
Canonical Ground Horn Theories

Maria Paola Bonacina?1 and Nachum Dershowitz??2

1 Dipartimento di Informatica
Università degli Studi di Verona

Strada Le Grazie 15, I-37134 Verona, Italy
mariapaola.bonacina@univr.it

2 School of Computer Science
Tel Aviv University

Ramat Aviv 69978, Israel
Nachum.Dershowitz@cs.tau.ac.il

Dedicated to the memory of
Harald Ganzinger,
friend and colleague.

Abstract. An abstract framework of canonical inference is applied to
characterize the presentations of ground Horn theories with equality.
The quality of a presentation depends on the quality of its proofs, as
measured by proof orderings. A finite presentation that makes all normal-
form proofs available, for a class of conjectures, can form the basis for
a decision procedure for that class. To maximize the chance that such a
saturated presentation be finite, it should also be contracted in a suitable
sense, in which case it is deemed canonical.

We study the application of these notions in the context of propositional
Horn theories – or Moore families – presented as implicational systems
or associative-commutative rewrite systems, and in the context of ground
equational Horn theories, presented as decreasing conditional rewrite sys-
tems. A new characterization of “optimality” of implicational systems is
also suggested.

The first concept is . . . the elimination of equations and rules. . . .
An equation C ⇒ s = t can be discarded

if there is also a proof of the same conditional equation,
different from the one which led to the construction of the equation.

In addition this proof has to be simpler
with respect to the complexity measure on proofs.

– Harald Ganzinger (1991)

? Research supported in part by the Ministero per l’Istruzione, l’Università e la Ricerca
(grant no. 2003-097383).

?? Research supported in part by the Israel Science Foundation (grant no. 250/05).

1 Motivation

We are interested in the study of presentations for theories in Horn logic with
equality. We use the term “presentation” to mean a set of formulæ, reserving
“theory” for a presentation with all its theorems. Thus, a Horn presentation is
any set of Horn clauses, while a Horn theory is a deductively-closed set of formulæ
that can be axiomatized by a Horn presentation. Since a Horn presentation can
also be read naturally as a set of instructions for a computer, Horn theories
are important, not only in automated reasoning and artificial intelligence, but
also in declarative programming and deductive databases. The literature is vast;
surveys include those by Apt [1] and Hodges [47]. More specifically, conditional
rewriting (and unification) with equational Horn clauses has been proposed as
a logic-based programming paradigm in [34, 62, 45, 41, 35]; see [46] for a survey.

On account of their double nature – computational and logical – Horn theo-
ries, and especially Horn theories with equality, presented by sets of conditional
equations or conditional rewrite rules, played a special role in Harald Ganzinger’s
work (e.g. [44]). Harald’s study of them represented the transition phase from
his earlier work on compilers and programming languages, to his later work in
automated deduction.

From the perspective taken here, the quality of presentations depends on the
quality of the proofs they make possible. Proofs are measured by proof orderings,
and the most desirable are those proofs that are minimal in the chosen ordering.
In turn, the quality of proofs depends on the quality of presentations, because
a minimal proof in a certain presentation may not remain minimal in a larger
presentation. Thus, the best proofs are those that are minimal in the largest
presentations, that is, in deductively-closed theories. These best proofs are called
normal-form proofs. However, what is a deductively-closed presentation depends
on the choice of deduction mechanism. Thus, the choice of notion of normal-form
proof and choice of deduction mechanism are intertwined.

One reason for deeming normal-form proofs to be best is their connection
with decidability issues. The archetypal instance of this concept is rewriting for
equational theories, where normal-form proofs are valley proofs. Given a pre-
sentation E of (universally quantified) equations, and a complete simplification
ordering �, an equivalent and ground-convergent presentation E] offers a valley
proof for every identity ∀x̄ u ' v, where x̄ are the variables in u ' v. If E]

is finite, it serves as a decision procedure, because validity can be decided by
rewriting ũ and ṽ “blindly” to their E]-normal-forms and comparing the results,
where ũ and ṽ are u and v with their variables treated as Skolem constants. If
E] is also reduced, in the sense that as much as possible is in normal form, it is
called canonical, and is unique for the given ordering �, a property first noticed
by Mike Ballantyne (see [33]). Procedures to generate canonical presentations,
which afford normal-form proofs and may form the basis for decision procedures,
are called completion procedures (cf. [55, 51, 50, 5, 17, 4]). For more on rewriting,
see [30, 36, 66].

2

More generally, the notion of canonicity can be articulated into three prop-
erties of increasing strength, that were defined in the abstract framework of [31,
12] as follows:

– A presentation is complete, if it affords at least one normal-form proof for
each theorem.

– A presentation is saturated, if it supports all normal-form proofs for all the-
orems.

– A presentation is canonical, if it is both saturated and contracted (in the
sense of containing no redundancies).

If minimal proofs are unique, complete and saturated coincide. For equational
theories, contracted means reduced. When a system is reduced but not saturated,
only complete, we will call it perfect. We shall see that for presentations of
conditional equations, reduced implies contracted, but the two notions remain
distinct.

A critical question is whether canonical, or perfect, presentations can be
finite – possibly characterized by some quantitative bound, and unique. Viewed
in this light, one purpose of studying these properties is to balance the strength
of the “saturated,” or “complete,” requirement with that of the “contracted”
requirement. On one hand, one wants saturation to be strong enough that a
saturated presentation – when finite – yields a decision procedure for validity in
the theory. On the other hand, one wants contraction to be as strong as possible,
to maximize the possibility that the canonical presentation turns out to be finite.
Furthermore, it is desirable that the canonical presentation be unique relative
to the chosen ordering.

The next section fixes notations and concepts. Sect. 3 considers the relation
of canonical propositional Horn systems to representations of Moore families
(intersection-closed sets). It is followed by an analysis of ground equational Horn
deduction. Sect. 5 summarizes various approaches to Horn-clause deduction from
the proof-ordering point of view. We end with a brief concluding section.

2 Background

Horn clauses, the subject of this study, are an important subclass of logical
formulæ.

2.1 Preliminaries

Let Σ = 〈X, F, P 〉 be a vocabulary, consisting of variables X , function (and
constant) symbols F , and predicate symbols P . (This paper is mainly concerned
with the ground case, where there are no variables X .) Let T be the set of atoms
over Σ. Identity of terms and atoms will be denoted =. The notation t = f [s]u
indicates that term s occurs in term or atom t at position u within context f ,
and Var(t) is the set of variables occurring in term or atom t. A context is a

3

term with a “hole” at some indicated position. Positions will be omitted from
the notation when immaterial.

A Horn clause
¬a1 ∨ · · · ∨ ¬an ∨ c ,

(n ≥ 0) is a clause (set of literals) with at most one positive literal, where ∨
(disjunction) is commutative (and idempotent) by nature, and a1, . . . , an, c are
atoms in T . Positive literals, sometimes called facts, and negative clauses of the
form ¬a1 ∨ · · · ∨ ¬an, called “queries” (or “goals”), are special cases of Horn
clauses. A Horn presentation is a set of non-negative Horn clauses.

It is customary to write a Horn clause as the implication or rule

a1 · · · an ⇒ c .

A Horn clause is trivial if the conclusion c is the same as one of the premises
ai. The same clause also has n contrapositive forms

a1 · · ·aj−1aj+1 · · · an¬c⇒ ¬aj ,

for 1 ≤ j ≤ n. Facts are written simply as is,

c ,

and queries as
a1 · · · an ⇒ false ,

or just
a1 · · · an ⇒ .

The main inference rules for Horn-theory reasoning are forward chaining and
backward chaining :

a1 · · ·an ⇒ c b1 · · · bmc⇒ d

a1 · · ·anb1 · · · bm ⇒ d

a1 · · · anc⇒ b1 · · · bm ⇒ c

a1 · · ·anb1 · · · bm ⇒
.

Another way to present Horn theories is as an “implicational” system (see
[10, 9]). An implicational system S is a binary relation S ⊆ P(T)× P(T), read
as a set of implications

a1 · · ·an ⇒ c1 · · · cm ,

for ai, cj ∈ T , with both sides understood as conjunctions. If all right hand
sides are singletons, S is a unary implicational system. Clearly, any non-query
(“definite”) Horn clause is such a unary implication and vice-versa, and any
non-unary implication can be decomposed into a set of m unary implications,
or, equivalently, Horn clauses, one for each ci. Empty sets correspond to “true”.
Conjunctions of facts are written just as

c1 · · · cm ,

4

instead of as ∅ ⇒ c1 . . . cm.
Since a propositional implication a1 · · · an ⇒ c1 · · · cm is equivalent to the

bi-implication a1 · · · anc1 · · · cm ⇔ a1 · · · an, again with both sides understood as
conjunctions, it can also be translated into a rewrite rule

a1 · · ·anc1 · · · cm → a1 · · · an ,

with juxtaposition standing for the associative-commutative-idempotent (ACI)
conjunction operator and the arrow → signifying here logical equivalence (see,
e.g., [25, 16]).

When dealing with theories with equality, we presume the underlying axioms
of equality (which are Horn), and use the predicate symbol ' (in P) symmetri-
cally: l ' r stands for both l ' r or r ' l. Viewing atoms as terms and phrasing
an atom r(t1, . . . , tn) as an equation r(t1, . . . , tn) ' true, where r is a predicate
symbol other than ', t1, . . . , tn are terms, and true is a new symbol, not in the
original vocabulary, any equational Horn clause can be written interchangeably
as a conditional equation,

p1 ' q1, · · · , pn ' qn ⇒ l ' r ,

or as an equational clause

p1 6' q1 ∨ · · · ∨ pn 6' qn ∨ l ' r ,

where p1, q1, . . . , pn, qn, l, r are terms, and p 6' q stands for ¬(p ' q).
A conjecture C ⇒ l ' r is valid in a theory with presentation S, where C is

some set (conjunction) of equations, if l ' r is valid in S ∪ C, or, equivalently,
S ∪ C ∪ {l 6' r} is unsatisfiable, where l 6' r is called the goal. A conjecture p1 '
q1 . . . pn ' qn is valid in S if S∪{p1 6' q1∨ . . .∨pn 6' qn} is unsatisfiable, in which
case p1 6' q1 ∨ . . . ∨ pn 6' qn is the goal.

