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Abstract. Abstraction can be used very effectively to decompose and
simplify termination arguments. If a symbolic computation is nontermi-
nating, then there is an infinite computation with a top redex, such that
all redexes are immortal, but all children of redexes are mortal. This sug-
gests applying weakly-monotonic well-founded relations in abstraction-
based termination methods, expressed here within an abstract framework
for term-based proofs. Lexicographic combinations of orderings may be
used to match up with multiple levels of abstraction.

A small number of firms
have decided to terminate
their independent abstraction schemes.

— Netherlands Ministry of Spatial Planning,
Housing and the Environment (2003)

Introduction

For as long as there have been algorithms, the question of their termination
— though undecidable, in general — has had to be addressed. Not surprisingly,
one of the earliest proofs of termination of a computer program was by Turing
himself [43], mapping the program state to the ordinal numbers.

Floyd [22] suggested using arbitrary well-founded (partial) orderings; this di-

rection was developed further by Manna [34]. Such a termination proof typically
involves several steps:

1.
2.

Choose an appropriate well-founded set.

Choose a set of points in each potentially infinite computation at which to
measure progress towards termination.

Establish invariant properties that always hold at those points.

Choose a mapping from states to the well-founded set by which to measure
progress.

Show a necessary decrease in this measure with each transition from point
to point.
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For a survey of termination methods for ordinary programs, see [30]!.

Showing termination of symbolic computations often requires special tools,
since state transitions involve symbolic expressions that may grow bigger and
bigger, while progress is being made towards a final result. Therefore, one of-
ten resorts to powerful term-based orderings, such as have been developed for
rewrite systems [13]. We are mainly interested here in relatively simple symbolic
termination functions, mapping symbolic states to terms, and in sophisticated
methods of showing that they decrease. More complicated symbolic transforma-
tions have been considered, for example in [3,4].

We use rewriting [15, 20, 42] as a prototypical symbolic computation paradigm
(and employ terminology and notation from [20]). A rewrite system is (uni-
formly) terminating if there is no term to which rules in can be applied over-
and-over-again forever; see [13]. Narrowing (a unification-based version of rewrit-
ing) has been proposed as a basis for functional-logic programming; see [19, 27].
Termination of narrowing has been considered in several works [28,21, 6]. Much
effort has also been devoted to devising methods for establishing termination of
logic programs. For a survey, see [10]; a recent dissertation on the subject is [39];
interfaces to several automated tools (¢TI, Hasta-La-Vista, TALP, Termilog,
and TerminWeb) are available over the web. Methods have been suggested for
converting well-moded logic programs into rewrite systems with identical termi-
nation behavior [2, 36].

In the next section, we sketch how abstraction is used to decompose termi-
nation proofs. Section 3 introduces notation and monotonicity properties, and is
followed by a section containing some termination methods for rewriting based
on those properties. In Section 5, we look at constricting derivations, which are
used in the following section to design dependency-based approaches, in which
the symbolic state is a “critical” immortal subterm. Correctness of the various
methods and their interrelatedness are the subjects of Section 7. We conclude
with an example.

2 Abstraction

A transition system is a graph in which vertices are states (S) of a computation
and edges (~) are state-transitions, as defined by some program. A computation

Tt is misleading to suggest (cf. [26]) that — for deterministic (or bounded-
nondeterministic) programs — it suffices to use the natural numbers as the well-
founded set (Step 1), claiming that — after all — the (maximum) number of iterations
of any terminating loop is fixed and depends only on the values of the inputs. This
fixation on the naturals begs the real issue, since the proof (Step 5) may require
transfinite induction over ordinals much larger than w. For example, one can easily
program the deterministic Battle of Hercules and Hydra (or Goodstein sequences)
[31]. Though there exists an integer-valued function that counts how many steps it
takes Hercules to eliminate any Hydra, proving that it is well-defined, and that it
decreases with each round of the battle, provably requires a stronger principle of
induction (viz. o) than that provided by the Peano Axioms of arithmetic.
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is a sequence sy ~ s1 ~+ - - - of states, where the arrows represent transitions. We
say that a binary relation > (over some S) is terminating if there are no infinite
descending sequences s1 > so > - - (of elements s; € S). This property will be
denoted SN(>>) for “strongly normalizing”. Thus, we aim to show SN(~), that
is, that the transition relation ~» is terminating, for given transition systems ~.
To show that no infinite computation is possible, one can make use of any other
terminating relation >, and show that transitions ~» are decreasing in >>. That
is, we need s ~ s’ to imply s > s’, or ~» C >, for short.

