. The examples are self-embedding, so the standard
simplification orderings do not work. The first example is an insertion sort over the natural
numbers. It is shown to be terminating without the use any semantic interpretation of terms.
This allows for an easier proof of termination without the need for any inductive arguments or
arguments over the natural numbers. The next two examples are conditional rewrite systems
and use value-preserving homomorphisms with the well-quasi general path ordering. The third
example is an insertion sort over the integers and can be shown to decrease with a monotonic

homomorphism combined with a precedence and an extraction.

6.1 Insertion Sort for Natural Numbers

The following rewrite system sorts a list of natural numbers into decreasing order via an insertion

sort:

sort(nil) — il (5.6.1)

sort(cons(z,y)) — insert(z,sort(y)) (5.6.2)

insert(z,nil) — cons(z, nil) (5.6.3)

insert(z, cons(v,w)) — choose(z,cons(v,w),z,v) (5.6.4)
choose(z, cons(v,w),y,0) — cons(z, cons(v,w)) (5.6.5)
choose(z, cons(v,w),0,s(q)) — cons(v, insert(z, w)) (5.6.6)
choose(z, cons(v,w), s(p),s(q)) — choose(z, cons(v,w),p,q) . (5.6.7)

Note that these rules are locally confluent since there are no critical pairs, and the proof of

termination will imply that they are confluent as well.
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Four component orders are used. They are

¢o = the precedence sort > insert ~ choose > cons

¢1 = the extraction based on the outermost symbol f
Py f =sort

b1 = Pray [ = choose, insert

0 otherwise

¢3 = the precedence sort > insert > choose > cons

¢3 = the extraction based on the outermost symbol f
Py f =sort

Pray  f = insert
03 =
Piay  f = choose

] otherwise .

The ordering interleaves precedences with recursive comparisons of subterms and thus is unlike
either the semantic path ordering [KL80] or semantic labeling [Zan92b]. No semantic interpre-
tation of the function symbols is required to prove termination in this example.

If one were to use an ordering just based on the precedence ¢, all of the rules except for
the sixth would be oriented in the appropriate direction. Unfortunately, the fourth and sixth
rules interact with each other. In particular, there is a choose and an insert on opposite sides of
each rule. The precedence ¢q is chosen to guarantee a decrease in the lexicographical part when
ordering Rule 6 by Case (2) of the well-quasi general path ordering while leaving Rule 4 equal.
Since Rule 6 is ordered by Case (2) of the ordering with a strict decrease in the lexicographical
comparison, Lemma 16 applies and the decrease is strict for application of Rule (6). The first
condition for Case (2) requires that the left-hand side of Rule 6 be strictly greater than each of
the two subterms on the right. The non-trivial comparison is choose(z, cons(v, w), 0, s(q)) with
insert(z,w). These terms are equal under the precedence ordering ¢o, but by selecting the
second subterm of both choose and insert a strict decrease in the lexicographic part is achieved.
This allows us to conclude via Lemma 16 that choose(z, cons(v,w),0, s(q)) > insert(z,w).

Therefore, Rule 6 is correctly ordered.
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Now consider Rule 4. Fortunately, the second subterm on both sides of Rule 4 is identical,
leaving the lexicographical order unaffected. The precedence ordering ¢ breaks that tie and
guarantees a decrease via Lemma 16. Verifying the first condition of Case (2) for Rule 4 is easy.

Rule 1 is a trivial application of Case (1). Rule 2 is nearly as trivial. The only observation
to make is that the first condition for Case (2) requires sort(cons(z,y)) > sort(y), which itself
requires an application of Case (2) where the lexicographic part requires the extraction and
comparison of cons(z,y) with y which gives a strict decrease in the lexicographic comparison.
Rules 3 and 5 are also straightforward.

Rule 7 meets the first conditions for Case (2), but is equal for the lexicographical part with
respect to the first three component orderings. The addition of a fourth component breaks the
tie by extracting the third subterm for choose (the fourth subterm would also have worked).

Therefore, by the well-quasi general path ordering, this system of rules terminates.

6.2 Using Extraction Components Non-Recursively with Conditional Rules

A conditional rule is an equational implication in which the conclusion is a rewrite rule. The

following system incorporates both conditional and unconditional rules:

p0 — 0
pst —
pos? s¢ — true
(6.6)
pos? 0 —  false
fo — 0
pos? ¢ ~ true = fr — fpz

In general, if the conditions of a rule,

U= A ANup,=v, => [ — 7

are satisfied for a particular instance of the left-hand side, the rule rewrites any term containing
the instance. The conditions are satisfied if u;0 — --- — w and v;0 — --- — w (for some w),

for each condition u; = v; and for substitution o.
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Verifying termination of conditional systems can be considerably more difficult than for most
unconditional systems. More often than not, purely syntactic approaches fail. Consider the
very simple system above. To prove termination, one needs to find a measure 7 that decreases
with each rule application. In particular, it must be that 7(z) > 7(pz) for all z satisfying the
condition in the last rule. For that, one must first characterize those z such that pos? & rewrites
to true. This is in contrast to the unconditional case [Der87], in which termination can usually
be separated from other aspects of correctness.

In the following examples, a value preserving homomorphism will be used when showing
termination. The value preserving homomorphism is exploited by the joinability condition.
If the terms are joinable, they must have the same interpretation under the value-preserving
homomorphism, and this will be used when showing that the rule decreases. In particular,
it is convenient to extract a multiset of subterms and compare with the value preserving ho-
momorphism. This case, however, is not covered by the standard definition of the well-quasi
general path ordering since it only allows comparisons recursively in the general path ordering.
Therefore, it must be shown that with a value-preserving homomorphism that Theorem 19 will

be satisfied.

Theorem 21. Let ¢g, ..., ¢ be component orderings and R be a rewrite system that satisfy the
conditions of Theorem 20 (specific termination) with the exception that certain position based
extraction components are compared in > which is not x but some homomorphism >,,. If

>p 15 value-preserving with with respect to R, then R terminates.

Proof. As in the proof of specific termination, given that

u=f(...s..)x f(...t..)=v,

and s — t, one just needs to show that 6,(u) >, 6,(v) for the extraction components.

Since >,, is value preserving with respect to R and it is a congruence, it must be the case
that if s — ¢ then s >,, t. Any position based extraction component will extract the same
terms with the possible exception that s is replaced by ¢. In >, which is the multiset extension

of >,p, the multisets are equivalent and hence 0,(u) >, 0,(v). O
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The next two examples are conditional rewrite systems and use value-preserving homomor-

phisms with an extraction component in the well-quasi general path ordering.

6.2.1 Greatest Common Divisor (GCD)

In this section there related conditional rewrite systems are presented for computing the greatest
common divisor. Each is shown to be terminating with related instances of the well-quasi general
path ordering using value preserving homomorphisms.

Consider the following recursive program for computing the greatest common divisor:

function gcd(z, y)

begin
if y=0 then =
elseif y > z then ged(y, z)
else ged(z — y,y)

end.

This program can be translated into the following (infinite) conditional rewrite system:

ygtelt  ged(z,y) — ged(y,z)
z ges(y) Lt ged(z,s(y)) — ged(z —s(y), s(y))
ged(z,0) — =
s(z) gt s(y) — =z gty
s(0)gt0 — t i>1 (6.7)
s(z) ge s(y) — zgey
s(0) ge 0 — ¢ i>0
s(z) —s(y) — =z—y
z—0 — =z.

Notice that without the conditions this rewrite system is non-terminating. In addition, the
left-hand side of the second rule embeds in the right-hand side, so no simplification ordering
can be used to show termination. Hence, one wants to try interpretations where z — s(y) is less

than z.
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The reason for using an infinite set of rewrite rules schematically represented by s"(O) for

gt and ge is so that a value-preserving homomorphism can be constructed easily. The more

natural rule, s(z) gt 0 — ¢, permits terms which do not have interpretations as natural numbers

to be greater than zero. Alternatively, one could use membership or sorts to express the above

restriction.

