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Abstract. Abstract combinatorial commutation properties for separat-
ing well-foundedness of unions of relations can be applied to generic path
orderings used in termination proofs.

1 Introduction

Path orderings provide a convenient and popular method of proving termina-
tion, particularly of term-rewriting systems. Here, we set out to prove the well-
foundedness of an abstract path ordering – in the style of [14,3] – which includes
the usual path orderings on first-order terms as special cases. We will apply the
commutation methods of [7] plus a strong variant of lifting.

2 The Selection Property

All relations herein are binary. Juxtaposition is used for composition of relations.
We represent union by +, and denote the reflexive, transitive, and reflexive-
transitive closures of relation E by Eε, E+, and E∗, respectively. We will use
E∞ to represent the set of “immortal” elements s for which there is an infinite
E-chain s E s′ E s′′ E · · · of elements of the underlying set.

Definition 1 (Selection [7]). Relation B selects relation A if

BA+ ⊆ A(A + B)∗ + B+ .

In other words, if one can get from an element s to an element t by one B-
step followed by one or more A-steps, then one can also get from s to t by first
taking an A-step and then some combination of A- and B-steps, or else one can
get there by one or more B-steps alone. This is a weaker requirement than the
“local” condition explored in [10,11] and called “lazy commutation” in [7].

Theorem 2 ([7, Theorem 72]1). If relation B selects relation A, then

(A + B)∞ = A∗B∗(A∞ + B∞) .

1 The proof in [7] relies on a more general claim (Theorem 39) about “constriction”.
The latter, however, is phrased there too broadly. Nevertheless, it does apply to the
case in hand. I am grateful to Ori Brost for pointing this out.
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This notation is meant to convey that one can get from any element that is
immortal in the union A + B to an element that is immortal in one of the two
component relations by taking some number of A-steps followed by some number
of B-steps. This implies, of course, that the union is well-founded whenever both
A and B are.

When A is transitive, as it will be in the cases of interest here, selection is
the same as the following local condition:

Definition 3 (Jumping). Relation A jumps over relation B if

BA ⊆ A(A + B)∗ + B+ .

This is noticeably weaker than lazy commutation [10,11,7], which allows only
one B rather than B+.

Corollary 4. If transitive relation A jumps over relation B, then

(A + B)∞ = AεB∗(A∞ + B∞) .

This, too, implies “separation” of termination of the union A + B.

3 The Abstract Path Ordering

We propose the following generic definition of path orderings:

Definition 5 (Abstract Path Ordering). The abstract path ordering is a
relation > (not necessarily transitive) on some set T , parameterized by two other
abstract relations, � and well-founded �, and by arbitrary binary conditions C
and D, defined as follows:

t > s if

 t � s and t C s (a)
or

t� s and t (� +>)/� s and t D s , (b)

where � is short for �+ >∗ (or just �>∗, in the transitive � case), and the
“division” operator is defined by B/A = {〈x, y〉 : ∀z. yAz ⇒ xBz}. In other
words, in case (b), t � u or t > u for all �-neighbors u of s.

This is a generalization of the abstract ordering given in [14].
Let A be short for � ∩ (� +>)/�. By the cases of the definition, we have

> ⊆ � + A .

Lemma 6. For the above abstract path ordering, relation A selects �.
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Proof. By the terms of the second case (b), one has A � ⊆ � + >. Also, the
recursive definition of > must expand so that > ⊆ (�+A)+. Pasting the various
facts together, we get

A � ⊆ �+>∗ + > ⊆ �+>∗ + �+>∗ + A ⊆ � (�+A)∗+ A .

So, in fact, � commutes lazily over A, which implies selection (by an easy in-
duction). ut

It follows from Theorem 2 that > is well-founded if A is. Of course, A is
well-founded if � is. So:

Proposition 7. An abstract path ordering is well-founded whenever its compo-
nent relation � is.

This works, as is, for some interpretation-based termination orderings.

4 Lifting and Escaping

The problem is that, for path orderings, � is normally defined in terms of >
applied to subterms.

Theorem 8. An abstract path ordering is well-founded if, for all subsets S of
T , well-foundedness of > on the �-neighbors of elements of S implies well-
foundedness of � on S.

Definition 9 (Lifting). Relation A lifts to relation B if

B∞ ⊆ A(A + B)∞ .

Theorem 10 ([7]). If relation B selects relation A and A lifts to B, then

(A + B)∞ = (A + B)∗A∞ .

Corollary 11. An abstract path ordering > is well-founded if � lifts to A.

This applies to the nested multiset ordering [9], where � is the multiset
ordering, and to lexicographic orderings. The general case of such “lifted” defi-
nitions was first studied in [16] and was pursued further in [13,14].

It turns out, however, that oftentimes we need a weaker alternative to lifting,
in which the A-step need only take place eventually. Borrowing modal-logic
notation, this is captured by the next definition.

Definition 12 (Escaping). Relation A escapes from relation B if

B∞ |= 3JA(A + B)∞KB∞ .



4 Nachum Dershowitz

Here, B∞ is being used to denote the set of all infinite B-chains. The double-
bracket notation turns the set (of sequences) A(A+B)∞ into the relation between
those elements having immortal A-neighbors and everything. Accordingly, the
definition means that there is a point in every infinite B-chain such that an
A-step out of that point leads to a potentially “immortal” element in the union.
Escaping is somewhat reminiscent of the “bar induction” criterion in [14].

It follows from the definition that

Proposition 13. If relation A escapes from relation B, then

B∞ ⊆ B∗A∞ .

Theorem 14. An abstract path ordering > is well-founded if � escapes from
A.

The multiset path ordering [4], lexicographic path ordering [16], and recur-
sive path ordering [17,5] are all special cases, where � is the proper subterm
relation (so, �+ = �), C and D are always true, and � is a recursive lifting of
> to multisets, precedence (first) and (then) multisets, precedence and tuples
lexicographically, and a mixture thereof, respectively.

5 Discussion

We are optimistic that the commutation-based approach taken here will like-
wise help for advanced path orderings, like the general path ordering [8] and
higher-order recursive-path-ordering [12,15,2], without recourse to reducibil-
ity/computability predicates, because (as pointed out in [6]) there is an anal-
ogy between the use of reducibility predicates and the use in proofs of well-
foundedness of the “constricting” derivations used in the proof of Theorem 2
cited above.

We can apply this commutation method to analyze the dependency-pair
method of proving termination. (See [1]; compare [6].) We also hope to analyze
minimal bad sequence arguments for well-quasi-orderings in a similar fashion.
(See [18]; compare [14].)
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