
Three Paths to Effectiveness

—Extended Abstract—

Udi Boker
School of Engineering and Computer Science, Hebrew University

Jerusalem 91904, Israel
udiboker@cs.huji.ac.il

Nachum Dershowitz∗

School of Computer Science, Tel Aviv University
Ramat Aviv 69978, Israel

nachum.dershowitz@cs.tau.ac.il

July 27, 2009

Abstract

We compare three seemingly disparate notions of effectiveness of com-
putational models operating over non-standard domains within the Ab-

stract State Machine framework of Gurevich. We show that, though tak-
ing different routes, they all lead to the same concept.

1 Introduction

Church’s Thesis asserts that the recursive functions are the only numeric func-
tions that can be effectively computed. Similarly, Turing’s Thesis stakes the
claim that any function on strings that can be mechanically computed can be
computed, in particular, by a Turing machine. For models of computation that
operate over arbitrary data structures, however, these two standard notions of
what constitutes effectiveness may not be directly applicable.

Sequential algorithms—that is, deterministic algorithms without unbounded
parallelism or (intra-step) interaction with the outside world—have been ana-
lyzed and formalized by Gurevich in [Gur00]. There it was proved that any
algorithm satisfying three natural formal postulates (given below) can be emu-
lated, step by step, by a program in a very general model of computation, called
abstract state machines. But an algorithm, or abstract state machine program,
need not yield an effective function. Gaussian elimination, for example, is a

∗Supported in part by the Israel Science Foundation (grant no. 250/05).

1

mailto:udiboker@cs.huji.ac.il
mailto:nachum.dershowitz@cs.tau.ac.il

perfectly well-defined algorithm over the real numbers, even though the reals
cannot all be effectively represented and manipulated.

We adopt the necessary point of view that effectiveness is a notion applicable
to collections of functions, rather than to single functions (cf. [Myh52]). A
single function over an arbitrary domain cannot be classified as effective or
ineffective [Mon60, Sha82], since its effectiveness depends on the context. A
detailed discussion of this issue can be found in [BD08].

To capture what it is that makes a sequential algorithm mechanically com-
putable, three different generic formalizations of effectiveness have recently been
suggested:

• In [BD08], the authors base their notion of effectivity on finite con-
structibility. Initial data are inductively defined to be effective if it only
contains a Herbrand universe in addition to some finite data, and to any
function that can be shown constructible in the same way.

• In [DG08], Dershowitz and Gurevich require an injective mapping between
the arbitrary domain and the natural numbers. Initial data are effective
if they are tracked—under that representation—by recursive functions.

• In [Rei08], Reisig bases effectiveness on the natural congruence relation
between vocabulary terms. Initial data are effective if the induced con-
gruence between terms is Turing-computable.

Properly extending these approaches to a set of algorithms, it turns out that
these three notions are essentially one and the same.

2 Algorithms

We work in the abstract state machine framework of [Gur00]. We begin by
recalling Gurevich’s Sequential Postulates, formalizing the following intuitions:
(I) we are dealing with discrete deterministic state-transition systems; (II) the
information in states suffices to determine future transitions and may be cap-
tured by logical structures that respect isomorphisms; and (III) transitions are
governed by the values of a finite and input-independent set of terms. See
[DG08] for historical support for the postulates.

Postulate I (Sequential Time). An algorithm determines the following:

1. A nonempty set S of states and a nonempty subset S0 ⊆ S of initial
states.

2. A partial next-state transition function τ : S ⇀ S.

A terminal state is one for which no transition is defined. Let O ⊆ S denote
the (possibly empty) set of terminal states. We write x !τ x′ when x′ = τ(x).
A computation is a finite or infinite chain x0 !τ x1 !τ · · · of states.

2

It may appear that a recursive function is not a state-transition system,
but in fact the definition of a recursive function comes together with a compu-
tation rule for evaluating it. As Rogers [Rog66, p. 7] writes, “We obtain the
computation uniquely by working from the inside out and from left to right”.