To show that the conditional rewrite system is terminating, the well-quasi general path

ordering will be used with a value-preserving homomorphism, 8 which maps to a well-founded

set. The range of the homomorphism consists of the natural numbers, true, and L (this set

will be denoted as N\AT | 4rye). The well-founded ordering, >3, is the standard greater than

ordering on the natural numbers combined with, 0 > 1, and L > true. The homomorphism is:

ged i Az, y.
— Az, y
gt Az, y.
ge: Az,y.
s Az
0: 0

t:: true.

ife—=—1ory—_1 then L

elseif ¢ — true or y — true then true
else gcd(z,y).
ife—=—1ory—_1 then L

elseif ¢ — true or y — true then true
elseif ¢ > y then z — y

else 1.

ife—=—1ory—_1 then L

elseif ¢ — true or y — true then L
elseif z > y then true (6.8)
else 1.

ife—=—1ory—_1 then L

elseif ¢ — true or y — true then L
elseif ¢ > y then true

else 1.

if z =1 then |

elseif z = true then true

else z + 1.
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The component orderings are combined in the following way:

¢o = the precedence ged > gt > ge> — > s> 0>t
¢1 = the extraction based on the outermost symbol f
Py f=-,91, or ge
0 otherwise
with >;=> (applied recursively).
¢ = the extraction based on the outermost symbol f
Py f=ged (6.9)
0 otherwise
with >9=>9.
¢3 = the extraction based on the outermost symbol f
Puy f=gcd

() otherwise

63 =
with >3=>

First, one must verify that the homomorphism 6y is value-preserving for each of the rewrite
rules. Of particular interest are the three rules for ged. The first rule is value-preserving
independent of the condition. For the second rule, the joinability of the two terms in the
condition requires that the interpretations be the same (provided that all the rules are value-
preserving). In this case, the interpretation of z ge s(y) is true only if Oy (z) >¢ Ox(y) + 1
with both 8y (z) and 0 (y) natural numbers. With this condition and knowledge of the gecd
function, one can then show that the rewrite rule is value preserving if the condition is met.
The third rule is easily shown to be value preserving and is the reason that gcd(t,0) is mapped
to true instead L (as one might have expected).

The proof of termination with the well-quasi general path ordering using the component
orderings specified above proceeds as for the unconditional case with the following exceptions.
First, the conditions on the interpretation may be used in the proofs of termination for the
rules. Second, the left-hand side of the rule must be larger than each of the terms in the
condition. (The second term in each of the conditions is a ground term in normal form, so for

this particular rewrite system one need only consider the first term.)

37



All of the non-conditional rules are handled by the precedence or Case (1) of the well-
quasi general path ordering. For the first rule, the left and right-hand sides are equal under
precedence. With the second component ordering, one compares 0y (y) with 64(z). Normally,
one would not be able to prove this, but, the joinability of the conditional part gives 0y (y) >%
63 (z). For the second rule, the left and right-hand sides are equal under both the precedence
and the second component ordering. With the third component ordering, one compares 0y (z)
with 0y (z —s(y)). By the condition, one knows that both 84 (z) and 0y (y) are natural numbers,
so one needs to show that 03 (z) >y 03(z) — 6%(y) — 1. By the condition, it must be that
63 (x) >% O (y) + 1. Thus, one only needs to show Oy(y) + 1 >4 0, but 64(y) is a natural
number, so this is true. (Note, one could have argued that if 8y (z) <3 6O (y) + 1 then
0y (z — s(y)) = L, which is less than any natural number.)

An alternative formulation of the conditional rewrite system for gcd is obtained by noticing

that the rules for gt and ge are nearly the same as the rules for subtraction.

y—z | s*(0) ged(z,y) — ged(y, ) i>1
z—s(y) L $°(0) ged(z,s(y)) — ged(z—s(y),y) i>0
ged(z,0) — =z (6.10)
s(z)—s(y) — z—y
z—0 — =z.

One needs an infinite set of rules for similar reasons. Now the well-founded set for the value

preserving homomorphism, 6y, , only needs the addition of L. The homomorphism is:

ged:: Az,y. ifz—=_1 or y— L then L
else ged(z,y).
- Ade,y. ifz—=1 ory— 1 then L
elseif ¢ > y then z — y (6.11)
else 1.
CRDY if z =1 then |

else z + 1.
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The component orderings are as they were before except that the precedence does not need £,
gt, and ge; and the ordering used for the components which extract subterms of ged is >4,.
(Notice that the old ordering, >4, is an extension of >7,.) The termination argument is
similar.

The final version of gcd replaces the rule schemata with a condition which tests a term to

see if it is an natural number.

nat(y — s(z)) }t  ged(z,y) — ged(y,z)
nat(z — s(y)) Lt ged(z,s(y)) — ged(z—s(y),y)
ged(z,0) — =z
s(z) —s(y) — z—y (6.12)
z-0 — =
nat(0) — t
nat(s(z)) — nat(z) .

As in the original version, the well-founded set used with the value preserving homomor-

phism, 03,, will include ¢rue. The homomorphism is:

ged:: Az,y. ifz—=_1 or y— L then L
elseif ¢ — true or y — true then true
else ged(z,y).
- Ade,y. ifze—=1 ory— 1 then L
elseif ¢ — true or y — true then true
elseif ¢ > y then z — y
else 1.
(6.13)
nat ;1 Az. if z = 1 or z = true then |
else true.
s Az if z =1 then |

elseif z = true then true

else z + 1.

t:: true.
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The component orderings are as they were before except that the precedence is ged > — >
nat > s > 0 > t; and the ordering used for the components which extract subterms of ged is

>4,. The termination argument, though slightly more complicated, is similar.

6.2.2 The “91” Function

One well know example of a recursive function is the “91” function given by:

Foi1(z) = if ¢ > 100 then z — 10
() (6.14)
else Fgl (Fgl(m + 11)) .
This recursive function returns 91 if # < 100, otherwise it returns z — 10.
A conditional rewrite system corresponding to this recursive function is:
nat(z — 101) | ¢ F(zg) — z-10
nat(100 —z) | ¢ F(z) — F(F(s''(z)))
s(z) — s - z—
(z) - s(y) y (6.15)
t—0) — =
nat(0) — t
nat(s(z)) — nat(z)

A value preserving interpretation of this rewrite system can be constructed over the set of
natural numbers augmented by | and true. The mapping H from terms to NAT | trye is

given by the following definitions:
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F: Az
— Az, y
s Az
nat ;1 Az.
0: 0.
t:: true.

if z = 1 or z = true then |

elseif z < 100 then 91

else z — 10.

ife—1 or y— 1 then L

elseif ¢ — true or y — true then true

elseif ¢ > y then z — y

else L. (6.16)
if z = 1 or z = true then |

else z + 1.

if z = 1 or z = true then |

else true.

In this case, a sufficient well-founded ordering over N AT | ¢y is given by >3 = true <

1 <0<1<2<...An instance of the well-quasi general path ordering which proves that the

conditional rewrite system (6.15) is terminating is given by:

¢o = the precedence F' > — > 5> 0> nat >t

¢1 = extract P[;} for — and nat with > applied recursively

(6.17)

¢2 = extract Py for F

and use the value preserving homomorphism H with >4 .

6.3 Insertion Sort over Integers

As afinal example, consider the following conditional rewrite system which sorts a list of integers

into ascending order via an insertion sort. It is a modification of the rewrite system presented
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earlier for sorting natural numbers.

p(s(z)) — =
s(p(z)) — =
s(z) eg s(y) — zeqy
p(z) egp(y) — weqy
p(z)eqy — zeqs(y)
zegp(y) — s(z)eqy
OegO0 — ¢
s(z) gt s(y) — =zgty
p(z) gtp(y) — =zgty (6.18)
p(z) gty — = gt s(y)
zgtp(y) — s(z)gty
s'(0) gt 0 — ¢t i>0
sort(nil) — il
sort(cons(z,y)) — insert(z,sort(y))
insert(z,nil) — cons(z, nil)
zgtylt insert(z,cons(y,z)) — cons(y,insert(z,z))
zeqylt insert(z,cons(y,z)) — cons(z,cons(y,z))
ygtzlt insert(z,cons(y,z)) — cons(z,cons(y,z)).

With an appropriate value-preserving interpretation, it can be shown that the conditions on the
final three rules are mutually exclusive. Hence, the entire rewrite system is locally confluent.
The rules for gt include one infinite schema. In this case, completion is easier to do with the
rule schema than the other approaches mentioned earlier. Notice also, that if one is willing
to forego confluence, the rule p(z) gt y — z gt s(z) and the corresponding rule for eq may
be discarded. In that case, termination can be shown by the standard recursive path ordering
alone with right-to-left lexical status for both gt and eq.