Abstraction and dataflow analysis can be used to restrict the cases for which
a reduction needs to be confirmed. The underlying idea is that of abstract in-
terpretation, as introduced by Sintzoff [40], Wegbreit [45], and others, and for-
malized by Cousot and Cousot [9]. The property we are concerned with here is
termination. For use of abstraction in termination of logic programs, see [44].

A partial ordering > is well-founded if it is terminating. If > is a quasi-
ordering (i.e. a reflexive-transitive binary relation) and < its inverse, then we
can use ~ to denote the associated equivalence (> N <, viewing orderings as
sets of ordered pairs) and > to denote the associated partial ordering (> \ <).
We will say that a quasi-ordering > is well-founded whenever its strict part >
is. We often use well-founded partial and quasi-orderings in proofs, since they
are transitive. Specifically, we know that s > ¢t > u and s > ¢t > w each imply
5> U.

As is customary, for any binary relation &, we use T for its transitive
closure, &* for its reflexive-transitive closure, and &~ (or <P, typography per-
mitting) for its inverse. If a relation » is terminating, then both its transitive
closure s+ and reflexive-transitive closure »* are well-founded. In what follows,
we will dedicate the symbol » for terminating relations, > for well-founded
partial orderings, and 7 for well-founded quasi-orderings. The intersection of a
terminating relation with any other binary relation is terminating:

SN(») = SN(»=n>). (1)

It is often convenient to introduce an intermediate notion in proofs of ter-
mination, namely, a “termination function” 7, mapping states to some set W,
and show that state transition s ~» s’ implies 7(s) » 7(s’), for some termi-
nating relation ». Accordingly, one can view 7(s) as an “abstraction” of state
s for the purposes of a termination proof. Instead of proving that ~» is termi-
nating, one considers the abstracted states 7(S) = {7(s) | s € S} C W and
supplies a proof of termination for the abstract transition relation 7(~»), defined
as {7(s) ~ 7(s") | s~ s'}.

Suppose the only loops in the abstracted transition graph 7(S) are self-loops.
That is, 7(s) ~* 7(s") ~* 7(s) implies 7(s) = 7(s’). Then termination can be
decomposed into subproofs for each of the loops and for the remainder of the
graph, sans loops. For the latter, one needs to check that 7(~+) has no infinite
chains, which is trivially true when the abstract graph is finite. For each of the
self-loops, one needs to reason on the concrete level, but under the assumption
that 7 remains invariant (its value is some constant).
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Oftentimes [34], one maps states to a lexicographically-ordered tuple of el-
ements, a pair (1(s), 72(s)), say. Then one needs to show, separately (if one
wishes), that every transition s ~ s’ implies 71 (s) ZZ 71(s’), for some well-founded
quasi-ordering 77, and that s ~ s’ and 71(s) ~ 71(s’) imply 72(s) > 72(s’), for
some terminating relation »-.

In the symbolic case, the set of ground terms in a computation can be divided
according to some set of patterns of which they are instances. If there are only
a finite number of different patterns, and computations do not cycle among the
patterns, then one only needs to show termination of computations involving a
single pattern. In logic programming, these can be predicate names and argument
modes. For rewriting, syntactic path orderings [12, 13], based on a precedence of
function symbols, are used, but one must consider subterms, as well as the top-
level term. Abstraction is also the essence of the “operator derivability” method
of [21] for pruning unsatisfiable narrowing goals (as used for functional-logic
programming), where terms f(- - -) are represented by their outermost symbol f.
A more sophisticated use of patterns to prune narrowing-based goal solving was
developed in [6].