Since transitions are functions, the states of an algorithm must contain all
the information necessary to determine the future of a computation. They must
contain a full “instantaneous description” of all relevant aspects of the current
status of a computation.

Logical structures are ideal for capturing all the salient information stored in
a state. All structures in this paper are over first-order finite vocabularies, have
countably many elements in their domains (base sets), and interpret symbols as
total operations. All relations are viewed as truth-valued functions, so we refer
to structures as algebras. We always assume that structures include Boolean
truth values, standard Boolean operations, and equality, and that vocabularies
include symbols for these.

Postulate II (Abstract State). The states S of an algorithm are algebras over
a finite vocabulary F , such that the following hold:

1. If x ∈ S is a state of the algorithm, then any algebra y isomorphic to x is
also a state in S, and y is initial or terminal if x is initial or terminal,
respectively.

2. Transitions τ preserve the domain; that is, Dom τ(x) = Dom x for every
non-terminal state x ∈ S \ O.

3. Transitions respect isomorphisms, so, if ζ : x ∼= y is an isomorphism of
non-terminal states x, y ∈ S \ O, then ζ : τ(x) ∼= τ(y).

We refer to such states as “abstract”, because the isomorphism requirement
means that transitions do not depend in any essential way on the specific rep-
resentation of the domain embodied in a given state.

Since a state x is an algebra, it interprets function symbols in F , assigning
a value c ∈ Dom x to the “location” f(a1, . . . , ak) in x for every k-ary symbol
f ∈ F and values a1, . . . , ak in Dom x. For location $ = f(a1, . . . , ak), we
sometimes write x[$], instead of fx(a1, . . . , ak) for the value that x assigns to $.
All terms in this paper are ground terms, that is, terms without variables.

We also assume that all elements of the domain are accessible via terms
in initial states (or else the superfluous elements may be removed with no ill
effect).

It is convenient to view each state as a collection of the graphs of its oper-
ations, given in the form of a set of location-value pairs, each written conven-
tionally as f(ā) $→ c, for ā ∈ Dom x, c ∈ Dom x. Define the update set ∆(x) of
state x as the changed points, τ(x) \ x. When x is a terminal state and τ(x) is
undefined, then we will indicate that by setting ∆(x) = ⊥.

The transition function of an algorithm must be describable in a finite fash-
ion, so its description can only refer to finitely many locations in the state by
means of finitely many terms over its vocabulary.

3

Postulate III (Effective Transitions). An algorithm with states S over vocab-
ulary F determines a finite set T of critical terms over F , such that states that
agree on the values of the terms in T also share the same update sets. That is,

if x =T y then ∆(x) = ∆(y) ,

for any two states x, y ∈ S.

Here, x =T y, for a set of terms T , means that !t"x = !t"y for all t ∈ T .
Whenever we refer to algorithms below, we mean “sequential algorithms”,

satisfying the above postulates.
An algorithm A with states S computes a partial function f : Dk ⇀ D if

there is a subset I of its initial states such that

1. The domain of each state in I is D.

2. There are k locations $1, . . . , $k such that {〈x[$1], . . . , x[$k]〉 : x ∈ I} = Dk.

3. All states in I agree on the values of all locations other than $1, . . . , $k.

4. There is a location $ such that for all a0, . . . , ak ∈ D, if f(a1, . . . , ak) = c,
then there is an initial state x0 ∈ I, with x0[$j] = aj (j = 1, . . . , k),
initiating a terminating computation x0 !τ · · · !τ xn, where xn ∈ O,
such that xn[$] = c.

5. Whenever f(a1, . . . , ak) diverges, there is an initial state x0 ∈ I, with
x0[$j] = aj (j = 1, . . . , k), initiating an infinite computation x0 !τ x1

!τ · · ·.

A set of algorithms, all with the same domain, will be called a model (of
computation).

3 Effective Models

We describe now the three different approaches to effectiveness.