With the additional two rules for g¢ and eq, the recursive path ordering with status is
insufficient for showing termination. This is due to the combination of p(z) gt y — z gt s(z)
with the rule z gt p(y) — s(z) gt y. For one rule, there is a decrease in the first argument, and

for the other the decrease is in the second. Unfortunately, with either multiset or lexicographic
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status, neither rule decreases. After a little consideration, it is apparent that both of these rules

decrease the number of p’s. The following components allow one to show termination with the

well-quasi general path ordering:

¢o = the strictly monotonic homomorphism 6q

with > the usual greater-than for natural numbers
¢1 = the precedence sort > insert > gt >eq >cons>nil >p>s>t>0

¢s = the extraction based on the outermost symbol f

Py f = sort, gt, eq

b = Pray  f = insert
0 otherwise ,

with > applied recursively.

The monotonic homomorphism 8y counts p’s in a term and is given by:

cons ::
insert
gt

ge :
sort ::
s

p
0

t::

nil i

Az, y.
Az, y.
Az, y.
Az, y.

Az.
Az.
Az.

z+y
z+y
z+y
Tty
L

4

z+1

(6.19)

(6.20)

This homomorphism is strict in its arguments and maps to the natural numbers. As specified

above, the corresponding well-founded component ordering is the usual greater-than for natural

numbers. The proof of termination proceeds with no difficulties.
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7 THE WELL-FOUNDED GPO

In [DH95] a slightly different version of the general path ordering was presented. It differs in

the following ways:

e It requires that the homomorphism components are well-founded quasi-orderings but not

necessarily well-quasi-orderings.
e The definition gives separate definitions for the strict and equivalence parts of the ordering.
e The ordering is more restrictive in what it allows to be comparable.

e There is an extra condition required for Theorem 20 (Specific Termination) which gives

specific conditions on the components which guarantee termination of the rewrite system.

To avoid confusion in this thesis, the “general path ordering” presented in [DH95] is referred
to as the well-founded general path ordering and and symbolically the ordering will be denoted
with a dot as shown here by x and % . The component orderings associated with a well-
founded general path ordering (which must themselves be well-founded) will also be denoted

with a dot as shown by > and =.

Definition 9 (Well-Founded General Path Ordering). Let ¢o = (6o, >0), ..., o = (O,
>r) be component orders, where for multi set extraction 6, component orders, >, is the
well-founded general path ordering i itself. The induced well-founded general path ordering

% 1s defined as follows:

s=f(s1,...,8m) > g(t1,...,tn) =1
if either of the two following cases hold:
(1) s; x t for some s;,2=1,...,m, or

(2) s > t1,...,t, and O(s) >,0O(t), where O(s) = (Oo(s),...,0k(s)), and >y, is the

lexicographic combination of the component orderings >,
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while

s=f(s1,--,8m) 2 g(ts,...,tn) =1
in the well-founded general path ordering if
(3) s>t1,....tn, t > 51,...,5m and Oo(s) =q bo(t),...,0k(s) =k Or(t).

Note that % is the union of > and &, which are mutually recursive.

Lemmas 27, 28, 29 and 30 (below) guarantee that > is the strict part of x , while & is

the equivalence part.

7.1 Quasi-Ordering Proofs

To show that % is indeed a well-founded quasi-ordering requires the following lemmata. The
content of these proofs is fairly different from those associated with the well-quasi general path
ordering. It is shown here that the definitions for & and % are compatible and that their

union is a quasi-ordering. In addition, it will be shown that % is well-founded.
Lemma 22 (Symmetry). If s &t thent & s.

Proof. This is trivial, since =, is reflexive for the component quasi-orders >,. When =, is
the multiset extension of = , induction on the combined size of the terms s and ¢ is required.

0

Lemma 23. For the well-founded general path ordering, s < t implies s > t|, for each proper

subterm t|, of t.

Proof. Assume that the lemma holds for any pair of terms smaller in combined size than
(s, t).

Suppose s > t by Case (1) of the well-founded general path ordering. Then for some 3,
s; % t. By the induction hypothesis, however, s; > t|,. One may then apply Case (1) resulting
in s > t|p.

Suppose s & t by Case (2) or (3). Thus it is known that s > ¢;,...,t,. Suppose that £|, is

a subterm of some ¢;. Then induction can be applied on the pair (s, ;). O

45



The following two lemmata must be shown by simultaneous induction over the height of a

term.

Lemma 24 (Subterm). The well-founded general path ordering satisfies the strict subterm

property f(...,si,...) > s;, for all i.

Proof. By inductive application of reflexivity (Lemma 25) to the subterm s; one obtains

s; = s;, and Case (1) applies. 0
Lemma 25 (Reflexivity). The well-founded general path ordering x is reflexive.

Proof. Assume that x is reflexive for all terms with height less than k. Consider a
term f(t1,...,¢,) of height k. By the strict subterm property (Lemma 24) for terms of height
k, f(t1,...,ts) is strictly greater than each of its subterms. Therefore, the first and second
conditions for equivalence are satisfied. Since each of the 8’s is a function, 8¢(¢1,...,¢,) =,
0f(t1,...,t,) as long as each of the component orderings is reflexive. The only non-trivial
case is the multiset ordering on immediate subterms. But by the induction hypothesis, ¢; % ¢;
for every subterm ¢;, and therefore the multiset ordering on immediate subterms is reflexive
({tj, - tim} & m{tj, ...t} for any ji,...,jm € {1,...,n}). Consequently, the third

condition is satisfied and f(t1,...,%,) = f(t1,...,tn). 0

Lemma 26. For the well-founded general path ordering, s = t implies u[s] > t for each non-

empty enclosing context u[-] of s.

Proof. Consider the subterm u|, which contains s as an immediate subterm. By Case (1),

ulp > t. Repeated application of the preceding argument leads to u[s] > t. 0

Lemma 27 (Transitivity). For terms s, t, and u and well-founded general path ordering x :
(i) s > t > u implies s > u;
(1) s =t > u implies s > u;

(iii) s > t = u implies s > u;

(iv) s =t u implies s =~ u.
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Proof. The proof proceeds by induction over the triple of terms (s, ¢, u) with respect to the

sum of the heights of the three terms.

(i)

Suppose that s > ¢t by Case (1) of the well-founded general path ordering, then s; & t for
some . Now if ¢ > u, one can apply induction on the triple (s;, ¢, u) to get s; > u. Thus,

s > u by Case (1) of the well-founded general path ordering.

Suppose that s > ¢ by Case (2) of the well-founded general path ordering, then
s> t1,...,t, and O(s) >, 0(t). Now if ¢ > u by Case (1) of the well-founded gen-
eral path ordering, then t; > u for some j. But induction may applied to the triple
(s,t;,u) to show s > u. If ¢ > u by Case (2) of the well-founded general path ordering,
then t > uy,..., Uy and O(t) >,O(u). One may apply induction to each of the triples
(s,t,ur) to show that s > wuy for each k. If each of the component orders is transitive
then O(s) >, O(u). When >, is a well-founded quasi-order there is no problem; when

>, is a multiset ordering on immediate subterms, the induction hypothesis is needed.

We know that s > ¢1,...,t, and O(s) =i, O(¢).

Suppose that ¢ > u by Case (1) of the well-founded general path ordering, then ¢; & u for

some {. By induction on the triple (s, t;, u), one obtains s > u.

Suppose that t > u by Case (2) of the well-founded general path ordering, then
t > up,...,tm and O(t) >1e,O(u). But, s > ug for each triple (s, ¢, ug).
To show s > u, one merely needs to demonstrate the second condition of Case (2). But

this holds for the quasi-orders and multiset orders by induction.
Essentially the same argument as for (i).

We know that ¢ & s1,...,51, O(8) =iex O(f), t > uy,...,Un, and O(t) =i, O(u). For
each triple (s, ¢, u;) one can apply (ii) to get s > u;. For each triple (u,t, s;) one can apply
(ii) to get u > s;. The lexicographic part holds for the quasi-orderings and, by induction,

for the multiset orderings. Therefore, all three conditions of Case (3) hold and s & u.

Lemma 28 (Irreflexivity). For any s, s ¥ s.
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Proof. Apply induction on the height of terms. Assume, on the contrary, that s > s for some
s.

Suppose that s > s by Case (1) of the well-founded general path ordering, then s; & s for
some i. But by transitivity and the strict subterm property one obtains s; > s;. By induction
s; ¥ s;, which is a contradiction.

One cannot have s > s by Case (2) of the well-founded general path ordering, since @(t) =,
©(u), (using induction for the multiset components).

Therefore, neither case is applicable and s 3/ s. O
Lemma 29. Ifs~t thent ¥ s.