Ezxample 1. The rewrite system

eQz — =z e=e — T e=zy — F
(x:y)@Qz — x:(yQz) TYy=x12 — Y=2 ry=¢ — F,
for appending and comparing lists, can be used to compute directly by rewriting
(using pattern matching), or can be used to solve goals by narrowing (using uni-
fication), or by their pleasant combination [19]: eager simplification interspersed
between outermost narrowing steps. The goal zQ(b:e) = a: b: e, for example,
where z is the existential “logic” variable being solved for, narrows to the sub-
goal b:e = a:b:e (applying the first rule and assigning z +— ¢), which dies (for
lack of applicable rule). The original goal also narrows to z:(2’'Q(b:e)) = a:b:e
via the bottom-left rule (with z — x: 2’), which narrows to z’@Q(b:e) = b: e
(x — a), which narrows to b:e = b:e (2’ +— ¢), which simplifies to T.

Suppose we are interested in solving goals of that form, zQA = B, where
A and B are (fully instantiated) lists. As abstract states, we can take the goal
patterns {zQA = B, z:(2@QA) = a: B}, {A = B}, and {T, F'}, where a can be
any atom. As we just saw, a goal of the form z@A = B can narrow to one of the
forms A = B and z:(2’@QA) = B. In the second event, if B = ¢, then the goal
simplifies to F; otherwise, it is of the form x: (2@A) = a: B. For the latter goal,
we have z:(2@QA) = a: B~ z@QA = B. All told, the possible abstract transitions
are

Y A
{zQA =B, z:(2@QA) =a:B} ~ {A=B}
N\ /
{T, F}

Since there are self-loops for the top two pattern sets, a proof of termination
only requires showing that with each trip around these loops some measure
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decreases. For the right loop, we measure a goal A = B by the list B under the
sublist (or list length) ordering. For the left loop, we first look at its pattern
[with 2QA = B < z:(2@QA) = a: BJ, and, for like patterns, take B. O

In general, consider an infinite computation sy ~» s; ~ ---, and let 7 assign
one of finitely many colors to each state. By the Pigeonhole Principle, infinitely
many states must share the same color. Hence, there must be a subcomputation
si~T1 s, (i < j) for which 7(s;) = 7(s;). So if we show the impossibility of this
happening infinitely often for any color, then we have precluded having infinite
computations altogether.

Rather than just coloring vertices (states) of the transition graph, it is even
better to also color its edges and paths: each subcomputation s; ~* s; (i < j) is
assigned one of a finite palette A of colors. Then, by (a simple case of) the infinite
version of Ramsey’s Theorem, there is an infinite (noncontiguous) subsequence
of states s;, ~»T 55, ~7 - -, such that every one of its subcomputations s;; ~»*
54, has the identical color a € A [and also 7(s;;) = 7(s;,)]. So, to preclude
nontermination, we need only show every such cyclical subcomputation decreases
in some well-founded sense.

As shown in [16, Lemma 3.1], this fact can be applied to the call tree of a
logic program. (See also the discussion in [7].) This leads to the query-mapping
method of Sagiv [38,16] and to similar techniques [8, 33].

3 Formalism

Let F' be some vocabulary of (ranked) function symbols, and T' the set of
(ground) terms built from them. A flat context ¢ is a term of the form f(t1,...,
ti—1,0,ti11,...,t,), where f € F is a function symbol of arity n > 0, the ¢;
are any terms, and O is a special symbol denoting a “hole”. If ¢ is such a flat
context and t a term (or context), then by ¢[t] we denote the term (or con-
text) f(t1,... ti—1,6tit1,.-.,tn). We will view ¢ also as the binary relation
{(t,£[t]) |t € T}, mapping a term ¢ to the term £[t], containing ¢ as its immedi-
ate subterm. The inverse of flat ¢, with its hole at position ¢, is the projection
m;. Let L be the set of all flat contexts (for some vocabulary), and II = L~ the
set of all projections.