The purely equational ground case (where all conditions are empty), the
propositional case (with rules in the form a1 ' true, . . . , an ' true ⇒ c ' true),
and the intermediate case a1 ' true, . . . , an ' true ⇒ l ' r (where a1, . . . , an, c

are propositional variables and l, r are ground terms), are all covered by the
general ground equational Horn presentation case.

2.2 Canonical Systems

In this paper, we apply the framework of [31, 12] to ground Horn proofs. Let A

be the set of all ground conditional equations and P the set of all ground Horn
proofs, over signature Σ. Formulæ A and proofs P are linked by two functions
Pm : P → P(A), that gives the premises in a proof, and Cl : P → A that gives
its conclusion. Both are extended to sets of proofs – termed justifications – in
the usual fashion. Proofs in P are ordered by two well-founded partial orderings:
a subproof relation � and a proof ordering ≥, which, for convenience, is assumed
to compare only proofs with the same conclusion.

5

In addition to standard inference rules of the form

A1 . . . An

B1 . . . Bm

that add inferred formulæ B1, . . . , Bm to the set of known theorems, which
already include the premises A1, . . . , An, we are interested in rules that delete or
simplify already-inferred theorems. We propose a “double-ruled inference rule”
of the form

A1 . . . An

B1 . . . Bm

meaning that the formulæ (Ai) above the rule are replaced by those below (Bj).
It is a deletion rule if the consequences are a proper subset of the premises;
otherwise, it is a simplification rule. The challenge is dealing with such rules,
without endangering completeness of the inference system.

Given a presentation S, the set of all proofs using premises of S is denoted
Pf (S) and defined by3

Pf (S)
!
= {p ∈ P : [p]Pm ⊆ S} .

A proof is trivial if it proves only itself ([p]Pm = {[p]Cl}) and has no subproofs
other than itself (p � q ⇒ p = q). A trivial proof of a ∈ A is denoted â. The
theory of S is denoted Th S and defined by

Th S
!
= [Pf (S)]Cl ,

that is, the conclusions of all proofs using any number of premises from S.
Three basic assumptions on � and ≥ are postulated (for all proofs p, q, r and

formulæ a):

1. Proofs use their premises:

a ∈ [p]Pm ⇒ p � â .

2. Subproofs do not use non-extant premises:

p � q ⇒ [p]Pm ⊇ [q]Pm .

3. Proof orderings are monotonic with respect to subproofs:4

p � q > r ⇒ ∃v ∈ Pf (([p]Pm ∪ [r]Pm)). p > v � r .

(Recall that p ≥ q ⇒ [p]Cl = [q]Cl .)
Since > is well-founded, there exist minimal proofs. The set of minimal proofs

in a given justification P is defined as

µP
!
= {p ∈ P : ¬∃q ∈ P. q < p} ,

3 We use
!

= for definitions.
4 This is weakened in [19].

6

while the normal-form proofs of a presentation S are the minimal proofs in the
theory of S, that is,

Nf (S)
!
= µPf (Th S) .

With these notions in place, the characterizations of presentations intro-
duced in Sect. 1 can be defined formally: The canonical presentation is the set
of premises of normal-form proofs, or

S] !
= [Nf (S)]Pm ,

and a presentation S is canonical if S = S].
By lifting the proof ordering to justifications and presentations, canonicity

can be characterized directly in terms of the ordering. We say that presentation
B is simpler than a logically equivalent presentation A, denoted A % B, when
B provides better proofs than does A, in the sense that

∀p ∈ Pf (A). ∃q ∈ Pf (B). p ≥ q .

Thus, canonicity is characterized in terms of this quasi-ordering, by proving that
the canonical presentation is the simplest, in other words, that A % A] [31, 12].

In addition to canonicity, a presentation S can be:

– contracted, if it is made of the premises of minimal proofs, or S =
[µPf (S)]Pm ;

– saturated, if its minimal proofs are exactly the normal-form proofs, or
µPf (S) = Nf (S); or

– complete, if its set of minimal proofs contains a normal-form proof for every
theorem, or Th S = [Pf (S) ∩Nf (S)]Cl .

A clause is redundant in a presentation, if adding it – or removing it – does
not affect minimal proofs, and a presentation is irredundant, if it does not contain
anything redundant. A presentation is contracted if and only if it is irredundant,
and canonical if and only if it is saturated and contracted [31, 12].

2.3 A Clausal Ordering

Modern theorem provers employ orderings to control and limit inference. Let
� be a complete simplification ordering (CSO) on atoms and terms over Σ, by
which we mean that the ordering is total (on ground terms), monotonic (with
respect to term structure), stable (with respect to substitutions), and includes
the subterm ordering, meaning that f [s] � s for any non-empty context f (hence,
� is well-founded [24]). See [30], for example, for basic definitions.

Various orderings on Horn clause proofs are possible. Suppose we express
atoms as equations and let t � true for all terms t over Σ. Literals may be
ordered by an ordering �L that measures an equation l ' r by the multiset
{{l, r}} and a disequation l 6' r by the multiset {{l, r, l, r}}, and compares such
multisets by the multiset extension [32] of �. It follows that l 6' r �L l ' r,

7

because {{l, r, l, r}} is a bigger multiset than is {{l, r}}, which is desirable so as to
allow l ' r to simplify l 6' r.

Given this ordering on literals, an ordering �C on clauses is obtained by
another multiset extension. An equational clause e of the form p1 ' q1, · · · , pn '
qn ⇒ l ' r, regarded as a multiset of literals, is measured by

M(e)
!
= {{{{p1, q1, p1, q1}}, . . . , {{pn, qn, pn, qn}}, {{l, r}}}}

and these multisets are compared by the multiset extension of �L. Under this
ordering, a clause C∨p 6' q∨ l ' r is smaller than a clause C ∨f [p] 6' f [q]∨ l ' r,
because the multiset M(C) ∪ {{{{p, q, p, q}}, {{l, r}}}} is smaller than the multiset
M(C) ∪ {{{{f [p], f [q], f [p], f [q]}}, {{l, r}}}}. Similarly, a clause C ∨ l ' r is smaller
than a clause C ∨ f [l] ' f [r], because the multiset M(C) ∪ {{{{l, r}}}} is smaller
than M(C) ∪ {{{{f [l], f [r]}}}}. A clause C ⇒ l ' r is smaller than a clause
B ⇒ l ' r, such that C (B, because the multiset M(C) ∪ {{{{l, r}}}} is smaller
than the multiset M(B) ∪ {{{{l, r}}}}.

Example 1. Let e1 be a ' b ⇒ c ' d and e2 be f(a) ' f(b) ⇒ c ' d with
a � b � c � d. Their measures are M(e1) = {{{{a, b, a, b}}, {{c, d}}}} and M(e2) =
{{{{f(a), f(b), f(a), f(b)}}, {{c, d}}}}, so e2 �C e1. ut

If S is a set of clauses, we write M(S) also for the multiset of their measures,
and �M for the multiset extension of �C . Let >P be the usual proof ordering
where proofs are compared by comparing the multisets of their premises: p >P q

if [p]Pm �M [q]Pm .

Example 2. Consider the equational theory {a ' b, b ' c, a ' c}. Different proof
orderings induce different canonical presentations.

a. If all proofs are minimal, the canonical saturated presentation is the whole
theory, while any pair of equations, like a ' b and b ' c, is sufficient to
form a complete presentation, because, in this example, the proof of a ' c

by transitivity from {a ' b, b ' c} is minimal. Since minimal proofs are not
unique, saturated and complete indeed differ.

b. Suppose a � b � c. If all “valley” proofs are minimal, the whole theory is
again the saturated presentation, while the only other complete presentation
is {a ' c, b ' c}, which gives a→ c← b as minimal proof of a ' b.

c. If a � b � c and the proof ordering is >P , then minimal proofs are unique.
The complete presentation {a ' c, b ' c} is also saturated. The proof of a ' b

is again a→ c← b, which is smaller than a→ b, since {{{{a, c}}, {{b, c}}}} ≺M

{{{{a, b}}}}.
d. If a#b and all valley proofs are minimal, a↔ b is not a minimal proof, and
{a ' c, b ' c} is both complete and saturated. (The notation s#t means
that s and t are incomparable, that is, s 6= t ∧ s 6� t ∧ t 6� s.)

e. On the other hand, if only trivial proofs are minimal, it is the whole theory
{a ' b, b ' c, a ' c} that is both saturated and complete. ut

8

3 Implicational Systems

An implicational system is a set of implications A⇒ B, whose antecedent A and
consequent B are conjunctions of distinct propositional variables. The notation
A⇒S B will be used to specify that A⇒ B ∈ S, for given implicational system
S.

Let V be a set of propositional variables. A subset X ⊆ V represents the
propositional interpretation that assigns true to all elements in X . Accordingly,
a set X is said to satisfy an implication A ⇒ B over V if either B ⊆ X or else
A 6⊆ X . Similarly, we say that X satisfies an implicational system S, or is a
model of S, denoted X |= S, if X satisfies all implications in S.

3.1 Moore Families

A Moore family on a given set V is a family F of subsets of V that contains V and
is closed under intersection [11]. Moore families are in one-to-one correspondence
with closure operators, where a closure operator on V is an operator ϕ : P(V)→
P(V) that is

– isotone, that is, X ⊆ X ′ implies ϕ(X) ⊆ ϕ(X ′),
– extensive, that is, X ⊆ ϕ(X), and
– idempotent, that is, ϕ(ϕ(X)) = ϕ(X).