Proof. Were t > s, then by transitivity s > s contradicting the previous lemma (Lemma 28).

d
The converse follows from:
Lemma 30. Ifs > t, thent ¥ s.
Proof. Were t i s, then by transitivity s > s, contradicting Lemma 28. O
Theorem 31. The well-founded general path ordering is a quasi-ordering.
Proof. By the previous lemmata % is reflexive and transitive. O

Theorem 32. The well-founded general path ordering % 1is well-founded.

Proof. To prove the well-foundedness of 3 , suppose the contrary and consider a minimal
infinite descending sequence ¢! > 2 > ..., minimal in the sense that from all proper subterms
of each term in the sequence there are only finite descending sequences. (By the subterm
property, any term in a descending sequence can be replaced by any proper subterm that
initiates an infinite descending sequence. Thus, a minimal descending sequence can always be
constructed from an arbitrary descending sequence.) Case (1) of the definition of > cannot be
the justification for any pair ¢/ > t/11, since then t~! » tj|p > t772 for some proper subterm
¢ |p of the jth term in the example, and the example would not be minimal. Therefore, every
pair must use Case (2) and consequently ©(t/) >, ©(t#+1). But a lexicographic combination
of well-founded orderings (including > on multisets of proper subterms which by assumption

are well-founded), is well-founded, and the descending sequence cannot be infinite. O
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7.2 A Comparison of the Different Versions of GPO

Theorem 33. Given a well-founded general path ordering x and a well-quast general path
ordering x which use the same component orderings, if s = t then s =t and also if s > t then

s>t

Proof. The proof proceeds via simultaneous induction on the sum of the height of the terms
s and .

In the base case, both s and t are terms with no subterms. If s & £, it must be because of case
(3) of the well-founded general path ordering and thus ©(s) = ©(t). But any homomorphism
component will give the same order on s and ¢ and the multiset extraction components will
match since there are no subterms, so ©(s) ~ ©O(t). Case (2) of the well-quasi general path
ordering applies in both directions, giving s & t. Similarly, if s > ¢, then s > .

Now consider the inductive case. If s % ¢ due to case (3) of the well-founded general path
ordering, then s > t; for all ¢ and ¢ > s; for all j and ©(s) = ©(¢). By induction s > ¢; for all
i and t > s; for all . Any homomorphism component will give the same order on s and ¢. By
induction, the extraction components will match, so ©(s) ~ ©(t). Therefore, case (2) of the
well-quasi general path ordering applies in both directions and s ~ t.

If s > t by case (1) of the well-founded general path ordering, there is some subterm s|,
such that s|, % t. By induction s|, % t and Case (1) of the well-quasi general path ordering
applies. By Lemma 14, it is strict and s > .

If s > t by Case (2) of the well-founded general path ordering, then s i ¢; for all ¢ and
O©(s) >0O(t). By induction s % t; for all i. Any homomorphism component will give the same
order on s and ¢ and, by induction, the extraction components will match, so ©(s) > ©(¢).
Therefore, case (2) of the well-quasi general path ordering applies. Since the lexicographical

comparison is strict, Lemma 16 applies and s > ¢. O

In other words, given well-quasi ordered homomorphism components, if two terms are or-
dered under the well-founded general path ordering, they will have the same ordering under the
well-quasi general path ordering. If two terms are incomparable under the well-founded general
path ordering, they may be either comparable or incomparable under the well-quasi general

path ordering.
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7.3 Termination of Rewrite Systems for the Well-Founded GPO

The argument for the Theorem 20 (Specific Termination) for the well-founded general path
ordering is essentially similar to that for the well-quasi general path ordering with one impor-
tant exception. For any non-strict monotonic homomorphism (including precedence) or value
preserving homomorphism, one can not guarantee that f(...s...) x f(...t...) because when
©(s) = O(t) it may not be the case that ¢ > s; for all 3.

The consequence of this is that the proof of Specific Termination in [DH95] does not apply
to the well-founded general path ordering.

Consider the following simple rewrite system:

a — b

f(z) — g(=).

While it is clearly terminating, it does not satisfy the conditions for Theorem 19 (General
Termination) with the following well-founded general path ordering with a single component

order.

¢o = the precedence f >g, and a >b
Consider the following terms in order:
o [a versus b] Trivially a > b by Case (2).
e [b versus f(a)] Since a x b, then f(a) > b by Case (1).

e [a versus f(b)] Since b % a, Case (1) is not applicable. In addition, ¢o(a) = a is
incomparable to f = ¢o(f(b)) so Cases (2) and (3) don’t apply either. Therefore, a and

f(b) are incomparable.

e [f(a) versus f(b)] Since a and f(b) are incomparable, Case (1) is not applicable. Case (2)
is not applicable either since ¢o(f(a)) = f = ¢o(f(d)). Finally, Case (3) is not applicable
since f(b) 3 a. Therefore, f(a) % f(b).

But Theorem 19 requires that if s — ¢ and s > ¢ then f(...,s,...) s f(...,¢t,...). In our
example, a — b and a > b, but f(a) ¥ f(b).
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To solve this problem one can add conditions on the component orderings for Theorem 20
when used with the well-founded general path ordering. Two possibilities, either of which will

solve the problem are:

e (Subterms Constraint) Guarantee that there is always a component which must show a

decrease.

e (Well-Quasi Constraint) Force the non-extraction components to be well-quasi orderings.

7.4 Addition of the Subterms Constraint

The problem with the proof of Theorem 20 for the well-founded general path ordering is that
if there is a homomorphism component where 8;(f(...,s,...)) = 6;(f(...,%,...)), then all the
other components may also be = and Case (2) will not apply. Unfortunately, one can not
guarantee that f(...,¢,...) > t, and Case (3) need not apply either. One possibility is to
require that there be at least one component ordering that will show a decrease for f(...,s,...)
with respect to f(...,,...), whenever there is a homomorphism that is not strict. One method
of doing this is to add extraction components such that all subterms are extracted by some
component. This guarantees that there is at least one component that shows a decrease and
Case (2) of the well-founded general path ordering will apply.

Consider the previous example once more. One can add the following component to the
ordering:

¢1 = the extraction based on the outermost symbol ¢

6 = { Pyy,...ny where g has n subterms

Now Case (2) is applicable since ¢o(f(a)) = f = ¢o(f (b)) and ¢1(f(a)) = {a}>m {b} =
#1(f(b)). Therefore, f(a) > f(b).

7.4.1 Specific Orderings Covered

All of the previous specific orderings except for the Natural Path Ordering are covered by
the well-founded general path ordering with the addition of the Subterms Constraint. Those
orderings that use a precedence, e.g. the recursive path ordering, will now also be applicable

to rewrite systems with an infinite signature.
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In addition, the following three path orderings are covered. (They are not covered by the
Well-Quasi General Path Ordering since they use component orderings that are well-founded,

but not well-quasi-orderings.)

Semantic path ordering (Kamin and Lévy [KL80]) 6, is the identity homomorphism; >¢
is a well-founded ordering; ¢4, ..., ¢, give a permutation of the subterms.

For this ordering, one must separately insure that s — t implies s >¢ t. Indeed any termi-
nating system can be (uninterestingly) proven terminating in this way [KL80], by taking >

to be the reflexive-transitive closure of —.

Extended Knuth-Bendix ordering (Dershowitz  [Der82], Steinbach  and
Zehnter [SZ90]) ¢o is a monotonic interpretation; ¢, is a precedence;
@2, ..., 0n+1 give the subterms in order, permuted, or multisets of immediate subterms, de-
pending on the function symbol.

For a system like

fsz — shdfz
fo — 0
d0o — 0 (7.1)
dsz — ssdz
hssx — shz

a precedence (f >h >d >s >0) ought to be considered first, before looking at subterms, as

with a lexicographic path ordering.

The next special case is not a simplification ordering, but the conditions of Theorem 20

hold for it as well.

Value-preserving path ordering (Plaisted [Pla79], Kamin and Lévy [KL80]) 0 is a value-
preserving homomorphism and > is a well-founded quasi-order; ¢g is a precedence; 6, is 8
applied to the first subterm and >; is >; 65 is @ applied to the second subterm and >, is >;
and so forth.

As an example of the use of the value-preserving path ordering, consider System 1.2. The

precedence is fact >g9 X >+ >¢8; 01 interprets everything naturally: fact as factorial, s as
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successor, p as predecessor, X as multiplication, + as addition, and 0 as zero. The ordering >
is the well-founded greater-than relation on natural numbers. Let all constants be interpreted
as natural numbers, making all terms non-negative. Each rule causes a strict decrease with
respect to the general path ordering and the rewrite system terminates. This approach works

for primitive-recursive functions in general.

