Enumerating the Propositions Equivalent to a
Boolean Function

Nachum Dershowitz and Mitchell A. Harris

School of Computer Science, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 Israel,
nachumd@tau.ac.il
and
Department of Computer Science, University of Illinois at Urbana-Champaign, 1304
W. Springfield Avenue, Urbana, Illinois 61801, USA, maharri@cs.uiuc.edu

Abstract. A general method is presented for counting the propositional
formulas of a given size that are equal to an arbitrary boolean function.
The number of formulas equivalent to each boolean function on v vari-
ables is calculated using a system of non-linear recurrence relations. For
particular boolean functions are and for small values of v, simplification
or exact computation is feasible. As a corollary, it is shown that the
probability that a formula over one variable is satisfiable is asymptoti-
cally 1 —1/2v/3 = 0.711325.

1 Introduction

In exploring the NP-complete problem of testing satisfiability of propositional
formulas, researchers have looked at upper bounds given by algorithms, reduc-
tions to convert these to others, asymptotics and thresholds. Here we take the
strategy of exploring the data directly. How many formulas of a given size are
satisfiable? Instead of trying to find bounds on probabilities, we take the ap-
proach of exact counting, where probabilities, asymptotics and thresholds can
then be computed. Dershowitz and Lindenstrauss [1] use generating function
techniques for counting boolean formulas of certain kinds. Harris [2] uses the
counting method on a linear system of equations to count k-CNF formulas.
Those results are applied here to the more general nonlinear system. Larson and
Lindenstrauss [3] use another method to arrive at similar results.

First, from a description of the operations of “A” and “V”, we find a context
free grammar that generates formulas for each boolean function. From this we
can construct a system of nonlinear equations whose solution is a set of power
series generating function that counts the number of formulas of a given size. We
then use combinatorial techniques to solve the system and extract the counting
function.

2 Syntax and Semantics

The counting problem we address corresponds to the decision problem SAT.
The data is described as follows: we have a set V of v independent propositional

variables, a set V of v of their negations. The variables and negations are called
literals. A propositional formula of size n is a full, ordered, binary tree with n+1
literals at the leaves, and a conjunction ‘A’ or disjunction ‘V’ at each of n internal
nodes. Notice that this syntax is not the most general; internal negations are not
permitted. Pushing them down to the leaves using DeMorgan’s law preserves the
semantics and the structure, and makes the analysis cleaner. There are a total
of
om i1 1 2n
Tot(n,v) = 2™(2v) i (n) (1)

distinct formulas of size n on v variables, the first factor for the boolean opera-
tions at the internal nodes, the second for the literals at the leaves, and the last
for the distinct trees (counted by the Catalan numbers).

A formula is satisfiable iff there exists an assignment of true and false to
the variables such that the formula evaluates to true upon application of the
operations at the internal nodes. There are a total of

2 (2)

boolean functions on v variables. So no matter how large the formula, the set of
possible functions is dependent only on the number of variables. This discrepancy
leads to the basic result that there are just not enough formulas of polynomial
size for every function: for n to be large enough to realize all the boolean functions
on v, we need to equate formulas 1 and 2

22 =g ynt 107
n3/2\/7

and solve for n as a function of v, which is roughly
n € 0(2°/v).

For a given number of variables, we notate a function by its truth table of
length 2". For v = 1, there are 4 functions, indexed as foo, fo1, fi0, and fi1,
which we will label for convenience F, P, P, and T, respectively.

For every one of the 22° boolean functions, we will count the number of
formulas that evaluates to each function.

For the disjunction operator ‘V’, the function produced depends on the func-
tions represented by its operands. For example, ‘v’ has the behavior for boolean
functions in Equation 3. The binary function ‘A’ has the obvious dual behavior.

VIFPPT
=F —
j:"o_f FFPPT
f‘”:P PPPTT (3)
fi?;T PPTPT

TTTTT

3 A System of Equations

Because of the syntax, the set of formulas is straightforward to specify as a
context free language. What is more useful is that a context free grammar can
be given that preserves the semantics. From the table of a logical operator acting
on boolean functions such as Equation 3, one can construct this grammar as in
Table 4.

F=FVF
P=FVP+PVF+PVP+"p”
P=FVP+PVF+PVP+7p
T=FVT+ (4)
PVP+PVT+
PVP+PVT+
TVF+TVP+TVP+TVT

This translates immediately, by the Chomsky-Schutzenberger correspondence
between context free grammars and formal power series (as generating function-
s), to a system of equations. This system implicitly defines the set of power series
where the coefficient of 2™ is the number of words in the language of length n,
that is the number of propositional formulas of size n. The system of power series,
including the terms corresponding to productions involving both “A” and“Vv”,
is given in Equation 5.

2P(2)P(2))
P(z) = 22P(F(2) + P(2) + T(2)) + 1 5)
P(z) = 22P(F(z) + P(2) + T(2)) + 1
T(2) = 2(2T(2)(T(2) + P(2) + P(2) + F(2))+

2P(2)P(2))

Note that a solution for this system is a solution for a system based on ‘A’ but
with functions ordered in reverse (the complement of the bitwise representation).

The grammar and corresponding system of equations can be generated re-
cursively for arbitrary v (see [2] for details of the construction).

From this system of equations we would like to extract the generating func-
tion F(z) and find a closed form for its coefficients.

4 The Groebner basis method

Systems of equations arising from context free grammars, such as the one above,
are inherently non-linear. The system is still amenable to quantifier elimination.
Since the system is over a multivariate polynomial ring (the variables being the
counting power series for the boolean functions), we can use Groebner basis com-
pletion as a mechanical procedure to attempt to eliminate all but one variable.