The Moore family Fϕ associated with a given closure operator ϕ is the set of all
fixed points of ϕ:

Fϕ
!
= {X ⊆ V : X = ϕ(X)} .

The closure operator ϕF associated with a given Moore family F maps any
X ⊆ V to the least element of F that contains X :

ϕF (X)
!
= ∩{Y ∈ F : X ⊆ Y } .

The Moore family FS associated with a given implicational system S is the
family of the propositional models of S, in the sense given above:

FS
!
= {X ⊆ V : X |= S} .

Combining the notions of closure operator for a Moore family, and Moore family
associated with an implicational system, the closure operator ϕS for implica-
tional system S maps any X ⊆ V to the least model of S that satisfies X [10]:

ϕS(X)
!
= ∩{Y ⊆ V : Y ⊇ X ∧ Y |= S} .

Example 3. Let S be {a ⇒ b, ac ⇒ d, e ⇒ a}. Writing sets as strings, we have
FS = {∅, b, c, d, ab, bc, bd, cd, abd, abe, bcd, abcd, abde, abcde}, and ϕS(ae) = abe.

ut

9

As noted in Sect. 2, there is an obvious syntactic correspondence between
Horn presentations and implicational systems. At the semantic level, there is a
correspondence between Horn theories and Moore families, since Horn theories
are those theories whose models are closed under intersection, a fact due to Alfred
Horn [48, Lemma 7]. This result is rephrased in [9] in terms of Boolean functions
and Moore families: if a Horn function is defined as a Boolean function whose
conjunctive normal form is a conjunction of Horn clauses, a Boolean function is
Horn if and only if the set of its true points (equivalently, the set of its models)
is a Moore family.5

Different implicational systems describe the same Moore family, like different
presentations describe the same theory. Two implicational systems S and S ′ are
said to be equivalent if they have the same Moore family, FS = FS′ .

3.2 Direct Systems

Bertet and Nebut [10] studied the issue of finding an implicational system that
allows one to compute ϕS(X) efficiently for any X , and began with the notion
of direct implicational system. Here we investigate the relation between this
notion and that of saturated presentation with respect to an appropriately chosen
deduction mechanism.

Definition 1 (Directness [10, Def. 1]). An implicational system S is direct
if ϕS(X) = S(X), where

S(X)
!
= X ∪∪{B : A⇒S B ∧ A ⊆ X} .

In other words, a direct implicational system allows one to compute ϕS(X)
in one single round of forward chaining. In general, ϕS(X) = S∗(X), where

S0(X) = X

Si+1(X) = S(Si(X))

S∗(X) =
⋃

i
Si(X) .

Since S, X and V are all finite, S∗(X) = Sk(X) for the smallest k such that
Sk+1(X) = Sk(X).

Example 4. The implicational system S = {ac⇒ d, e⇒ a} is not direct. Indeed,
for X = ce, the computation of ϕS(X) = {acde} requires two rounds of forward
chaining, because only after a has been added by e ⇒ a, can d be added by
ac⇒ d. That is, S(X) = {ace} and ϕS(X) = S2(X) = S∗(X) = {acde}. ut

Generalizing this example, it is sufficient to have two implications A ⇒S B

and C ⇒S D such that A ⊆ X but C 6⊆ X for ϕS(X) to require more than
one iteration of forward chaining. If A ⊆ X , A⇒S B adds B in the first round.

5 For enumerations of Moore families and related structures, see [29] and Sequences
A102894–7 and A108798–801 in [64].

10

If, additionally, C ⊆ X ∪ B, then C ⇒S D adds D in a second round. In the
above example, A ⇒ B is e⇒ a and C ⇒ D is ac ⇒ d. The conditions A ⊆ X

and C ⊆ X ∪ B are equivalent to A ∪ (C \ B) ⊆ X , because C ⊆ X ∪ B means
that whatever is in C and not in B must be in X . Thus, to collapse the two
iterations of forward chaining into one, it is sufficient to add the implication
A∪ (C \B)⇒S D. In the example A∪ (C \B)⇒S D is ce⇒ d. This mechanism
can be defined in more abstract terms as the following inference rule:

Implicational overlap

A⇒ BO CO ⇒ D

AC ⇒ D
B ∩ C = ∅ 6= O

One inference step of this rule will be denoted `I . The condition O 6= ∅ is
included, because otherwise AC ⇒ D is subsumed by C ⇒ D. Also, if B ∩ C is
not empty, then an alternate inference is more general. Thus, directness can be
characterized as follows:

Definition 2 (Generated direct system [10, Def. 4]). Given an implica-
tional system S, the direct implicational system I(S) generated from S is the
smallest implicational system containing S and closed with respect to implica-
tional overlap.

A main theorem of [10] shows that indeed ϕS(X) = I(S)(X). What we call
“overlap” is called “exchange” in [9], where a system closed with respect to
implicational overlap is said to satisfy an “exchange condition.”

As we saw in Sect. 2, an implicational system can be rewritten as a unary
system or a set of Horn clauses, and vice-versa. Recalling that an implication
A⇒ B is equivalent to the bi-implication AB ⇔ B, and using juxtaposition for
ACI conjunction, we can view the implication as a rewrite rule AB → A, where
AB � A in any well-founded ordering with the subterm property. Accordingly,
we have the following:

Definition 3 (Associated rewrite system). The rewrite system RX associ-
ated to a set X ⊆ V of variables is RX = {x→ true : x ∈ X}. The rewrite sys-
tem RS associated with an implicational system S is RS = {AB → A : A⇒S B}.
Given S and X we can also form the rewrite system RS

X = RX ∪ RS.

Example 5. If S = {a⇒ b, ac⇒ d, e⇒ a}, then RS = {ab→ a, acd→ ac, ae→
e}. If X = ae, then RX = {a → true, e → true}. Thus, RS

X = {a → true, e →
true, ab→ a, acd→ ac, ae→ e}. ut

We show that there is a correspondence between implicational overlap and
the classical notion of overlap between monomials in Boolean rewriting [49, 16]:

Equational overlap

AO → B CO → D

M → N
A ∩ C = ∅ 6= O, M � N

11

where M and N are the normal-forms of BC and AD with respect to {AO →
B, CO → D}, and � is some ordering on sets of propositions (with the subterm
property).

One inference step of this rule will be denoted `E .
We observe the correspondence first on the implicational system of Exam-

ple 4:

Example 6. For S = {ac ⇒ d, e ⇒ a}, we have RS = {acd → ac, ae → e}, and
the overlap of the two rewrite rules gives ace ← acde → cde. Hence, the proof
ce ← ace← acde → cde yields the rewrite rule cde → ce, which corresponds to
the implication ce⇒ d generated by implicational overlap. ut

Lemma 1. If A⇒ B and C ⇒ D are two non-trivial Horn clauses (|B| = |D| =
1, B 6⊆ A, D 6⊆ C), and A ⇒ B, C ⇒ D `I E ⇒ D by implicational overlap,
then AB → A, CD → C `E DE → E by equational overlap, and vice-versa.
Furthermore, all other equational overlaps are trivial.

This result reflects the fact that implicational overlap is designed to produce a
direct system I(S), which, once fed with a set X , yields its image ϕI(S)(X) in
a single round of forward chaining. Hence, implicational overlap unfolds the for-
ward chaining in the implicational system. Since forward chaining is complete for
Horn logic, it is coherent to expect that the only non-trivial equational overlaps
are those corresponding to implicational overlaps.

Proof. (If direction.) Suppose A⇒ FO, OG ⇒ D `I AG ⇒ D by implicational
overlap, with O 6= ∅ = F ∩ G. The corresponding rewrite rules are AFO → A

and OGD → OG. These also overlap on O, yielding the equational overlap

AGD ← AFOGD → AFOG→ AG ,

which generates the rule AGD → AG, corresponding to the implication AG⇒ D

generated by the implicational overlap. (When D = FO, the rule could be
further simplified, and both sides would give the same normal form, AG. But,
since the implication is presumed non-trivial, we can safely assume that D does
not contain O.)
(Only if direction.) If AB → A, CD → C `E DE → E, the rewrite rules
AB → A and CD → C can overlap in four ways: B ∩ C 6= ∅, A ∩ D 6= ∅,
A ∩ C 6= ∅ and B ∩D 6= ∅, which we consider in order.

1. B ∩C = O 6= ∅: Let B = FO and C = OG, where F ∩G = ∅. Then, the two
rules AFO → A and OGD → OG overlap, to produce

AGD ← AFOGD → AFOG→ AG .

The corresponding implications A ⇒ B and C ⇒ D have the form A ⇒
FO and OG ⇒ D, which also overlap on O, and generate AG ⇒ D by
implicational overlap.

12

2. A ∩D = O 6= ∅: This case is symmetric to the previous one.
3. A∩C = O 6= ∅: Let A = FO and C = OG, so that the rules are FOB → FO

and OGD → OG, where F ∩ G = ∅. The resulting equational overlap is
trivial:

FOG← FOGD ← FBOGD → FBOG→ FOG .

4. B ∩ D = O 6= ∅: Let B = FO, D = OG and the rules be AFO → A and
COG→ C, where F ∩G = ∅. The equational overlap has the form

ACG← AFOCG→ AFC .

However, since the corresponding implications A ⇒ FO and C ⇒ OG are
Horn clauses, it must be that FO = O = OG is a singleton, or F = G = ∅.
It follows that ACG = AC = AFC, and the equational overlap is also trivial
in this case. ut

Following [12], we consider a (one-step) deduction mechanism ; to be a
binary relation over presentations. A deduction step Q ; Q∪Q′ is an expansion
provided Q′ ⊆ Th Q. A deduction step Q ∪ Q′ ; Q is a contraction provided
Q ∪ Q′ % Q. A sequence of deductions Q0 ; Q1 ; · · · is a derivation, whose

result, or limit, is the set of persisting formulæ: Q∞
!