7.5 Addition of the Well-Quasi-Order Constraint

The other option is to require that all of the homomorphisms be well-quasi ordered. In that
case, one can appeal to Theorem 33 to show that the well-founded general path ordering is a
sub-ordering of some well-quasi general path ordering. Therefore, this ordering with the results
presented in this thesis can then be used to show termination.

This is often not too much of a burden. As was mentioned earlier, precedence is relatively
benign. If there are a finite number of symbols in the signature of the rewrite system, then
precedence will map to a finite set of values, and is well-quasi-ordered. This will apply for any
finite rewrite system. Once again, if one considers our simple example, the component ¢q is
well-quasi-ordered for the symbols f, ¢, a, and b. Therefore, the rewrite system terminates for
terms made from those symbols. It is well known that if one can show termination of a rewrite
system for a given alphabet, it is also terminating for extensions of that alphabet that do not
include any symbols in the rules [Der95]. Therefore the above rewrite system terminates in
general.

Other commonly used well-founded orderings used to prove termination are total. In this
case, as well, the ordering is a well-quasi ordering. An example of this is the standard ordering

< applied to the set of natural numbers.

7.6 Incrementality of the General Path Ordering

There is a practical advantage to using the well-founded ordering whenever possible. Since the
definitions of » and & do not involve any negative conditions, the following theorem can be

shown.

Theorem 34 (Incrementality). If a well-founded general path ordering % with a component

ordering ¢; = (8, >) proves termination of a set of rules R, then the well-founded general path
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ordering =’ which is the same as = except for ot = (6, -2'>, where >' is an extension of the

ordering >, also proves termination of R.

Proof. For any termination proof that uses the ith component ordering, the same proof can
be constructed, since the mapping is identical and orderings > and >’ are the same for any

pair of values 8(¢;) and 6(t3) used to show termination. 0

Incrementality is important when an ordering is sought to orient a set of equations. Thus,
as a special case, with a precedence one can delay deciding whether f >g, or f <g,or f =g
until necessary to establish the ordering of two terms, (as for the standard recursive path
ordering). In general, one can successively refine the well-founded ordering of a homomorphism
component.

Unfortunately, for the well-quasi general path ordering incrementality no longer holds. This
is due to the definition of s > ¢t which is true if s x t is true but ¢ x s is not. The addition of
the negative condition causes incrementality to break down.

As an example, consider the terms f(a) and g(b) with the well-quasi general path ordering

with a single precedence component ordering:

¢o = the precedence f~g > b
(the symbol a is incomparable with all the others.)
Consider the following terms in order:
e [a versus b] Trivially, a is incomparable to b.

e [f(a) versus b] Since b has no subterms 6o(f(a)) = f >0 b = 6o(b) is sufficient for the

application of Case (2) and f(a) % b. Application of Lemma 16 results in f(a) > b.

e [g(b) versus a] Since b is incomparable to a, Case (1) can not be applied. Since g is
incomparable to b in 6, Case (2) can not be applied in either direction. Therefore, g(b)

is incomparable to a.

e [f(a) versus g(b)] Since f(a) > b and 8(f(a)) = f ~0 g = 6(g(b)), Case (2) applies in the

forward direction giving f(a) % g(b). In the other direction, however, Case (2) does not
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apply since g(b) ¥ a. Case (1) can not apply either or Lemma 8 is violated. Therefore,
f(a) > g(b).

But, if the precedence is extended to:

¢o = the precedence f~g>b~a

One finds that f(a) > b and g(b) > a via Case (1) and Lemma 14. Case (2) will now apply in
both directions and now f(a) = g(b) violating incrementality.
It is interesting to note that if the original precedence is used with the well-founded general

path ordering then the comparison of terms proceeds as:
e [a versus b] Trivially, a is incomparable to b.

e [f(a) versus b] Since b has no subterms 6o(f(a)) = f >ob = 0o(b) is sufficient for the

application of Case (2) and f(a) > b.

e [g(b) versus a] Since b is incomparable to a, Case (1) can not be applied. Since g
is incomparable to b in fp, Cases (2) and (3) can not be applied in either direction.

Therefore, g(b) is incomparable to a.

o [f(a) versus g(b)] Since 0(f(a)) = f =0 g = 0(g(b)) only Case (3) can be applied. But
this is not possible since g(b) is not comparable to a. Therefore, f(a) is incomparable to

g9(b).

As expected from Theorem 33, the problem arises with terms that are unordered by the well-

founded general path ordering, but are ordered by the well-quasi general path ordering.

7.7 Reconciling Well-Quasi and Well-founded General Path Orderings

One question that will remain unanswered in this paper is whether one must require that the
component orderings be well-quasi-orderings (i.e., whether Theorem 3 (Special Termination) in
the [DH95] is in fact true, if not proven so.) While this chapter shows that for many common
cases it will be true, there is no guarantee. If it can be shown, then the well-founded general

path ordering can be used to the exclusion of the well-quasi general path ordering.
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8 FORWARD CLOSURES

In this chapter a second approach to showing the termination of (potentially non-simple) rewrite
systems is presented. The forward closures of a rewrite system are a possibly infinite set of
selected derivations. In certain cases, the ability to show that each of the forward closures
terminates is enough to show that the rewrite system in general terminates. Syntactic conditions
are given under which the termination of the forward closures suffices. An important result is
presented that relates the forward closures to the innermost derivations of a rewrite system.
It is shown that the forward closures of a rewrite system terminate if, and only if, the rewrite
system is innermost terminating.

Since the number of forward closures of a rewrite system may be infinite, it may be desirable
to further restrict the the forward closures to just those derivations that satisfy some rewrite
strategy. (A typical strategy is allow rewriting only at outermost redexes.) With these kinds
of restrictions on the forward closures, syntactic conditions for showing general termination are

given.

8.1 Introduction

Consider a recursive definition like

f(z) = ifz > 0then f(f(z — 1))+ 1else0.

By a straightforward use of structural induction, one can prove that the least fix point (over
the natural numbers) is the always-defined identity function. This definition translates into the

rewrite system:
fse — sffpsz
o — 0 (8.1)

pst — .

It would be nice to be able to mimic the proof for the recursive function definition in the

rewriting context, but several issues arise:
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1. In the functional case, one can show that call-by-value terminates, which implies that
all fix point computation rules also terminate. It will be seen under what conditions the

same holds for rewriting.

2. For rewriting in general, one must consider the possibility that the z to which the definition
of f(z) is applied is itself a term containing occurrences of the defined function f (or
of mutually-recursive defined functions), something usually ignored in the (sufficiently

complete) functional case.

3. One cannot use a syntactic simplification ordering like the simple path ordering [Pla78],
since the first rule is embedding. In fact, termination must be combined with the semantics

(f(xz) = z), as is done for the functional proof.

First a few definitions: A non-overlapping system is one where no left-hand side of a rule
unifies with any non-variable subterm of the left-hand side of another rule or with a non-variable
proper subterm of itself, with variables in the two rules renamed apart. A left-linear system
has no repeated variables on the left-hand side of a rule. Similarly, a right-linear system has no
repeated variables on the right-hand side of a rule. An orthogonal system is non-overlapping
and left-linear. An overlaying system is one whose only overlaps are at the topmost position,
that is, no left-hand side unifies with a non-variable proper subterm of any left-hand side.

As an example of an orthogonal system, consider:

fse — sfpsz
fo — 0 (8.2)

pst — .

The general path ordering works with component orders ¢¢ and ¢;, where ¢¢ is a precedence
with f >¢ s,p, and ¢; is a natural interpretation with fg = Az.z, pg=Ae.x — 1, s = Az.z + 1,
and 0g = Az.0.
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The following rewrite system is overlaying and locally confluent (see definition in the next

section):
zx0 — 0
tXsy — (exy)te=
z+0 — =z (8.3)
O+z — =
z+sy — s(z+y)
st+y — s(z+y),

8.2 Locally Confluent Overlaying Systems and Termination

A locally confluent system is one for which u — s,¢ implies s, —* v, for some v, where —*

is the reflexive transitive closure of the rewrite relation.

Proposition 35 (Gramlich [Gra92]). A locally confluent overlaying system is terminating if,

and only if, innermost rewriting always leads to a normal form.

An innermost derivation is one in which the redex chosen at every rewrite step contains
no rewritable proper subterm. In particular, orthogonal systems are locally confluent and
have no (non-trivial) overlays; the proposition for this case was shown by O’Donnell [O’D77].
Geupel [Geu89] showed that left-linearity is unnecessary, that is, a non-overlapping system is
terminating if, and only if, innermost rewriting always leads to a normal form.