A context c is just an element of L*, that is, the relation between any term
t and some particular superterm c[t] containing ¢ where ¢’s hole was. It has the
shape of a “teepee”, a term minus a subterm, so may be represented by a term
¢[0] with one hole. Let C = L* C T x T denote all contexts; put another way,
C is just the subterm relation <. Its inverse &> is the superterm relation and its
strict part [> is proper superterm.

A rewrite system is a set of rewrite rules, each of the form [ — r, where [ and
r are (first-order) terms. Rules are used to compute by replacing a subterm of
a term ¢ that matches the left-side pattern [ with the corresponding instance of
the right side r. For a rewrite system R, viewed as a binary relation (set of pairs
of terms), we will use the notation g to signify all its ground instances (a set
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of pairs of ground terms), and —p for the associated rewrite relation (also on
ground terms). The latter is the relevant transition relation.

Composition of relations will be indicated by juxtaposition. If S and R are
binary relations on terms, then by S[R] we denote the composite relation:

S[R] = U x” Rz,

zeS

which takes a backwards S-step before R, and then undoes that S-step. Let I" be
the set of all ground instantiations, where a ground instantiation -y is the relation
(t,t7y), where t is the term ¢ with its variables instantiated as per «. The inverse
operation y~! is “generalization”, which replaces subterms by variables. With
this machinery in place, the top-rewrite relation (rule application) and rewrite
steps (applying a rule at a subterm) are definable as follows:

xgp = [IR]
—r = Clxg].
Thus,
xp = {lyxry|l—-reR, yel}
—r = {cly] =] |l—=reR, veTI, ceC}.
Of course,

xrg & —r. (2)

Since we will rarely talk about more than one system at a time, we will often
forget subscripts.
Two properties of relations are central to the termination tools we describe:

Mono(J): 04 C £
Harmony(3,>): 3¢ C >

where J and >> are arbitrary binary relations over terms and ¢ is an arbitrary
flat context. See the diagrams in Fig. 1. Mono is “monotonicity”, a.k.a. the
“replacement property” (relations are inherited by superterms). Rewriting is
monotonic:

Mono(—). (3)

Harmony means that
st = ls] > ([t

for all € L and s,t € T 2. So, monotonicity of a relation is self-harmony:

Harmony(>>, >) < Mono(>>) . (4)

2 Harmony is called “quasi-monotonicity of > with respect to J” in [5].
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o o

Fig. 1. Monotonicity and harmony.

Clearly:

Mono(>>) A Mono(J) = Mono(>> N 1) (5)

Mono(>>) = Mono(— N >) (6)

Mono(>> N 3) = Harmony(>> N 3,>>) (7)

Harmony(%+, >>) A Harmony (%, 1) < Harmony(%,>> N 1), (8)

for any relations >, 1, %.

All such relations refer to ground terms. They may be lifted to free terms
in the standard manner: Demanding that u > v, for terms v and v with free
variables, means that uy > vy for all substitutions v of ground terms for those
variables.

Let — be a rewrite relation, the termination of which is in question and o, its
rule application relation. To prove SN(—), we make use of various combinations
of conditions involving two basic properties:

Rule(d): « C O
Reduce(dJ): — C O

The following relations are all easy:

Rule(x) (9) Rule(>>) A Rule(d) < Rule(>>» N O) (12)
Rule(—) (10)  Reduce(>) A Reduce(3) < Reduce(>> N 1) (13)
Reduce(—)  (11) Rule(>) A Mono(— N >) < Reduce(>)  (14)
Rule(>>) A Harmony(— N >, >>) < Reduce(>>) (15)

(16)

Reduce(>>) A Harmony(>>, 1) = Mono(— N 1) (16

Statements (14,15) are by induction on term structure.