This results in the following single fourth degree equation in F(z):

F(2) = 32F(2)*2% — 32F(2)%22 — 16F(2)%2% +
10F (2)%2 + 8F(2)z + 2z

The monomial ordering that allows such variable elimination is the lexico-
graphic ordering, i.e. the function symbols (as variables) are given an ordering,
and then two monomials are compared in order of these symbols, along with the
degree.

The generating function for F(z) is one of the roots of Equation 6. The root
chosen is that which gives nonegative integer coefficients, namely

1_\/1+8z+\/1—16z

F(z) = 2

4z

From this we need to extract a closed form for the coefficients. The generating
function for the inner square root /1 — 16z can be found either in analogy
with that for some binomials, or by solving the recurrence implied by successive
derivatives from the Taylor expansion:

n n— 1
=162 " = vTI=162" "16(n —

2)

Along with the other terms inside the outermost square root, this gives:

1+82+I—16z _))
5 =1-) z*2 w1)k

k>2

So,

42F(z) =1— |1 zko% (% B 2) /k

Py k-1
— 1/2 koz2k 2k —2
_1_2(n) -3 ke (2T B g
n>0 k>2

n

B 272n (9p poon (26— 2
_1+;2n_1(n) S oo (k_1>/k

k>2

The inner Catalan summation raised to an arbitrary power, has a convenient
identity removing the exponent:

n

sa(of)2) y i,
= k—-1) k = (k+2n)

Then the derivation follows in the numerator:

2n 1 n 2k+2n—1
— —2n ko2k
42F(z)=1+) 2 (n)Zn—IkZZ2 k+2n(.)

n>0 >0
o Z Z k 2n 2k—2n—1 n 1 Qk + 2n—1
- i 2 k+2n2n—1 k
n>0 k>0 n +2n2n —
e 9\ 1y o ik (2n—2k—1
=22 Z(k)Qk—12 n\ n—2k
n>1 k>0

Let F(n) be the coefficient for 2™, n > 1:

2k 1 k (2n—-2k+1
F — 22n—2k+1 6
() Z(k)%—l n+1\n-2k+1 (©)
£>0
This is a closed form formula for the number of propositional formulas of
size n over one variable that are tautologies. From this formula for F(n), we

would like to examine its behavior with respect to the total number of formulas,
Tot(n, v):

n 012 3 4 5 6
F(n) 0216 168 1920 23360 296448
Tot(n,1)[2 8 64 640 7168 86016 1081344

The ratio of successive terms k + 1 to k in limg(n)/Tot(n, 1) (from equation
1) and is %k:i{z from which we can read directly the hypergeometric formula

k k
_ 1 _[1/2|1 I—3 (1
Jim F(n) = ZF< L ‘ z) =12 (z)
k>0
A basic hypergeometric and generating function identity says that

(2 =g () o

k>0 k>0
which gives
1 1
lim F(n) = -————

1
= —— =~ 0.288675

2V/3

Since F(n) is the same, the ratio of satisfiable to all formulas as n goes to infinity
converges to the constant

1
1— —= =~ 0.711325.
2v3

5 Larger number of variables

When there are two variables, there are sixteen equations in sixteen unknowns.
The number of terms in each equation corresponding to each operator is 256,
for a total of 512 (for both A and V) but some simplification occurs because of
commutativity, resulting in (the general case):

i 2\ (3 -1 31
k 2 2

k=0

i (21;) <3k+32”—k)
= k 2

=1/2(4>" +4%) = 4>

Of course, by symmetry (the complements are counted equally), we can re-
duce the total number of equations and unknowns by half. Groebner basis com-
pletion or any kind of elimination procedure has a doubly exponential lower
bound in the number of variables (with the nontrivial number of terms comput-
ed above). Supposing that despite this infeasibility, we can eliminate all but one
unknown, then we would have to solve for that one variable. Since the degree
of that equation is certainly higher than four, extracting roots is not automatic
and would require difficult ad hoc methods. And even knowing which root is
appropriate and in an elementary form (not hypergeometrics), extracting the
coefficients from that is again another intractable process.

6 Comments

We are not limited to the operators “A” and “V”. We can determine the sys-
tem of equations from any set of boolean operators, from their actions on the
boolean functions. For example, “|” (nand) or even the unary “=” can be used
in the grammar. In principle, more variables can be used. For v = 2, there are 16
equations to solve for; this is infeasible for Groebner basis elimination. For v = 3
there are 256 equations with < 2562 = 65536 terms; even successive approxima-
tion quickly exhausts space resources. But the system is highly structured and
so then should all the reductions that follow despite their apparent intractability
for machines.

Exacting counting of formulas for all boolean functions will make it easier to
find properties of the probabilities: asymptotics, lower bounds, and thresholds.
Extending these techniques to handle nontrivial numbers of variables is the next
thing to explore.

References

[1] N. Dershowitz and N. Lindenstrauss. Average time analyses related to logic pro-
gramming. In Logic programming (Lisbon, 1989), pages 369-381. MIT Press, Cam-
bridge, MA, 1989.

[2] M. A. Harris. Counting satisfiable k-cnf formulas. In T. Walsh, editor, Principles
and Practice of Constraint Programming- CP 2001, volume 2239 of LNCS, page

765. SEringer, 2001. L
[3] M. J. Larson and N. Lindenstrauss. personal communication.