= ∪j ∩i≥j Qi. If Aσ ` Bσ is
an instance of an ordinary inference rule A

B
, then Aσ ∪ C ; Aσ ∪ Bσ ∪ C is an

expansion, for any set C of formulæ. For example, implicational overlap is such
an ordinary inference rule. Let ;I be the corresponding deduction mechanism:
then, ;I steps are expansion steps. Since [51], a fundamental requirement of
derivations is fairness, doing all inferences that are needed to achieve the desired
degree of proof normalization. According to [12], a fair derivation generates a
complete set in the limit, while a uniformly fair derivation generates a saturated
limit. If we apply these concepts to implicational systems and the ;I deduction
mechanism, we can rephrase Definition 2 as follows:

Definition 4 (Generated direct system). Given an implicational system S,
the direct implicational system I(S) generated from S is the limit S∞ of any fair
derivation S = S0 ;I S1 ;I · · · .

When Aσ ` ∅ is an instance of a deletion rule A , which removes A, then

Aσ ∪ C ; C is a contraction, for any C. When Aσ ` Bσ is an instance of a
simplification inference A

B
, which replaces A by B, then Aσ ∪ C ; Bσ ∪ Cσ is

a contraction, for any C. Equational overlap combines expansion, in the form of
the generation of BC ↔ AD, with contraction – its normalization to M → N ,
where M � N . This sort of contraction applied to normalize a newly generated
formula, before it is inserted in the database, is called forward contraction. The
contraction applied to reduce an equation that was already established is called
backward contraction. Let ;E be the deduction mechanism of equational over-
lap: then, ;E features expansion and forward contraction. Lemma 1 yields the
following correspondence between deduction mechanisms:

Lemma 2. For all implicational systems S, S ;I S′ if and only if RS ;E RS′ .

13

Proof.

– If S ;I S′ then RS ;E RS′ follows from the if direction of Lemma 1.
– If RS ;E R′ then S ;I S′ and R′ = RS′ follows from the only-if direction

of Lemma 1.
ut

The next theorem shows that for fair derivations the process of completing
S with respect to implicational overlap, and turning the result into a rewrite
system, commutes with the process of translating S into the rewrite system RS ,
and then completing it with respect to equational overlap.

Theorem 1. For every implicational system S, and for all fair derivations S =
S0 ;I S1 ;I · · · and RS = R0 ;E R1 ;E · · · , we have

R(S∞) = (RS)∞ .

Proof.

(a) R(S∞) ⊆ (RS)∞: for any AB → A ∈ R(S∞), A ⇒ B ∈ S∞ by Definition 3;
then A⇒ B ∈ Sj for some j ≥ 0. Let j be the smallest such index. If j = 0, or
Sj = S, AB → A ∈ RS by Definition 3, and AB → A ∈ (RS)∞, because ;E

features no backward contraction. If j > 0, A⇒ B is generated at stage j by
implicational overlap. By Lemma 2 and by fairness of R0 ;E R1 ;E · · · ,
AB → A ∈ Rk for some k > 0. Then AB → A ∈ (RS)∞, since ;E features
no backward contraction.

(b) (RS)∞ ⊆ R(S∞): for any AB → A ∈ (RS)∞, AB → A ∈ Rj for some
j ≥ 0. Let j be the smallest such index. If j = 0, or Rj = RS , A ⇒
B ∈ S by Definition 3, and A⇒ B ∈ S∞, because ;I features no backward
contraction. Hence AB → A ∈ R(S∞). If j > 0, AB → A is generated at stage
j by equational overlap. By Lemma 2 and by fairness of S0 ;I S1 ;I · · · ,
A ⇒ B ∈ Sk for some k > 0. Then A ⇒ B ∈ S∞, since ;I features no
backward contraction, and AB → A ∈ R(S∞) by Definition 3. ut

Since the limit of the ;I -derivation is I(S), it follows that:

Corollary 1. For every implicational system S, and for all fair derivations S =
S0 ;I S1 ;I · · · and RS = R0 ;E R1 ;E · · · , we have

R(I(S)) = (RS)∞ .

3.3 Computing Minimal Models

The motivation for generating I(S) from S is to be able to compute, for any
subset X ⊆ V , its minimal S-model ϕS(X) in one round of forward chaining.
In other words, one envisions a two-stages process: in the first stage, S is sat-
urated with respect to implicational overlap to generate I(S); in the second
stage, forward chaining is applied to I(S)∪X to generate ϕI(S)(X) = ϕS(X). In

14

the rewrite-based framework, these two stages can be replaced by one. For any
X ⊆ V we can compute ϕS(X) = ϕI(S)(X), by giving as input to completion
the rewrite system RS

X and extracting the rules in the form x → true. For this
purpose, the deduction mechanism is enriched with contraction rules, as follows:

Simplification

AC → B C → D

AD → B C → D
AD � B

AC → B C → D

B → AD C → D
B � AD

B → AC C → D

B → AD C → D
,

where A can be empty, and

Deletion
A↔ A

,

which eliminates trivial equalities.

Let ;R denote the deduction mechanism that extends ;E with simplification
and deletion. Thus, in addition to the simplification applied as forward con-
traction within equational overlap, there is simplification applied as backward
contraction to any rule.

The following theorem shows that the completion of RS
X with respect to ;R

generates a limit that includes the least S-model of X :

Theorem 2. For all X ⊆ V , implicational systems S, and fair derivations
RS

X = R0 ;R R1 ;R · · · , if Y = ϕS(X) = ϕI(S)(X), then

RY ⊆ (RS
X)∞ .

Proof. By Definition 3, RY = {x→ true : x ∈ Y }. The proof is by induction on
the construction of Y = ϕS(X).
Base case: If x ∈ Y because x ∈ X , then x → true ∈ RX , x → true ∈ RS

X

and x → true ∈ (RS
X)∞, since a rule in the form x → true is irreducible by

simplification.
Inductive case: If x ∈ Y because for some A ⇒S B, B = x and A ⊆ Y , then
AB → A ∈ RS and AB → A ∈ RS

X . By the induction hypothesis, A ⊆ Y implies
that, for all z ∈ A, z ∈ Y and z → true ∈ (RS

X)∞. Let j > 0 be the smallest index
in the derivation R0 ;E R1 ;E · · · such that for all z ∈ A, z → true ∈ Rj .
Then there is an i > j such that x → true ∈ Ri, because the rules z → true
simplify AB → A to x → true. It follows that x → true ∈ (RS

X)∞, since a rule
in the form x→ true is irreducible by simplification. ut

Then, the least S-model of X can be extracted from the saturated set:

15

Corollary 2. For all X ⊆ V , implicational systems S, and fair derivations
RS

X = R0 ;R R1 ;R · · · , if Y = ϕS(X) = ϕI(S)(X), then

RY = {x→ true : x→ true ∈ (RS
X)∞} .

Proof. If x → true ∈ (RS
X)∞, then x ∈ RY by the soundness of equational

overlap and simplification. The other direction was established in Theorem 2.
ut

Example 7. Let S = {ac⇒ d, e⇒ a, bd⇒ f} and X = ce. Then Y = ϕS(X) =
acde, and RY = {a → true, c → true, d → true, e → true}. On the other hand,
for RS = {acd → ac, ae → e, bdf → bd} and RX = {c → true, e → true},
completion gives

(
RS

X

)
∞
{c → true, e → true, a → true, d → true, bf → b},

where a→ true is generated by simplification of ae→ e with respect to e→ true,
d→ true is generated by simplification of acd→ ac with respect to c→ true and
a→ true, and bf → b is generated by simplification of bdf → bd with respect to
d→ true. So,

(
RS

X

)
∞

includes RY , which is made exactly of the rules in the form

x → true of
(
RS

X

)
∞

. The direct system I(S) contains the implication ce ⇒ d,
generated by implicational overlap from ac ⇒ d and e ⇒ a. The corresponding
equational overlap of acd → ac and ae → e gives e ← ace ← acde → cde

and hence generates the rule cde → ce. However, this rule is redundant in the
presence of {c→ true, e→ true, d→ true} and simplification. ut

3.4 Direct-Optimal Systems

Bertet and Nebut [10] refined the notion of direct implicational system into that
of a direct-optimal implicational system. In Sect. 3.2 we found that the direct
implicational system corresponds to the rewrite system saturated with respect
to equational overlap. Here and in the next section, we investigate whether there
may be a similar correspondence between the direct-optimal implicational sys-
tem and the canonical rewrite system with respect to equational overlap and
contraction.

Optimality is defined with respect to a measure |S | that counts the sum of
the number of occurrences of symbols on each of the two sides of each implication
in a system S:

Definition 5 (Optimality [10, Sect. 2]). An implicational system S is opti-
mal if, for all equivalent implicational system S ′, |S | ≤ |S′ | where

|S |
!
=

∑

A⇒SB

|A|+ |B| ,

where |A| is the cardinality of set A.

From an implicational system S, one can generate an equivalent implica-
tional system that is both direct and optimal, denoted D(S), with the following
necessary and sufficient properties (cf. [10, Thm. 2]):

16

– extensiveness: for all A⇒D(S) B, A ∩ B = ∅;
– isotony: for all A⇒D(S) B and C ⇒D(S) D, if C ⊂ A, then B ∩D = ∅;
– premise: for all A⇒D(S) B and A⇒D(S) B′, B = B′;
– non-empty conclusion: for all A⇒D(S) B, B 6= ∅.