As described in Section 2, one can (always) prove termination by showing
that — is contained in some terminating relation ». Accordingly, the first, and
most general, method employed in termination arguments is®:

3 These two methods are usually phrased in terms of well-founded orderings, rather
than terminating binary relations.
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Obvious (): Reduce ().
More precisely, this means
SN(*) A Reduce() = SN(—),

where SN(») makes explicit the assumption that » is terminating.

Since Reduce refers to the “global” rewriting of any term at any redex, it is
easier to deal with Rule, which is a “local” condition on rules only, and impose
monotonicity on the relation:3

Standard (»-) [32]: Rule(*-), Mono(»-).

4 Harmonious Methods

The following properties can be used to show that the union of two relations is
terminating:

> g*
3

Commute(3,>>): >
Compat(3,>): I>

For example [3]:
Commute(, ') ASN(»>) ASN(»') = SN(» U»').
Obviously, if > is the strict part of a quasi-order >, then:
Compat(>, >). (17)

Requiring that the relation » be monotonic, as in the Standard method of
the previous section, may be too restrictive; all that is actually needed is that it
be harmonious with rewriting:

Kamin & Lévy () [29]: Rule(»-), Harmony(— N », »).

When terms are larger than their subterms, monotonicity can be weakened
to refer instead to a non-strict quasi-ordering >~ (> is its strict part)*:

Quasi-Simplification Ordering (7) [12]: Rule(>), Sub(z), Mono(7).

where a binary relation has the subterm property (Sub) if it contains the super-
term relation (>):

Sub(dJ): > C O

4 We are ignoring the fact that the subterm and monotonicity conditions for quasi-
simplification orderings obviate the separate need to show that the ordering is well-
founded [12].
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By definition:
Sub(>). (18)

As illustrated in [1], the fact that the Quasi-Simplification Ordering
method, as well as the ones developed in Section 6 below, do not require Mono(>-)
means that selected function symbols and argument positions can be ignored
completely (cf. the use of weak monotonicity in [14]). See the example in Sec-
tion 8.

As before, what is actually needed is that the relation = be monotonic when
restricted to pairs that are related by rewriting:

Subterm () [13]: Rule(>), Sub(z), Harmony(— N =, 7).

~ o~

Furthermore, the proof of this method in [13] is based on the requirements:

Right () Right(>), Harmony(— N 7, 7).

~) o~

Here, we are using the property

Right(J): x> C O

meaning that left-hand sides are bigger than all right-side subterms. The com-
posite relation o« > comprises the “dependency pairs” of [1]. Trivially:

Right(>>) = Rule(>>), (19)
In the following formulations, » is terminating, but > need not be. If one
relation is monotonic, then the other should live harmoniously with it:
Harmony (»,>>): Rule(®* N >>), Mono(>>), Harmony (s N >, ).

The semantic path ordering of [29] (see [13]) is a special case, using — for >, for
which only the conditions of the Kamin & Lévy method need be shown (see
Lemma 5 below).

Monotonicity (>»,>>): Rule(» N >), Mono(>>), Harmony(>>,»).

The monotonic semantic path ordering of [5] uses a semantic path ordering for
», demanding Rule(>>* N =) and Harmony(>>,>* N 77), in the final analysis.

The correctness of these methods is proved in Section 7 below. A more com-
plicated alternative is

Weak (3, >): Right(»), Harmony (o N =, >>), Harmony(— N >, >>),
Commute(>>, »).
5 Constrictions

The goal we haven been pursuing is to establish finiteness of sequences of transi-
tions, beginning in any valid state. It will be convenient to define the set (monadic
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o0

predicate) ~> of elements that can initiate infinite chains in a relation ~», as

follows:

~% = {so|3s1,82,....¥5.8 ~> Sjq1}-

Thus, ~»° is the set of “immortal” initial states. With this notation in mind,
termination of a transition system, SN(~), is emptiness of ~»*° (that is, denial
of immortality):

SN(>) < >*=0.