An alternate proof to the one in [Gra92] is presented. (See also Middeldorp [Mid94].) It is
similar in style to Geupel’s proof [Geu89] that forward closures suffice for showing termination

of non-overlapping rewrite systems.

Proof. A term tis terminating (written as ¢ € T;) if all derivations from ¢ are finite; ¢ is
non-terminating (¢t € Ts) if some derivation from ¢ is infinite; and ¢ is on the frontier (t € FR)
if t is non-terminating, but every proper subterm of ¢ is terminating. If a term has no frontier
subterms, then it must be terminating. Conversely, if a term has a frontier subterm, it is
non-terminating.

For a locally confluent rewrite system, any terminating term ¢ has a unique normal form

t by Newman’s Lemma [New42]. The inner normalization function N for a locally confluent
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rewrite system is defined as follows:

f(N(1),...,N(t,) ift=f(t1,..-,tn) € Too

t ift € T;.

N(@t) =

Clearly, t —* N ().
If the rewrite system is non-terminating, an infinite derivation can be constructed as follows:

Let t! = s! be a frontier term. It initiates an infinite derivation of the form

1

1_ 1 * 1 2
U =s _>belowtops _>attopt —

1 1!

where all the steps in s! — ... — s are below the top position and #? contains a frontier

subterm s? at some position p,. Continuing in this way, the infinite derivation
th T2 st

z

is found where t* = w?[u3[ - - 4[], - - ‘|ps |+ €ach st is a frontier subterm of uf, and

% * 2! i+1r 1+1
" —below top s — u [S ]

at top git1 ?

where p;+1 = pi-¢i+1. (This is a constricting derivation 4 la Plaisted [Pla93a], making the proof
a little simpler.)
Notice that each redex in the infinite derivation is either terminating (those below p; in s¢)

or on the frontier (at p; in s*). Let us consider these cases separately.

e The redex is a terminating subterm: Since each of the terms in s* —* s* is on an infinite
path, the position of the frontier is unaffected and hence by local confluence N(s') =
N(s"). Since both s* and s* are nonterminating, by the definition of N one has N (¢/[s']) =
N (#[s"]).

e The redex is a frontier subterm: In this case

. . . . . . . T
s* — wtl[s't1],. . with some rule g(ci,...,c,) — 7 and substitution o. Since s* is

on the frontier, each of its subterms must be terminating and therefore each of the terms

in the image of ¢ is terminating as well. Since the rewrite system is overlaying, each
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of the contexts ¢i,...,c, is in normal form, so the rewrites below p; are all within the
terminating terms introduced by o. In other words, N(s*) = g(cy, ..., c,)7, where G is o
with each of the terms in its image rewritten to normal form. By application of the same
rule N(s') — r&.

Consider u*t![s'*!] = ro. Since the terms in the image of o are terminating, by the
definition of N one has N(ro) = N(r5). (By definition, it is known that r& —* N(r7).)
Since both s and u*t![st!] are frontier terms (in # and #**!, respectively), one sees that

N(#[s']) —+ N(#[s*1]).

Thus from the infinite derivation ¢! —+ #* —% 3 % ... another infinite derivation
N(t') —-* N(t*) =T N(#®) =T --- can be constructed. Each of the rewrite steps corre-
sponding to a frontier redex in the original derivation will be innermost after the application of
N. The remaining steps are all under the position of the immediately preceding frontier step
and are applied to terminating subterms. By local confluence, these rewrites can be rearraged
to be innermost as well. Thus, from any infinite derivation some innermost infinite derivation

can be constructed. 0

Notice that given any non-terminating term v, the above construction can be used to obtain
the derivation v[t!] =+ v[N(t!)] =+ v[N(¢?)] =T --- and so each term is terminating if and
only if it is innermost terminating.

As an example of the use of Proposition 35, consider System 8.3. It must be shown that,
under the assumption that variables are bound to normal forms, each rule leads to a normal
form. Consider the second rule. If # and y are in normal form, then after applying the rule
the innermost redex is the newly produced multiplication. But it can be shown that this will
terminate since its second argument is smaller. Addition can be considered separately from
multiplication, and it too terminates regardless of changes in the first summand. Therefore,

every innermost derivation terminates, and hence the system terminates.

8.3 Introduction to Forward Closures

The question of when termination of ground constructor instances of left-hand sides suffices for

establishing termination in all cases is now considered.
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Definition 10. The forward closures of a given rewrite system are a set of derivations induc-

tively defined as follows:
e Every rule [ — r is a forward closure.

e If¢c —---— disaforward closure and I — r is a rule such that d = u[s] for nonvariable
s and sy = lu for most general unifier y, then cug — --- — dp[lu] — du[ry] is also a

forward closure.

The idea, first suggested by Lankford and Musser [LM78], is to restrict application of rules
to that part of a term created by previous rewrites. Innermost (outermost) forward closures
are defined as those closures which are innermost (outermost) derivations. More generally,
arbitrary redex choice strategies may be captured in an appropriate forward closure. A forward
closure which has a right most term which initiates a non-terminating sequence of rewrites will
be denoted as an infinite forward closure. (It corresponds to a infinite derivation in the limit.)

For example, the forward closures of System 8.2 are

fs"e —t s"fpsz n >0
fs"0 —T s™0 n>0
fs"z —t s"fx n >0

pst — .

In fact, since there is only one possible redex in every forward closure, these are the innermost
and outermost forward closures as well.
For an example where the innermost and outermost forward closures are not identical,

consider the rewrite system:
fse — sfpsfx
o — 0 (8.4)

pst — .

The forward closure

fssx — sfpsfse — sffse — sfpsfx
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is outermost, but not innermost. The forward closure

fssx — sfpsfsx — sfpssfpsfz

is innermost, but not outermost.

Proposition 36 (Dershowitz [Der81]). A right-linear rewrite system is terminating if, and

only if, there are no infinite forward closures.

In particular, forward closures suffice for string-rewriting systems.

Thus, for a system like

fsx — ssfpsz
fOo — 0 (8.5)

pst — T,

we can restrict our attention to forward closures. (This is not exactly a string rewriting system
since the second rule applies only at the end of a string.) Since f’s won’t nest, termination can
be shown by comparing the argument on the left, sz, with the one on the right, psz, using a

natural semantic comparison.

Proposition 37 (Geupel [Geu89]). A non-overlapping rewrite system is terminating if, and

only if, there are no infinite forward closures.

This improves the result in [Der81] for orthogonal systems. In general, though, a rewrite system
need not terminate even if all its forward closures do [Der81].

Consider the following rewrite system for symbolic differentiation with respect to ¢:
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Dt —+ 1
Dz — 0 z does not contain ¢
D(z+y) — Dz + Dy
D(z-yy — y-Dz 4+ z-Dy
D(z—y) — Dz — Dy (8.6)
D(—z) - -Du=
D(z/y) — Dz/y — =-Dy/y
D(lnz) - Dez/e
D(z¥) — y-2¥' Dz + z¥-(lnz)-Dy.

It is orthogonal, so the above method applies. Since D’s are not nested on the right, forward
closures cannot have nested D’s. Since the arguments to D on the left are always longer than
those on the right, all forward closures must lead to terminating derivations. Hence, regardless

of the rewriting strategy and initial term, rewriting terminates.

8.4 The Relation of Forward Closures to Innermost Termination

The following theorem establishes the connection between forward closures and innermost
derivations. In particular, if one has some set of conditions for which innermost termination
suffices to show termination, then forward closures will show termination for rewrite systems

satisfying that set of conditions.

Theorem 38. A rewrite system has an infinite innermost derivation if, and only if, it has an

infinite innermost forward closure.

Proof. Consider a term ¢ which has an infinite innermost derivation. It must have a subterm
t|p which has an infinite innermost derivation such that the top position is eventually rewritten:
i+1

t|p:so—>sl—>---—>s’—>tops — e

But for the top of s* to be rewritten all of its immediate subterms must be in normal form.
Consider this term. The first rewrite step from s* must be at the top. Every rewrite afterwards

must be applied in context created by previous rules since an application anywhere else would
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be to a redex that is a proper subterm of s*, which were all in normal form. If one considers
[ — 7, the rewrite rule applied in the first step from s*, there must be some substitution p such
that Iy = s*. Each time the forward closure is extended, a substitution o; must be applied and
the first term in the forward closure is given by loyos - - - 0;.