This leads to the following characterization:

Definition 6 (Direct-optimal system [10, Def. 5]). Given a direct system
S, the direct-optimal system D(S) generated from S contains precisely the im-
plications

A⇒∪{B : A⇒S B} \ {C : D ⇒S C ∧D ⊂ A} \A ,

for each set A of propositions – provided the conclusion is non-empty.

From the above four properties, we can define an optimization procedure,
applying – in order – the following rules:

Premise
A⇒ B, A⇒ C

A⇒ BC
,

Isotony

A⇒ B, AD ⇒ BE

A⇒ B, AD ⇒ E
,

Extensiveness
AC ⇒ BC

AC ⇒ B
,

Definiteness

A⇒ ∅
.

The first rule merges all rules with the same antecedent A into one and imple-
ments the premise property. The second rule removes from the consequent thus
generated those subsets B that are already implied by subsets A of AD, to en-
force isotony. The third rule makes sure that antecedents C do not themselves
appear in the consequent to enforce extensiveness. Finally, implications with
empty consequent are eliminated. This latter rule is called definiteness, because
it eliminates negative clauses, which, for Horn theories, represent queries and
are not “definite” clauses.

Clearly, the changes wrought by the optimization rules do not affect the
theory. Application of this optimization to the direct implicational system I(S)
yields the direct-optimal system D(S) of S.

The following example shows that this notion of optimization does not cor-
respond to elimination of redundancies by contraction in completion:

17

Example 8. Let S = {a ⇒ b, ac ⇒ d, e ⇒ a}. Then, I(S) = {a ⇒ b, ac ⇒
d, e ⇒ a, e ⇒ b, ce ⇒ d}, where e ⇒ b is generated by implicational overlap of
e ⇒ a and a ⇒ b, and ce ⇒ d is generated by implicational overlap of e ⇒ a

and ac ⇒ d. Next, optimization replaces e ⇒ a and e ⇒ b by e ⇒ ab, so that
D(S) = {a ⇒ b, ac ⇒ d, e ⇒ ab, ce ⇒ d}. If we consider the rewriting side,
we have RS = {ab → a, acd → ac, ae → e}. Equational overlap of ae → e

and ab → a generates be → e, and equational overlap of ae → e and acd →
ac generates cde → ce, corresponding to the two implicational overlaps. Thus,
(RS)∞ = {ab→ a, acd→ ac, ae→ e, be→ e, cde→ ce}. The rule corresponding
to e ⇒ ab, namely abe → e, would be redundant if added to (RS)∞, because
it would be reduced to a trivial equivalence by ae → e and be → e. Thus, the
optimization consisting of replacing e ⇒ a and e ⇒ b by e ⇒ ab does not
correspond to a rewriting inference. ut

The reason for this discrepancy is the different choice of ordering. The proce-
dure of [10] optimizes the overall size of the system. For the above example, we
have |{e⇒ ab} | = 3 < 4 = |{e⇒ a, e⇒ b} |. The corresponding proof ordering
measures a proof of a from a set X and an implicational system S by a multiset
of pairs 〈|B|, #BS〉, for each B ⇒S aC such that B ⊆ X , where #BS is the
number of implications in S with antecedent B. A proof of a from X = {e}
and {e ⇒ ab} will have measure {{〈1, 1〉}}, which is smaller than the measure
{{〈1, 2〉, 〈1, 2〉}} of a proof of a from X = {e} and {e⇒ a, e⇒ b}.

Completion, on the other hand, optimizes with respect to a complete sim-
plification ordering �. For {abe → e} and {ae → e, be → e}, we have
ae ≺ abe and be ≺ abe by the subterm property of �, so {{ae, e}} ≺L

{{abe, e}} and {{be, e}} ≺L {{abe, e}} in the multiset extension �L of �, and
{{{{ae, e}}, {{be, e}}}} ≺C {{{{abe, e}}}} in the multiset extension �C of �L. In-
deed, from a rewriting point of view, it is better to have {ae→ e, be→ e} than
{abe→ e}, since rules with smaller left hand side are more applicable.

3.5 Rewrite Optimality

It is apparent that the differences between direct optimality and completion
arise because of the application of the premise rule. Accordingly, we propose
an alternative definition of optimality, one that does not require the premise
property, because symbols in repeated antecedents are counted only once:

Definition 7 (Rewrite optimality). An implicational system S is rewrite-
optimal if ‖S ‖ ≤ ‖S′ ‖ for all equivalent implicational system S ′, where the
measure ‖S ‖ is defined by:

‖S ‖
!
= |Ante(S)|+ |Cons(S)| ,

for Ante(S)
!

= {c : c ∈ A, A⇒S B}, the set of symbols occurring in antecedents,

and Cons(S)
!

= {{c : c ∈ B, A ⇒S B}}, the multiset of symbols occurring in
consequents.

18

Symbols in antecedents are counted only once, because Ante(S) is defined as
a set, hence without repetitions. Symbols in consequents are counted as many
times as they appear, since Cons(S) is defined as a multiset.

Rewrite optimality appears to be an appropriate choice to work with Horn
clauses, because the premise property conflicts with the decomposition of non-
unary implications into Horn clauses. Indeed, if S is a non-unary implicational
system, and SH is the equivalent Horn system obtained by decomposing non-
unary implications, the application of the premise rule to SH undoes the decom-
position.

Example 9. Applying rewrite optimality to S = {a ⇒ b, ac ⇒ d, e ⇒ a} of
Example 8, we have ‖{e ⇒ ab} ‖ = 3 = ‖{e ⇒ a, e ⇒ b} ‖, so that replacing
{e ⇒ a, e ⇒ b} by {e ⇒ ab} is no longer justified. Thus, D(S) = I(S) = {a ⇒
b, ac ⇒ d, e ⇒ a, e ⇒ b, ce ⇒ d}, and the rewrite system associated with D(S)
is (RS)∞ = {ab → a, acd → ac, ae → e, be → e, cde → ce}. A proof ordering
corresponding to rewrite optimality would measure a proof of a from a set X and
an implicational system S by the set of the cardinalities |B|, for each B ⇒S aC

such that B ⊆ X . Accordingly, a proof of a from X = {e} and {e⇒ ab} will have
measure {{1}}, which is the same as the measure of a proof of a from X = {e}
and {e⇒ a, e⇒ b}. ut

Let ;O denote the deduction mechanism that includes implicational overlap
and the optimization rules except premise, namely isotony, extensiveness and
definiteness. We deem canonical, and denote by O(S), the implicational sys-
tem obtained from S by closure with respect to implicational overlap, isotony,
extensiveness and definiteness:

Definition 8 (Canonical system). Given an implicational system S, the
canonical implicational system O(S) generated from S is the limit S∞ of any
fair derivation S = S0 ;O S1 ;O · · · .

The following lemma shows that every inference by ;O is covered by an
inference in ;R:

Lemma 3. For all implicational systems S, if S ;O S′, then RS ;R RS′ .

Proof. We consider four cases, corresponding to the four inference rules in ;O :

1. Implicational overlap: If S ;O S′ by an implicational overlap step, then
RS ;R RS′ by equational overlap, by Lemma 2.

2. Isotony: For an application of this rule, S = S ′′ ∪ {A⇒ B, AD ⇒ BE} and
S′ = S′′ ∪ {A ⇒ B, AD ⇒ E}. Then, RS = RS′′ ∪ {AB → A, ADBE →
AD}. Simplification applies to RS using AB → A to rewrite ADBE → AD

to ADE → AD, yielding RS′′ ∪ {AB → A, ADE → AD} = RS′ .
3. Extensiveness: When this rule applies, S = S ′′ ∪ {AC ⇒ BC} and S′ =

S′′∪{AC ⇒ B}. Then, RS = RS′′ ∪{ACBC → AC}. By mere idempotence
of juxtaposition, RS = RS′′ ∪ {ABC → AC} = RS′ .

19

4. Definiteness: If S = S′ ∪ {A ⇒ ∅}, then RS = RS′ ∪ {A ↔ A} and an
application of deletion eliminates the trivial equation, yielding RS′ . ut

However, the other direction of this lemma does not hold. Although every
equational overlap is covered by an implicational overlap and deletions corre-
sponds to applications of the definiteness rules, there are simplifications by ;R

that do not correspond to inferences in ;O :

Example 10. Assume that the implicational system S includes {de⇒ b, b⇒ d}.
Accordingly, RS contains {deb→ de, bd→ b}. A simplification inference applies
bd→ b to reduce deb→ de to be↔ de, which is oriented into be→ de, if b � d,
and into de → be, if d � b. (Were ;R equipped with a cancellation inference
rule, be ↔ de could be rewritten to b ↔ d, whence b → d or d → b.) The
deduction mechanism ;O can apply implicational overlap to de⇒ b and b⇒ d

to generate de⇒ d. However, de⇒ d is reduced to de⇒ ∅ by the extensiveness
rule, and de⇒ ∅ is deleted by the definiteness rule. Thus, ;O does not generate
anything that corresponds to be↔ de. ut

This example can be generalized to provide a simple analysis of simplification
steps, one that shows which steps correspond to ;O-inferences and which do
not. Assume we have two rewrite rules AB → A and CD → C, corresponding
to non-trivial Horn clauses (|B| = 1, B 6⊆ A, |D| = 1, D 6⊆ C), and such that
CD → C simplifies AB → A. We distinguish three cases:

1. In the first one, CD appears in AB because CD appears in A. In other
words, A = CDE for some E. Then, the simplification step is

CDEB → CDE, CD → C

CEB → CE, CD → C

(where simplification is actually applied to both sides). The corresponding
implications are A ⇒ B and C ⇒ D. Since A ⇒ B is CDE ⇒ B, implica-
tional overlap applies to generate the implication CE ⇒ B that corresponds
to CEB → CE:

C ⇒ D, CDE ⇒ B

CE ⇒ B
.