For rewriting, since contexts and rewrites commute (> — C — ), meaning that
if a subterm can be rewritten, so can the whole term, we have [15]:

=% = (=Up)*. (20)
Two important observations on nontermination of rewriting can be made:

— If a system is nonterminating, then there is an infinite derivation with at least
one redex at the top of a term. In fact, any immortal term has a subterm
initiating such a derivation:

- C D= (21)
See, for example, [11],[12, p. 287].

— If a system is nonterminating, then there is an infinite derivation in which
all proper subterms of every redex are mortal. By mortal, we mean that
it initiates finite derivations only. Let’s call such redexes critical. Rewriting

at critical redexes yields a “constricting” derivation in the sense of Plaisted
[37].

For given rewrite relation —, let T be its immortal terms (Too =—°), Te oo
the mortal ones (T \ Tw), and To = Too N L[T< o] the critical terms (immortal
terms all of whose subterms are mortal). To facilitate composition, it will be
convenient to associate a binary relation P? with monadic predicates P:

P? = {{(z,x)|xz € P},

the identity relation restricted to the domain of P. Let «,= 71,7 « be a con-
stricting rewrite step (at a critical redex) and —,= C[x,] be the corresponding
rewrite relation. The following facts hold:

— T? C Too? (22)
>T? C Ty? (23)
—o T<o<>? g T<OO? (24)

In words: mortals remain mortal after rewriting; mortals beget mortal subterms;
immortals remain immortal after constriction.

Let a non-top constriction be denoted — p= II[—,]. Let —p be a top con-
striction, followed by a sequence of projections, followed by a sequence of non-top
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constrictions: —p = o, > —7%. Considering constrictions suffices for termination
[37)°:
- = = = Bb-E-D. (25)

Thus, we aim to show only that —p is terminating. To prove this one can use
compatible well-founded orderings > and =/ such that o, > C > and —p C ='.
This is the basis for the various dependency-pair methods®. Since constricting
redexes don’t have immortal children, termination follows even if the condition
o > C = is weakened to o, > C (= UD>) 7.

Therefore, we can restrict the following two properties of rewrite sequences
to refer only to constrictions:

Subrule(3J): x, COUD
Depend(3d): o > C O U

where:

Depend(>>») = Subrule(>)
Rule(dJ) = Subrule(d)
Subrule(>>) A Sub(3) A Compat(>>,3) = Depend(>>)
Subrule(>) A Sub(zz) = Depend(>).

Statement (29) follows from (17,28).
All this establishes the correctness of the following method:

Basic (7): Depend(>), Reduce(7).

6 Dependency Methods

In what follows, let = and =’ be arbitrary well-founded quasi-orderings, and >
and >’ their associated strict well-founded partial orderings.

The dependency-pair method [1] of proving termination of rewriting takes
into account the possible transitions from one critical term to the next (—p) in
an infinite rewriting derivation. Using the notations of the previous sections, we
have two additional variations on this theme:

® The idea is reminiscent of Tait’s reducibility predicate [41]. Constricting derivations
were also used by [24] to argue about the sufficiency of “forward closures” for proving
termination of “overlaying” systems (see [13]).

6 Another way to understand the dependency method is to transform ordinary rewrite
rules into equational Horn clauses (i.e. conditional rewrite rules; see [42, Sect. 3.5]).

A rule I — f(r1,...,rn) has the same operational behavior as the flat, conditional
rule r1 =" y1,...,7n =" yn : I — f(y1,...,yn). Using the decreasing method [18]
for operational termination requires that [ > r1,...,7n, f(y1,...,yn) for all y; such

that r; =" y;.

" For proving “call-by-value” termination, or for (locally-confluent overlay) rewrite
systems for which innermost derivations are the least likely to terminate, the condi-
tions can be simplified, since —p steps cannot preceded a —p step. See [1].
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Main () [1]: Depend(>), Mono(— N ).
Intermediate (27, >'): Depend(>'), Reduce(), Compat(~',7).