If every substitution after a certain point in the derivation corresponds to a match, then one
has found an infinite forward closure. For this not to be true, one of two possibilities had to have
occurred at an infinite number of rewrite steps. The first possibility is that the substitution
did not correspond to a match because of an equality constraint on variables. For example, if
the right most term is g(z,y) and the left hand side of the rule is ¢(z, z) the substitution will
be something like {# — z,y — z}. Notice though, that the number of variables remaining in
the terms of the extended forward closure has been reduced. The second possibility is that the
substitution wasn’t a match because there was some symbol on the left hand side of the rule
which wasn’t in the rightmost term of the forward closure. For example, if the right most term
is ¢(z,y) and the left hand side of the rule is g(a(w), z) the substitution will be something like
{z — a(w),y — z}. In this case, after the substitution the number of symbols in the leftmost
term of the forward closure has increased.

Consider the number of symbols in Iy = s* minus those in loyoy - - -o; paired with the
number of variables in lg103 - --0;. At each step corresponding to one of the two possibilities,
one or the other of these is reduced and therefore, there can not not be an infinite number of
substitutions that are not matches. Thus, the derivation from s* is an instance of an infinite

innermost forward closure. 0

The set of forward closures can be restricted even more.

Theorem 39. A rewrite system has an infinite innermost derivation if, and only if, it has an

infinite leftmost/rightmost innermost forward closure.

Proof. The proof is essentially the same. One just needs to show that one can reorder
the derivation steps so that they are leftmost/rightmost as well as innermost. Clearly, this is

possible and the proof proceeds as before. O
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8.5 Overlay Rewrite Systems with Forward Closures

In this section, syntactic conditions will be presented which guarantee that the termination of

forward closures suffices to show termination of the rewrite system.

Theorem 40. A locally-confluent overlaying rewrite system is terminating if, and only if, it

has no infinite leftmost/rightmost innermost forward closure.

In particular, non-overlapping, and hence orthogonal, systems satisfy the prerequisites for appli-

cation of this termination test; one need only prove termination of such innermost derivations.

Proof. From Proposition 35 if the rewrite system is non-terminating it will have an inner-
most non-terminating derivation. But by Theorem 39 this implies the existence of an infinite

innermost forward closure. 0

This method applies to most of the previous examples. Since one only needs to consider
innermost derivations, it can be assumed that problematic expressions like psz on the right
of System 1.2 rewrite immediately to ¢ (and that the z is in normal form). Since only the
forward closures need to be considered, it can be assumed that # contains no function symbols
other than s and 0, without having to show that fact is sufficiently complete (which it would
not be were the rule fact(0) — s0 omitted). By “sufficiently complete”, it is meant that every
ground term containing the symbol fact and constructors reduces to a term containing only
constructors.

For System 8.1, one can compare the multiset of right-hand side arguments { fpsz, psz} of
the recursive function symbols with that of left-hand side, {sz}. Semantics are necessary for
this comparison. If we let psz = z and fz = z (just as would be done when using 8y with a
natural path ordering), we have {sz} greater (in the multiset ordering) than {z,z}. But one
must ensure that the semantics are consistent with the rules (which is analogous to showing that
f(z) = z is a fix point of the definition). This can be done using standard rewriting techniques
(“proof by consistency”; see Bachmair and Dershowitz [BD94]). Indeed, adding fz — = to

System 8.1 yields a terminating confluent overlay system.
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It is instructive to compare the above examples with the following nonterminating rewrite

system:
fse — ssffpsz
o — 0 (8.7)

pst — .

It is the rewriting analogue of the recursively-defined function

f(z) = ifz > 0 then f(f(z—1))+2else 0,

which does not terminate for 2. Indeed, f(z) = « would be inconsistent with the rules (allowing

one to prove s0 = ss0).

Lemma 41. If a left-linear rewrite system is constructor-based, then all of its forward closures

begin with constructor-based instances of left-hand sides of rules.

A term is constructor-based if all of its proper subterms have only free constructors and variables.
A rewrite system is constructor-based if its left-hand sides are constructor-based, and a forward

closure is constructor-based if its initial term is constructor-based.

Proof. Since forward closures are only extended via substitution, a trivial induction shows
that every forward closure’s initial term is an instance of the left-hand side of some rule.
Consider the inductive definition of forward closures. For the base case, each rule is a
forward closure which, trivially, is constructor-based. Assume that c[Z] — --- — d[Z] is a
constructor-based forward closure. It is extended by applying the substitution o, found by
unifying the left-hand side of a rule, f(ki[y],..., kn[y]), with some subterm of d. Suppose that
the extension is not constructor based. This can only happen if the substitution, &, maps
some z; € ¢ to a term with a function symbol in it. The term f(c1[Z], ..., cn[#]) is unified
with f(k1[9], ..., kn[y]). Since the rule itself is constructor-based, the only source of a function
symbol is one of the contexts, ¢;, from d. But these can only unify with variables, ¢, from the
rule. Since the rules are left-linear, each occurrence is distinct and therefore, the only mappings

in o which have function symbols are for variables in ¢, not #. This is a contradiction, and the

extension is constructor based. 0
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As a counter-example illustrating the need for left-linearity, consider the rewrite system:

f(z,2z) — f(ga,2)

gb — c.

(8.8)

It is constructor-based, but the forward closure f(ga, ga) — --- — f(ga, ga) is not.

A left-linear, locally confluent, constructor-based rewrite system is overlaying, and hence,
by Theorem 40, is terminating if and only if its innermost forward closures are terminating.
But by Proposition 41, all its forward closures begin with constructor-based instances of left-
hand sides. Thus, termination proofs need not consider initial terms containing nested defined
function symbols (even when the symbol is not completely defined). That makes proving
termination of such systems no more difficult than proving termination of ordinary recursive
functions: the instances of rule variables can be presumed to be in normal form and the context

can be ignored.

8.6 Non-erasing Systems and Forward Closures

Let us now consider non-erasing rewrite systems. Recall that a system is non-erasing if any

variable on the left-hand side of a rule is also on the right-hand side.

Proposition 42 (O’Donnell [0’D77]). A non-erasing orthogonal system is terminating if, and

only if, it is normalizing (every term has a normal form).

Therefore, the first rule of System 8.2 (which has a self-embedding) may be immediately
followed by an application of the last rule, effectively replacing the former with fsz — sfz.
Now termination can be shown with a standard recursive path ordering with precedence f > s,
demonstrating that the original system is normalizing, and, hence, terminating.

The previous proposition can be improved.

Lemma 43. If a term has an infinite derivation in a non-erasing non-overlapping system, then

all derivations from that term are infinite.

Note that both non-overlapping string systems and non-erasing orthogonal rewrite system

are special cases covered by this lemma.
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Proof. The inner normalization function N is used. From the proof of Proposition 35, if
t is a frontier term, then N(¢) is also non-terminating. As a consequence, for an arbitrary
non-terminating term ¢, it must be that N(¢) is non-terminating as well.

Consider an arbitrary non-terminating term ¢ and an arbitrary rewrite step applied to that

term at redex s. The rewrite must occur in one of the following positions:

e The redex s = lo is a terminating term. But t[lo] — t[ro] —* N(¢) by local confluence

and since N (t) is non-terminating, t[ro] is as well.

e The redex is a frontier term. It must be that there is exactly one rule, [ — r, applicable
at that redex. From the proof of Proposition 35 presented in this thesis, one knows that
the rule will still be applicable to N(s). In addition, N(s[ro]) is still non-terminating.
Suppose that there was some other rule, I’ — »’, which was applicable, but led to a
terminating term. This rule would also be applicable to N(s). But since N(s) is an
instance of the right-hand sides of both rules they overlap, which is a contradiction.

Therefore, t[s[lo]] — t[s[ro]] = N(¢[s[rc]]) and N(t[s[ro]]) is non-terminating.

e The redex is non-terminating, but is not a frontier term. There must be some subterm
s|p which is the frontier. Suppose that the rule, I — r has the top symbol of s|, as part of
its context c[-]. Consider applying N to the entire term. The subterms of the context c[-]
are terminating, so they must be preserved; the top symbol of c[-] heads the subterm r|,
and won’t be rewritten, either. Since N maps terminating terms to their unique normal
forms, repeated variables will observe the same rewrite and the applicability of the rule
is unaffected by N. But there is some other rule, I’ — »’, which is applicable at the top
of N(s|p). But that means there is an instance to which both rules apply and overlap.
Therefore, the rule may only bind s|, by a variable. Since the system is non-erasing, the
frontier term s|, must also be in the result of the rewrite, ¢[ro], which consequently must

also be non-terminating.