The isotony rule applied to CE ⇒ B and CDE ⇒ B reduces the latter to
CDE ⇒ ∅, which is then deleted by the definiteness rule. Thus, a combina-
tion of implicational overlap, isotony and definiteness simulates the effects
of simplification.

2. In the second case, CD appears in AB because C appears in A, that is,
A = CE for some E, and D = B. Then, the simplification step is

CEB → CE, CB → C

CE ↔ CE, CB → C
,

and there is an isotony inference

C ⇒ B, CE ⇒ B

C ⇒ B, CE ⇒ ∅
,

20

which generates the trivial implication CE ⇒ ∅ corresponding to the trivial
equation CE ↔ CE. Both get deleted by definiteness and deletion, respec-
tively.

3. The third case is the generalization of Example 10: CD appears in AB

because D appears in A, and C is made of B and some F that also appears
in A, that is, A = DEF for some E and F , and C = BF . The simplification
step is

DEFB → DEF, BFD → BF

BFE ↔ DEF, BFD → BF
.

Implicational overlap applies

DEF ⇒ B, BF ⇒ D

DEF ⇒ D

to generate an implication that is first reduced by extensiveness to DEF ⇒ ∅
and then eliminated by definiteness. Thus, nothing corresponding to BFE ↔
DEF gets generated.

It follows that whatever is generated by ;O is generated by ;R, but may
become redundant eventually:

Theorem 3. For every implicational system S, for all fair derivations S =
S0 ;O S1 ;O · · · and RS = R0 ;R R1 ;R · · · , for all FG → F ∈ R(S∞),
either FG→ F ∈ (RS)∞ or FG→ F is redundant in (RS)∞.

Proof. For all FG → F ∈ R(S∞), F ⇒ G ∈ S∞ by Definition 3, and F ⇒
G ∈ Sj for some j ≥ 0. Let j be the smallest such index. If j = 0, or Sj = S,
FG → F ∈ RS = R0 by Definition 3. If j > 0, F ⇒ G was generated by
an application of implicational overlap, the isotony rule or extensiveness. By
Lemma 3 and the fairness of the ;R-derivation, FG→ F ∈ Rk for some k > 0.
If FG→ F persists, then FG→ F ∈ (RS)∞. Otherwise, FG→ F gets rewritten
by simplification and is therefore redundant in (RS)∞. ut

Since the limit of the ;O-derivation is O(S), it follows that:

Corollary 3. For every implicational system S, for all fair derivations S =
S0 ;O S1 ;O · · · and RS = R0 ;R R1 ;R · · · , and for all FG→ F ∈ RO(S),
either FG→ F ∈ (RS)∞ or FG→ F is redundant in (RS)∞.

4 Conditional Rewrite Systems

When the conditions in conditional equations are of bounded complexity, it is
feasible to use the conditional equation for simplification. It may also be possible
to “reduce” overly-complex conditions, without affecting the equality relations.

21

4.1 Decreasing Systems

Following [27], a (ground) conditional equation p1 ' q1, · · · , pn ' qn ⇒ l '
r is called decreasing if l � r, p1, q1, . . . , pn, qn, and a conditional equation is
decreasing if all its ground instances are. A decreasing inference is an application
of the following inference rule:

C ⇒ l ' r w1 . . . wn

C \ {w1, . . . wn} ⇒ f [l] ' f [r]
f [l] ' f [r] �C C

where f is any context and w1 . . . wn are equations. If C \ {w1, . . . wn} = ∅, an
equation is deduced; otherwise, a conditional equation is deduced, where those
conditions that are not discharged remain part of the conclusion. Condition
f [l] ' f [r] �C C characterizes the inference as decreasing. Since � is a simpli-
fication ordering and therefore has the subterm property, f [l] ' f [r] �C l ' r

also holds. Thus, f [l] ' f [r] �C (C ⇒ l ' r) follows. On the other hand, the
subproofs of the wi may contain larger premises.

A notion of depth of a proof was used to define notions of normal-form proof
for Horn theories (cf. Sect. 5). The depth of a decreasing inference is 0 if f [l] =
f [r] (a trivial equation is deduced) or n = 0 (no subproofs). Otherwise, it is 1.
The depth of a proof is the sum of the depth of its inferences, i.e., the number
of non-trivial inferences where a conditional equation is applied and some if its
conditions are discharged. Thus, purely equational proofs have depth 0, because
they do not have conditions.

Definition 9 (Equivalence). Two terms s and t are S-equivalent, written
s ≡S t, if there is a proof of s ' t in S by decreasing inferences.

We can use minimal elements of S-equivalence classes as their representatives:

Definition 10 (Normal form). The S-normal form of a term t is the �-
minimal element of its S-equivalence class.

By the same token, a term t is in normal form with respect to S, if it is its
S-normal form.

4.2 Reduced Systems

Given a set S of conditional equations, we are interested in a reduced version of
S. Computing a reduced system involves deletion of trivial conditional equations,
subsumption and simplification, as defined by the following inference rules:

Deletion
C ⇒ r ' r C, l ' r ⇒ l ' r

Subsumption
C, D ⇒ u[l] ' u[r] C ⇒ l ' r

C ⇒ l ' r

22

Simplification

C, p ' q ⇒ l[p] ' r

C, p ' q ⇒ l[q] ' r
p � q

C, p ' q, u[p] ' v ⇒ l ' r

C, p ' q, u[q] ' v ⇒ l ' r
p � q

C, D ⇒ l[u] ' r C ⇒ u ' v

CD ⇒ l[v] ' r C ⇒ u ' v
u � v ,

where the first two simplification rules use a condition to simplify the conse-
quence or another condition of the same conditional equation, while the third
one applies a conditional equation C ⇒ u ' v to simplify another conditional
equation whose conditions include C. Inferences shown on the left hand side of
' apply also to the right hand side, since ' is symmetric.

These inference rules produce a reduced system according to the following
definitions:

Definition 11 (S-reduced). Let S = S ′] {e} be a presentation, where e =
(C ⇒ l ' r) is a conditional equation, C = {pi ' qi}ni=1, and, for convenience,
l � r and pi � qi, for all i, 1 ≤ i ≤ n. Then, e is S-reduced, if

1. e is not trivial,
2. no conditional equation in S ′ subsumes e,
3. l is in (S′ ∪ C)-normal-form,
4. r is in (S ∪ C)-normal-form,
5. for all i, 1 ≤ i ≤ n,

(a) pi is in (S′ ∪ (C \ {pi ' qi}))-normal-form and
(b) qi is in (S′ ∪ C)-normal-form.

The difference between Item 3 and Item 4 is designed to prevent C ⇒ l ' r

from simplifying itself. In Item 5, a condition p ' q ∈ C is normalized also with
respect to the other equalities in C, because all equalities in C must be true to
apply a conditional equation e. Thus, the notion of reducedness incorporates the
notion of reduction with respect to a context as in the conditional contextual
rewriting proposed by Zhang [68]. The difference between Item 5a and Item 5b
is meant to prevent pi ' qi from simplifying itself. Thus, we can safely define
the following:

Definition 12 (Self-reduced). A conditional equation e is self-reduced, if it
is {e}-reduced. The self-reduced form of e is denoted e[.

Example 11. For S = {e1, e2}, where e1 and e2 are as in Example 1, both e1

and e2 are S-reduced. ut

Definition 13 (Reduced). A presentation S is reduced, if all its elements are
S-reduced.

Definition 14 (Perfect). A presentation S is perfect, if it is complete and
reduced.

23

Example 12. Let S = {e1, e2}, where e1 is a ' b⇒ f(a) ' c and e2 is a ' b ⇒
f(b) ' c}, with f > a > b > c. The presentation S is not reduced, because clause
e1 is not. Indeed, the normal form of f(a) with respect to (S \ {e1}) ∪ {a ' b}
is c, and the reduced form of e1 is the trivial clause a ' b⇒ c ' c. Clause e2 is
reduced. ut

Proposition 1. If S is reduced, then it is contracted.

Proof. Assume that S is not contracted. Then, there exists an e ∈ S, such that
e 6∈ [µPf (S)]Pm , or, if e ∈ [p]Pm , then p 6∈ µPf (S). For each such p, there is
a q ∈ µPf (S), such that p > q. Proof p and premise e must contain a term
that is not in S-normal form, hence e is not in S-reduced form, and S is not
reduced. ut

On the other hand, a presentation can be contracted but not reduced, as
shown in the following example:

Example 13. If a > b > c, neither a ' b ⇒ b ' c nor a ' b ⇒ a ' c is
decreasing. Let S1 = {a ' b ⇒ b ' c}, S2 = {a ' b ⇒ a ' c}, and S3 =
{a ' b ⇒ b ' c, a ' b ⇒ a ' c} be (equivalent) presentations. However, S1

is reduced, whereas S2 is not, since the S2-reduced form of a ' b ⇒ a ' c is
a ' b ⇒ b ' c. Neither is S3 reduced, although it is contracted. Indeed, while
a ' b⇒ b ' c is S3-reduced, the S3-reduced form of a ' b⇒ a ' c is the trivial
clause a ' c⇒ a ' c. ut

Unlike the ground equational case, where contracted and canonical collapse
to reduced, because all inference consists of rewriting, in the conditional case
contracted and reduced are different (e.g., S3 in Example 13). Furthermore,
decreasing simplification is “incomplete” with respect to Definition 11, because
non-reduced presentations may not be reducible by decreasing simplification,
because the clauses are not decreasing (S2 and S3 in Example 13).

Definition 15 (Normal-form proof). A conditional equation e has a normal-
form proof in presentation S, if the S-reduced form of e[is subsumed by a
conditional equation in S.

Example 14. Consider again the three presentations of Example 13, e1 = a '
b ⇒ a ' c and e2 = a ' b ⇒ b ' c. We have e1

[= a ' b ⇒ b ' c = e2
[.