3.1 Distinguishing Algebras

Every state x induces a congruence on all terms under which terms are congruent
whenever the state assigns them the same value:

s)x t ⇔ !s"x = !t"x .

Isomorphic states clearly induce the same congruence.
We will call a state “distinguishing” if its induced congruence is decidable

(in the standard sense, via a Turing machine). This is the notion of effective
state explored in [Rei08].

4

Definition 1 (Distinguishing Model).

• A state is distinguishing if its induced congruence is decidable.

• An algorithm is distinguishing if all its initial states are.

• A model is distinguishing if the congruence induced by every finite set of
of initial states (across different algorithms) is decidable.

The partial recursive programs are distinguishing by this definition.

3.2 Computable Algebras

We say that an algebra A over (a possibly infinite) vocabulary F with domain
D simulates an algebra B over (a possibly infinite) vocabulary G with domain
E if there exists an injective “encoding” ρ : E → D such that for every function
g : Ek → E of B there is a function f : Dk → D of A, such that g = ρ−1

◦ f ◦ ρ.

Definition 2 (Computable Model).

• A state is computable if it is simulated by the recursive functions.

• An algorithm is computable if all its initial states are.

• A model is computable if all its algorithms are, via the same encoding.

This is the standard notion of “computable algebra”; see [SHT95].
Clearly the partial recursive functions are computable by this definition.

3.3 Constructive Algebras

Let x be an algebra over vocabulary F and with domain D. A finite vocabulary
C ⊆ F constructs D if x assigns each value in D to exactly one term over C.

Definition 3 (Constructive Model).

• A state is constructive if it includes constructors for its domain, plus oper-
ations that are almost everywhere undefined, meaning that all but finitely-
many locations have the same default value (say undef).

• An algorithm is constructive if its initial states are.

• A model is constructive if all its algorithms are, via the same constructors.

Constructive algorithms can be bootstrapped: Any algebra over vocabulary
F with domain D is constructive if F can be partitioned into C + G so that C
constructs D and every g ∈ G has a constructive algorithm over C that computes
it.

This is the approach advocated in [BD08].

5

3.4 The Moral

One can demonstrate the following:

Theorem 1. A model of computation is computable if and only if it is con-
structive if and only if it is distinguishing.

References

[BD08] Udi Boker and Nachum Dershowitz. The Church-Turing thesis over
arbitrary domains. In Arnon Avron, Nachum Dershowitz, and Alexan-
der Rabinovich, editors, Pillars of Computer Science, Essays Dedicated
to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday,
volume 4800 of Lecture Notes in Computer Science, pages 199–229.
Springer, 2008.

[DG08] Nachum Dershowitz and Yuri Gurevich. A natural axiomatization
of computability and proof of Church’s Thesis. Bulletin of Symbolic
Logic, 14(3):299–350, 2008.

[Gur00] Yuri Gurevich. Sequential abstract state machines capture sequential
algorithms. ACM Transactions on Computational Logic, 1:77–111,
2000.

[Mon60] Richard Montague. Towards a general theory of computability. Syn-
these, 12(4):429–438, 1960.

[Myh52] John Myhill. Some philosophical implications of mathematical logic.
Three classes of ideas. The Review of Metaphysics, 6(2):165–198, 1952.

[Rei08] Wolfgang Reisig. The computable kernel of abstract state machines.
Theoretical Computer Science, 409:126–136, 2008.

[Rog66] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill, New York, 1966.

[Sha82] Stewart Shapiro. Acceptable notation. Notre Dame Journal of Formal
Logic, 23(1):14–20, 1982.

[SHT95] V. Stoltenberg-Hansen and J. V. Tucker. Effective Algebra, volume 4
of Handbook of Logic in Computer Science, chapter 4, pages 357–526.
Oxford University Press, 1995.

6

	Introduction
	Algorithms
	Effective Models
	Distinguishing Algebras
	Computable Algebras
	Constructive Algebras
	The Moral