Since there is no rule application which can lead to a term that is terminating, every

derivation from a non-terminating term must be infinite. 0
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The following non-overlapping rewrite system shows that the non-erasing property is nec-

essary:

r — a
g (8.9)

b — gb.

Clearly, the term b has both infinite and terminating derivations.
To see that this result can not be extended to nom-erasing, locally-confluent overlaying

systems consider:

a — a
(8.10)

a — b

Unfortunately, the term @ has both infinite and terminating derivations.

The following generalizes Proposition 42.

Theorem 44. A non-erasing non-overlapping system is terminating if, and only if, it is nor-

malizing.
This is a corollary of Lemma 43. Gramlich [Gra94] gives an independent proof of this.

Theorem 45. A non-erasing non-overlapping system is terminating if, and only if, no right-

hand side of an arbitrary strateqy basic forward closure initiates an infinite derivation.

A basic forward closure loc — ro — - -- is one for which the substitution o, used in the first

step of the closure, is irreducible.

Proof. Suppose the system has an infinite derivation. Then by Theorem 40, there is a
innermost forward closure leading to an infinite derivation. But the left-hand side of the infinite
forward closure is a term which has an infinite derivation, and hence all derivations from it must
be infinite as well (by Lemma 43). Furthermore, all derivations from it are instances of basic
forward closures. Therefore, for an arbitrary strategy there is a corresponding infinite basic

forward closure of the appropriate type. O

As an example, consider the following system:

fse — psffe
fo — 0 (8.11)

pst — .

69



Its outermost forward closures are:

fs"e —T frlpsffz n>1i
fshe —t  frtlg n>i
fs"0 —T  fm™0 n>0,n>m

pst — .

For a forward closure which is an instance of fs"z —1 f*“lpsffz, one only needs to consider
the extension with the rule psz — =, since any other choice would not lead to an outermost
forward closure. Verification of termination is easy now. Terms of the form f* psffz derive
in one step f*lz which is in normal form. Terms of the form f™0 derive 0 in m steps. Since
no right-hand side admits a non-terminating rewrite sequence, the system is terminating.
System 7.1 can be shown terminating via similar reasoning (though the expressions for the

forward closures are more complicated).

8.7 Example of Using Forward Closures to Prove Termination

Zantema’s Problem [Zan92a] is to prove termination of the following one-rule string-rewriting

system:

1100 — 000111, (8.12)

corresponding to the term-rewriting rule 1100z — 000111z. (Theorem 44 applies as well, since
string rewriting systems are non-erasing and this rule is non-overlapping.)

First note that for any term of the form o008, if @00 is a normal form then any term derived
from o008 must have the form a00y. Consider the right-hand side of the rule. It has the above
form with suffix 8 = 111. There are two ways to construct a new outermost forward closure
from 111:

0011100 — 001000111 = /00111

and

00111100 — 0011000111.
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Since there is a redex (underlined) in the right hand side of the second forward closure, any

outermost forward closure extending it must rewrite the redex:

00111100 — 000001110111 = '001110111.

This gives us a new possibility 8 = 1110111, which can be used to construct a new outermost
forward closure as:

00111011100 — 0011101000111 = /00111

and

2001110111100 - «00111011000111.

As before, one needs to reduce the right hand side for any outermost forward closure:

001110111100 — «0011100001110111
— «a001000111001110111
— «00100010001111110111 = /001111110111 .

The third possibility is § = 1111110111, which can be used to construct a new outermost

forward closure as:

«00111111011100 — «0011111101000111 = &'00111

and

«001111110111100 —+ «00111111011000111 .

The second of these has a redex which must be rewritten:

«001111110111100 «0011111100001110111
«001111000111001110111
«00110001110111001110111

«0000011101110111001110111

A

«000001110111010001111110111
/001111110111 .
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For termination, it must be the case that no right-hand side of an outermost forward
closure initiates a non-terminating derivation. KEach of the right-hand sides of the form
200111, «001110111, and 001111110111 are already in normal form. Consider the right-
hand side «00111011000111. It has only one possible derivation, leading to the normal form
0001111110111. The right-hand side o0011111100001110111 is a little more complicated. The
next term in the sequence is 001111000111001110111, which has two possible rewrites. But
notice that each of the succeeding terms in the outermost derivation preserve the inner rewrite.
Therefore, they can be performed independently and &’001111110111 is the final form of all
possible rewrites. None of the right-hand sides initiates an infinite rewrite, so the system is
terminating.

Note that all derivations of a non-overlapping string-rewriting system have the same length.
Hence, it has been shown (as Zantema conjectured) that 2n is an upper-bound on the length
of any derivation from a string of size n (in worst case six steps are needed to decrease the size
of the suffix 8 by three). Other solutions to this problem are due to Geser [Ges93] and Bittar
[Bit93]. See also McNaughton [McN94]| who considers termination of semi-Thue systems such

as this example.
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9 FORWARD CLOSURES AND COMPLETION

In the following chapter an application of forward closures for determining if a rewrite system
terminates is examined. It is considered in the context of completion of an equational theory.
One particular viewpoint of completion is as a search over rule orientations via an ordering. In

this approach the ordering is replaced by a non-termination test.

9.1 Completion as Search

In the classical Knuth-Bendix completion process [KB70], one starts with a set of equations.
Before beginning an ordering is chosen. Equations are oriented into rewrite rules via the ordering
(typically one at a time). Critical pairs are computed for the rewrite rules, and any which are
not joinable are added to the set of equations. Unfortunately, an equation may be found which
can not be ordered, causing the method to fail. A modification of the above allows pairs of
terms which can not be ordered to be kept as an equation and applied in either direction,
provided that for the particular instance there is a decrease based on the ordering [HR86].
One can view the completion process as a search through orientations of the equations,

where one is looking for a rewrite system which is
e terminating,
e locally confluent, and
o finite.

Note that completion can be used for computation, even if the resulting set of rules is not finite,
as long as the completion process is fair (no equation is ignored forever).

Typically, however, one desires a finite rewrite system as the result of completion. Via the
above process, one often is in the position of guessing an ordering and then starting over with
a new ordering when an equation which can not be ordered is encountered, or it looks like the
completion process is not going to generate a finite set of equations. One way to attempt to deal

with this problem is to use a path ordering (typically the recursive path ordering [Der82] seen
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in Section 5.1) which is only partially specified. When two terms are encountered which are
incomparable, the completion process presents the user with extensions to the ordering (if they
exist) which will orient the pair. If the user has some idea as to which direction an equation
should have as a rewrite rule, then this may require less searching through orderings during
completion. Unfortunately, there is still a search involved and controlling it are the orderings
chosen.

In addition, simplification orderings which are probably among the easiest to understand
and apply have a serious defect. They can not be used to show the termination of any rewrite

system which has an “embedding”. As an example, consider the single rewrite rule:

ff(=) — fg9f(=) (9-1)

Since the left-hand side embeds in the right hand side there is no simplification ordering which
can show that this rewrite system terminates.

The desired goal is to allow for the decoupling of the search process embedded in completion
with determining an ordering for the rewrite system. Partial completion would proceed as a
search over rule orientations without an ordering and, hopefully, a finite set of rules would
be produced. This requires a heuristic method for grading a particular orientation of a set
of equations. The result of partial completion would be a finite, locally confluent rewrite
system. To show that the rewrite system was in fact confluent would require a separate proof
of termination.

One obvious advantage to the search approach is that there are often equations which can

only be oriented in one direction. Three basic kinds of equations which are easily oriented are:

1. Equations where a variable only occurs in one term. For example, the equation f(z,a) =

gb can only be oriented as f(z,a) — gb.

2. Equations where one of the terms matches a proper subterm of the other term. For

example, the equation z 4 0 = & can only be oriented as z + 0 — z.

3. Equations where one of the terms has a constructor symbol at the top. For example, if s

is a constructor, the equation fsz = sfx can only be oriented as fsx — sfz.
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One potential disadvantage of the search approach is that the current orientation of equa-
tions may give a non-terminating rewrite system. Hence, one will need to guard against non-
termination when the joinability of critical pairs is considered. For standard completion, this

was not a problem since the rules always showed a decrease in the given ordering.

9.2 Previous Approaches for Avoiding Non-termination

There are two previous approaches to this problem. The first, by Plaisted [Pla86], proposes
that during any derivation, a check for embeddings be employed. The oth