Thus, both S1 and S3 are complete (and saturated), because they contain a '
b⇒ b ' c. On the other hand, S2 does not, and therefore it is not complete. In
summary, S1 is perfect (reduced and complete), S3 is canonical (contracted and
saturated), whereas S2 is neither. ut

Thus, also canonical and perfect differ in the conditional case.

Theorem 4. If S is canonical, then S subsumes the S-reduced form of every
theorem.

This follows from the definitions.

24

5 Horn Normal Forms

Since Th S is defined based on proofs (cf. Section 2.2), the choice of normal-form
proofs is intertwined with the choice of the deduction mechanism that generates
the proofs. This double choice is guided by the purpose of ensuring that S]

forms the basis for a decision procedure. To achieve decidability, the notions
of normal-form proofs aim at minimizing non-deterministic choice-points that
require search. Then, Horn proofs may have the following qualities:

– Linear : in linear resolution proofs at each step a center clause is resolved
with a side clause, to generate the next center clause (see, for instance, the
book by Chang and Lee [21]). The first center clause, or top clause, is the
goal given by the problem. Linearity eliminates one choice point, because
the main premise of the next step must be whatever was generated by the
previous step.

– Linear input : the choice of side clause is restricted to input clauses [21].
– Reducing : a linear proof is reducing if each center clause is smaller than its

predecessor in the ordering �C – this implies termination [17].
– Unit-resulting : each step must generate a unit clause; thus, all literals but

one must be resolved away, which eliminates the choice of literal in the center
clause, but may require multiple side clauses (traditionally called satellites
or electrons as in the unit-resulting resolution of McCharen, Overbeek and
Wos [60]).

– Confluent : whatever choices are left, such as choice of side premise(s) or
choice of subterm, are irrelevant for finding or not finding a proof, which
means they will never need to be undone by backtracking.

Valley proofs for purely equational theories satisfy all these properties, some
vacuously (e.g. unit-resulting). For Horn theories, different choices of normal-
form proofs yield different requirements on canonical or saturated presentations
and on the completion procedures that generate them at the limit.

5.1 Trivial Proofs

If trivial proofs are assumed to be normal-form proofs, closure with respect
to forward chaining gives the canonical presentation. Canonical, saturated and
complete coincide. Given a Horn presentation S, S] is made of all ground facts
that follow from S and the axioms of equality by forward chaining. In other
words, S] is the least Herbrand model of S, and, equivalently, the least fixed-
point of the mapping associated to program S in the fixed point semantics of
logic programming (see the aforementioned surveys [1, 47] or Lloyd’s book [58]).

Existence of the least Herbrand model is a consequence of the defining prop-
erty of Horn theories, namely closure of the family of models with respect to
intersection. This is also the basis upon which to draw a correspondence be-
tween Horn clauses with unary predicate symbols and certain tree automata,
called two-way alternating tree automata (cf. [22, Sec. 7.6.3]). Tree automata are

25

automata that accept trees, or, equivalently, terms. Given a Horn presentation
S, the predicate symbols in S are the states of the automaton. As usual, a subset
of states is defined to be final. Then, the essence of the correspondence is that a
ground term t is accepted by the automaton if the atom r(t) is in S] and r is fi-
nal. The deduction mechanism for computing the accepted terms is still forward
chaining. It is sufficient to have unary predicate symbols, because the notion of
being accepted applies to one term at a time; this restriction is advantageous
because many properties in the monadic fragment are decidable. For the class
of two-way alternating tree automata, clauses are further restricted to have one
of the following forms:

1. a1(x1), . . . , an(xn) ⇒ c(u), where x1, . . . , xn are (not necessarily distinct)
variables, u is a linear, non-variable term, and x1, . . . , xn ∈ Var(u);

2. a(u)⇒ c(x), where u is a linear term and x is a variable; and
3. a1(x), . . . , an(x)⇒ c(x).

We refer the interested reader to [22] for more details and results.

5.2 Ground-Preserving Linear Input Proofs

According to Kounalis and Rusinowitch [56], normal-form proofs for Horn the-
ories with equality are linear input proofs by ordered resolution and ordered
paramodulation, where only maximal literals are resolved upon, and only max-
imal sides of maximal literals are paramodulated into and from. Furthermore,
all side clauses p1 ' q1, · · · , pn ' qn ⇒ l ' r must be ground-preserving:
Var(pi ' qi) ⊆ Var(l ' r), for all i, 1 ≤ i ≤ n, and either l � r or r � l,
or Var(l) = Var(r). A conjecture is a conjunction ∀x̄ u1 ' v1, . . . , uk ' vk,
whose negation is a ground (Skolemized) negative clause ũ1 6' ṽ1 ∨ · · · ∨ ũk 6' ṽk.
If all side clauses are ground-preserving and the top clause is ground, all cen-
ter clauses will also be ground. This, together with the ordering restrictions on
resolution and paramodulation and the assumption that the ordering is a CSO
(total on ground terms, literals and clauses), imply that every center clause is
smaller than its parent center clause, so that proofs are reducing. Therefore, a
finite presentation that features such a normal-form proof for every conjunction
of positive literals is a decision procedure. The Horn completion procedure of [56],
with ordered resolution, ordered paramodulation, simplification by conditional
equations, and subsumption, generates at the limit a saturated presentation,
which is such a decision procedure, if it is finite and all its clauses are ground-
preserving.

5.3 Linear Input Unit-Resulting Proofs

An approach for Horn logic without equality was studied by Baumgartner in his
book on theory reasoning [8]. Here normal-form proofs of conjunctions of positive
literals are linear input unit-resulting (UR) resolution proofs. A completion pro-
cedure, called Linearizing Completion, applies selected resolution inferences and

26

additions of contrapositives to compile the given presentation into one that offers
normal-form proofs for all conjunctions of positive literals. The name “Lineariz-
ing” evokes the transformation of UR-resolution proofs (not in normal-form) into
linear UR-resolution proofs (in normal-form). If finite, the resulting saturated
presentation is used as a decision procedure for the Horn theory in the context
of partial theory model elimination. As in the partial theory resolution of Stickel
[65], a decision procedure that generates conditions for unsatisfiability of a set of
literals, as opposed to deciding unsatisfiability, suffices. The saturated presenta-
tion generated by Linearizing Completion is a decision procedure in this weaker
sense.

5.4 Valley Proofs

If the notion of normal-form proof of the unconditional case is generalized to
the conditional case, normal-form proofs are valley proofs of depth 0, where all
conditions have been solved away. The Maximal Unit Strategy of [28] achieves
this effect by restricting expansion inferences to have at least a unit premise: it
applies superposition to unconditional equations and ordered paramodulation to
paramodulate unconditional equations into maximal terms of conditions. At the
limit, the saturated set contains all positive unit theorems, or, equivalently, all
conditional equations are redundant [17], so that there is a normal-form proof
for every theorem. However, such a presentation will be infinite in most cases,
so that the Maximal Unit Strategy is better seen as a semi-decision procedure
for forward-reasoning theorem proving, rather than as a generator of decision
procedures [27].

5.5 Nested Valley Proofs

In [27, 28], a normal-form proof of s ' t is a valley proof, in which each subproof
is also in normal form, and each term in a subproof is smaller than the greater
of s and t. To enforce the latter constraint, only decreasing instances of con-
ditional equations are applied. The Decreasing Strategy of [27, 28], simplifies by
decreasing instances of conditional equations, and applies ordered paramodula-
tion/superposition of decreasing instances, to generate at the limit a saturated
presentation that features normal-form proofs for all theorems.

If we compare this notion of normal-form proof with those considered previ-
ously, we observe that with respect to the conditional valley proofs of null depth
of Section 5.4, giving up the property that normal-form proofs have depth 0,
means renouncing linearity. With respect to the ground-preserving linear input
proofs of Section 5.2, one notes that a conditional equation that is not ground-
preserving (like p1 ' q1, · · · , pn ' qn ⇒ l ' r such that r, pi or qi, for some i,
1 ≤ i ≤ n, contain a variable that does not appear in l) cannot be decreasing.
However, the motivations for the two conditions are different. The motivation
for the ground-preserving property is to ensure that proofs are reducing. The
motivation for decreasingness, which improved upon previous suggestions in [53,

27

52], is to capture exactly the finiteness of recursive evaluation of terms. An-
other significant difference between decreasingness, on one hand, and earlier
requirements, on the other, including the ground-preserving condition and the
requirements studied by Kaplan and Rémy [54] or Ganzinger [44], is that they
are static properties of conditional rewrite rules or equations, whereas decreas-
ingness is tested dynamically on the applied instances. This difference resembles
the one between Knuth-Bendix completion [55], where all equations must be
oriented, and Unfailing, or Ordered, Completion, that applies oriented instances
of unoriented equations [18, 57, 50, 5, 4, 17].

5.6 Quasi-Horn Theories

A generalization of the approach of Sect. 5.2 was given by Bachmair and
Ganzinger in [6], by considering quasi-Horn clauses, and replacing the ground-
preserving property with the universally reductive property.

A clause C is quasi-Horn if it has at most one positive equational literal,
and, if there is one – say l ' r – then (l ' r)σ is maximal in Cσ for all ground
instances Cσ of C. A general clause C is universally reductive if it contains a
literal L such that (i) Var(C) ⊆ Var(L), (ii) for all ground substitutions σ,
Lσ is strictly maximal in Cσ, (iii) if L is an equational literal, it is a positive
equation s ' t, such that Var(s ' t) ⊆ Var(s), and for all ground substitutions
σ, sσ � tσ. Clause C is said to be universally reductive for L. Clearly, if a
quasi-Horn clause that contains a positive equation is universally reductive, it is
universally reductive for the positive equation.