More specific techniques may be derived from these. For example, the depen-
dency method of [20] may be expressed as follows®:

Harmonious Dependency (-, ) [20]: Depend(>’), Rule(z), Mono(),
Harmony (7-,7).

~Iny

Let F' be a mirror image of F: F = {9lg € F}. Denote by 5 the term
s = f(ug,...,u,) with root symbol f € F' replaced by its mirror image f eF,
that is, s = f(ul, .oy Up). Let T be T’s 1mage under ~. If = is a partial ordering

of T, define another partlal ordering = as u = v, for terms u,v € T, when 4 > 0.
The original dependency-pair method is approximately®:

Dependency Pairs () [1]: Depend(>), Rule(27), Mono(7).

Here, Mono applies to both hatted (f € F) and barcheaded (f € F) terms,
hence implies Harmony.
A more recent version of the dependency-pair method is essentially:

Variant (77, >") [25]: Depend ('), Rule(7), Mono(2), Compat(>', 22).

7 Method Dependencies

Entailments between the methods are depicted in Fig. 2. The following series of
lemmata justify the figure, by establishing dependencies between the different
methods and their correctness. As a starter, take:

Lemma 1 ([32]). Obvious (») = Standard (%) .

In general, such an implication M = M’ means that method M’ is a spe-
cial case of method M. To prove the implication, viz. that correctness of the
antecedent method M implies correctness of the consequent M’, one shows that
the requirements for M’ imply the requirements for M. This includes the re-
quirement that any terminating relation(s) or well-founded ordering(s) used by
M should be a derivative of those used by M’.

Suppose method M(») has requirements C and M'(»") requires C’. Then,
to claim M = M’ one needs to establish

C'ASN(»') A=SN(—) = CASN(»).

In particular, to prove Lemma 1, we show that the conditions for the latter
imply the conditions for the former:

8 The dependency-pair methods of [1, 20, 25] exclude only variables v in r, rather than
all left-side proper subterms, from the requirement that I =" u of Depend(>=') or
1< u of Depend(&). This can make a practical difference [35].
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Obvious =1 Standard
M4 2
Monotonicity <3 Harmony
U5
Kamin & Lévy
U6
Right
Y7
Harmonious Dependency <1—; Main 125 Subterm
Y14 Y9 s
Dependency Pairs Basic Quasi-Simplification
Y11 Ordering
Intermediate
12
Variant

Fig. 2. Dependencies of methods. (Numbers refer to lemmata.)

Proof. By (6,14),
SN(>) A Rule(>>) A Mono(>) = SN() A Reduce(»). O
Lemma 2. Standard (% N>>) = Harmony (>,>>).

Here, the implication means that correctness of Harmony, using the terminat-
ing relation », follows from the Standard method, using the restricted relation
— N » (which is also terminating, by Eq. 1).

Lemma 3. Harmony (»,>) = Monotonicity (»,>).
This circle of dependencies can be closed:
Lemma 4. Monotonicity (»,—) = Obvious ().

The correctness of Obvious — using the ordering -, follows from the Mono-
tonicity method — using the monotonic rewrite relation — for >>.

Lemma 5. Harmony (>,—) = Kamin & Lévy ().
Proof. We need

Rule(») A Harmony(— N =, %)
= Rule(— N %) A Harmony(— N %, %) A Mono(—),

which follows from (10,3,12). O

We have split the argument of [12] for the Quasi-Simplification Ordering
method into three parts, with the Right and Subterm methods as intermediate
stages:
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Lemma 6. Kamin & Lévy (~“) = Right (7), where s >“ t is the well-
founded multiset extension [17] of = to the bags of all the subterms of s and ¢.
Proof. We need to show that

Right(>) AHarmony(— N 2Z,72) = Rule(>“) A Mono(— N =*).

For u o< v, Right () means that a bag containing u alone is strictly greater than
a bag with all of v’s subterms. So, by the nature of the bag ordering (adding to
a bag makes it bigger), Rule(=*) follows. If u =% w, one only needs to know
that £[u] 7 £[v] for £[u] =% £[v] to hold, which we have thanks to Harmony (and
Egs. 15, 19), as long as u — v. O

Lemma 7. Right (27) = Subterm (7).
Proof. To see that
Rule () A Sub(z) A Harmony(— N =, ) = Right(>) A Harmony(— N 72, 7)),

~ o~ ~) A~y

note that Right(>-) follows from Rule(>), Sub(Z), and the compatibility of a
quasi-ordering with its strict part (17). O

Lemma 8. Subterm (7)) = Quasi-Simplification Ordering (7).

Proof. Harmony(— N 7, ) follows from Mono(Z) and (3,5,7). O
Turning to the dependency methods:

Lemma 9 ([1]). Main () = Basic ().

Proof. Follows from (14). O

Lemma 10. Basic (7)) = Main (), for constrictions —..

Proof. From Subrule(Z) and Mono(—, N 77), one can show Reduce(27) for con-
strictions. 0

Lemma 11. Basic (*) = Intermediate (5,~'), where 7* symbolizes the
transitive closure of Z U »'.

Proof. We need
Depend (>') A Reduce(5) A Compat(~',77) = Depend(>"*) A Reduce(Z*).

Note that Z* is well-founded on account of Compat(>', =). The rest is straight-
forward. O

Lemma 12. Intermediate (2Z,-') = Variant (Z,>').
Proof. By (6,14). a
Lemma 13. Main (2') = Harmonious Dependency (77,72').

Proof. By (14,16). a
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Lemma 14. Harmonious Dependency (i,%) = Dependency Pairs (7).

Proof. Harmony( holds trivially. O

2.2
The linchpin step is:
Lemma 15. Main () = Subterm (7).

Proof. This follows from (27,29). a

8 Illustrations

We conclude with an example.

FEzample 2. Consider the seven rules:

0O+2 — =z s(x)+y —  s(x+y)

0—2 — 0 s(x) —s(y) — z—y

Oxz — 0 s(xr) xy — y+(xxy)
s@@)x(y+2) — wx(y+2)+(y+2)

To prove termination by the Harmonious Dependency method, we can use
the style of the general path ordering [14, 23], which allows one to compare terms
by comparing a mix of precedences, interpretations, and selected arguments.
Take a “natural” interpretation [-] to show that s — t preserves the value of
the interpretation (this natural equivalence of value will be 77), and for =’ use a
termination function based on an interpretation {-}, where:

[0] = 0
[s(z)] = [z]+1 {s(=)} = (50,0
[z +y] = [z] +[v] {z+y} = (+ 1yl [=])
[x—y] = [z] —min([z], [y]) {z—v} = (- [2],0)
[zxy] = [2]- [y fzxy} = (x,[z],0),

with triples ordered lexicographically. The precedence x > + > — > s is the
abstraction”. Terms in the same abstract class are compared by the remaining
components, which express the recursion scheme. Harmony follows from the
use of [-] in {-}. Now, one shows the following inequalities for constricting
transitions:

fs(@) +y} > s+ )}, {=z+yh
{s(@) —s()} > fo —v}
fs(@) <y} > fy+ (@ xv)}, fzxy}
fs@)xy+2a)} >fex+2)+y+2)} faxy+2)}. O
9 There is no need to explicitly exclude the case that u is headed by a constructor (as
done in [1]). One simply makes terms headed by constructors smaller than terms

headed by defined symbols, which is why s is minimal. The constructor 0 need not
be interpreted, since it appears on the left of every rule in which it appears at all.
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Rather than a simple precedence, one can devise a “pattern-based” ordering.
Patterns that can never have a top redex are made minimal in the surface order-
ing, and safely ignored. Symbolic inductive techniques may be used to discover
patterns that generalize terms in computations.
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