A quasi-Horn clause is more general than a Horn clause, because it allows
more than one positive literal, provided they are not equations: if there is a
positive equation, then it must be unique and maximal. A quasi-Horn clause C

that contains a positive equation l ' r will be involved only in superposition
inferences into or from l ' r: C does not generate ordered factors, because its
negative literals are not maximal, and it has only one positive literal; neither does
C generate ordered resolvents, because its non-equational literals are not max-
imal. Furthermore, superposition of C into a clause without positive equations
will produce another clause without positive equations. In essence, the notion
of quasi-Horn clause serves the purpose of making sure that the equational part
of the problem is Horn, and can be dealt with separately with respect to the
non-equational part, which may be non-Horn and require ordered resolution and
ordered factoring.

The notion of goal is generalized from ground negative clause to ground
clause without positive equations, and the notion of normal-form proof for such
a goal is weakened accordingly: the equational reasoning part by ordered su-
perposition is linear, whereas the ordered resolution and ordered factoring part
for the non-equational component is not necessarily linear. A finite saturated
set of universally-reductive quasi-Horn clauses is a decision procedure in that it
provides a normal-form proof for all goals in this form.

28

5.7 Beyond Quasi-Horn

It is well known that the restrictions of general inferences that are complete for
Horn logic (including linear input resolution, unit resolution, forward chaining)
are not complete for full first-order logic (see [21]). In the non-equational case,
linear input proofs must be replaced by linear proofs, involving also factoring
and ancestor-resolution inferences. In the presence of equality, one needs to deal
with the interplay of the equational and non-equational parts in its full gene-
rality. Nevertheless, completion procedures to generate saturated or canonical
presentations have been investigated also in the unrestricted first-order context.
One purpose is to find whether inference systems or strategies that are not
complete for first-order logic, may become complete if a canonical, or at least
saturated, presentation is given. An example is the classical resolution with set
of support of Wos et al. [67], where the set of support initially contains the goal
clauses (those resulting from the negation of the conjecture), and its complement
contains the presentation. The set of support strategy is complete for resolution
in first-order logic, but it is not complete for ordered resolution and ordered
superposition/paramodulation in first-order logic with equality. However, it is
well known that, if the presentation is saturated, then the set-of-support strategy
is complete also for first-order logic with equality and ordered inferences, for the
simple reason that all inferences from the saturated presentation are redundant.

In the context of knowledge representation, the problem of completing a
knowledge base so that forward chaining becomes complete also in the first-
order case (without equality) was studied by Roussel and Mathieu [63]. An
achieved knowledge base corresponds to a saturated presentation, and the process
that generates it is called achievement. Clearly, in many instances an achieved
knowledge base that is equivalent to the original one will be infinite, so that
one has to resort to either partial achievement or total achievement techniques.
Partial achievement produces a finite knowledge base by setting a limit on either
the depth of instances, or the length of chains of literals, that may be produced.
Total achievement relaxes, in a controlled way, the requirement that the achieved
base be equivalent to the original one.

For first-order theories, in general, there is no finite canonical presentation
that forms the basis for a decision procedure. Obtaining decision procedures for
fragments of first-order logic rests on some combination of saturation by com-
pletion and syntactic constraints on the presentation. A survey can be found in
[40]. More recent results based on syntactic constraints include those of Comon-
Lundh and Courtier in [23]. In [38], Dowek studied proof normalization in the
context of a sequent calculus modulo a congruence on terms, where normal-form
proofs are cut-free proofs.

Another thread of research on decision procedures is that of satisfiability
modulo a theory (SMT), where T -satisfiability is the problem of deciding sat-
isfiability of a set of ground literals in theory T . Armando et al. [3, 2] proved
that a superposition-based inference system for first-order logic with equality
is guaranteed to generate finitely many clauses when applied to T -satisfiability
problems in theories of data structures such as arrays, lists, records, integer

29

offsets, integer offsets modulo, and any of their combinations. Thus, the combi-
nation of such an inference system with any fair search plan is a decision pro-
cedure for T -satisfiability in those theories. Bonacina and Echenim [14] general-
ized this approach to T -satisfiability in the theories of recursive data structures,
with one constructor and any number of selectors, and extended it to decide
T -satisfiability of arbitrary ground formulæ [13, 15]. Lynch and Morawska [59]
combined the approach of [3] with syntactic constraints to obtain complexity
bounds for some theories.

5.8 Implicational Systems

With implicational systems we return to the realm of Horn theories. Indeed,
they are sets of implications that can be regarded as sets of propositional Horn
clauses on an alphabet of propositional variables. An implicational system is a
presentation of a Moore family, that is the set of its models; it defines a closure
operator that associates to any subset of the alphabet the least element of the
Moore family that includes it. Surveys of Moore families and related topics can be
found in [20, 9]. A survey of many similar formalisms that arose independently in
various areas of computer science is included in [9]. The notion of direct implica-
tional system [10] was inspired by efficiency in forward reasoning (see Sect. 3.2).
That of direct-optimal, also from [10], added an optimization based on symbol
count, which can be simulated by normalization with respect to an appropri-
ately chosen proof ordering (see Sect. 3.4). Bertet and Monjardet [9] considered
other candidates for “canonical” implicational system and proved them all equal
to direct-optimal, which therefore earned also the appellation canonical-direct.
Furthermore, they showed that given a Horn function, the Moore family of its
models and its associated closure operator, the elements of the corresponding
canonical-direct implicational system, read as disjunctions, give the prime im-
plicates of the Horn function.

We compared implicational systems with inference mechanisms featuring im-
plicational overlap and optimization, and rewrite systems with inference mech-
anisms featuring equational overlap and simplification. Although limited to the
propositional level, our analysis is complementary to those of [26, 35, 16, 37] in
a few ways. First, previous studies primarily compared answering a query with
respect to a program of definite clauses, interpreted by SLD-resolution, as in
Prolog, with answering a query with respect to a program of rewrite rules, in-
terpreted by linear completion, with equational overlap, with or without sim-
plification. Thus, from an operational point of view, those analyses focused on
backward reasoning from the query, whereas ours concentrates on optimizing and
completing presentations by forward reasoning. Second, SLD-resolution involves
no contraction, so that earlier comparisons placed an inference mechanism with
contraction (linear completion) side-by-side with one without. (The treatment
in [16] included the case where the Prolog interpreter is enriched with sub-
sumption, but it was only subsumption between goals, with no contraction of
the presentation.) Here we have also compared different forms of contraction,

30

putting optimization of implicational systems and simplification of rewrite sys-
tems in parallel. The present analysis agrees with prior ones in indicating the role
of simplification in differentiating reasoning by completion about equivalences
from reasoning about implications. Indeed, as we have seen, the canonical rewrite
system can be more reduced than the rewrite-optimal implicational system (cf.
Theorem 3).

6 Discussion

Knuth-Bendix completion [55, 51, 50, 5, 4, 17] was designed to derive decision pro-
cedures for validity in algebraic theories. Its outstanding feature is the use of
inferred rules to continuously reduce equations and rules during the inference
process. As a byproduct, the resultant reduced convergent system is unique –
given a well-founded ordering of terms for orienting equations into rules [33] –
and appropriately viewed as canonical.

In the ground equational case, reduction and completion are one and the same
[57, 42, 61, 7, 12]. The natural next step up is to consider what canonical ground
Horn presentations might look like. Here, we take a new look at ground Horn
theories from the point of view of the theory of canonical inference initiated in
[31, 12]. Of course, entailment of equational Horn clauses is also easily decidable
in the propositional [39] and ground [43] cases. But it turns out that reduced
and canonical, hence reduction and completion, are distinct in this case.

For implicational systems, we have analyzed the notions of direct and direct-
optimal implicational system in terms of completion and canonicity. We found
that a direct implicational system corresponds to the canonical limit of a deriva-
tion by completion that features expansion by equational overlap and contraction
by forward simplification. When completion also features backward simplifica-
tion, and is given a subset of the alphabet as input, together with the implica-
tional system, it computes the image of the subset with respect to the closure
operator associated with the implicational system. In other words, it computes
the minimal model that satisfies both the implicational system and the subset.
On the other hand, a direct-optimal implicational system does not correspond
to the limit of a derivation by completion, because the underlying proof or-
derings are different and therefore normalization induces two different notions
of optimization. Accordingly, we introduced a new notion of optimality for im-
plicational systems, termed rewrite optimality, that corresponds to canonicity
defined by completion up to redundancy.

Future work includes generalizing this analysis to non-ground Horn theories,
similar to what was done in [19] to extend the application of the abstract frame-
work of [31, 12] from ground completion to standard completion of equational
theories. Other directions may be opened by exploring new connections between
canonical systems and decision procedures.

31

Acknowledgements

We thank Andreas Podelski, Andrei Voronkov and Reinhard Wilhelm for orga-
nizing the workshop in Harald’s memory.

References

1. Krzysztof R. Apt. Logic programming. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B: Formal Methods and Semantics, chap-
ter 10, pages 493–574. North-Holland, Amsterdam, 1990.

2. Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan Schulz.
New results on rewrite-based satisfiability procedures. ACM Transactions on Com-
putational Logic, pages 1–49, To appear.

3. Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch. A rewriting ap-
proach to satisfiability procedures. Information and Computation, 183(2):140–164,
2003.

4. Leo Bachmair and Nachum Dershowitz. Equational inference, canonical proofs, and
proof orderings. Journal of the Association for Computing Machinery, 41(2):236–
276, 1994.

5. Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion without
failure. In Hassam Äıt-Kaci and Maurice Nivat, editors, Resolution of Equations
in Algebraic Structures, volume II: Rewriting Techniques, pages 1–30. Academic
Press, 1989.

6. Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. Journal of Logic and Computation, 4:217–247,
1994.

7. Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Abstract congruence closure.
Journal of Automated Reasoning, 31(2):129–168, 2003.

8. Peter Baumgartner. Theory Reasoning in Connection Calculi, volume 1527 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1998.

9. Karell Bertet and Bernard Monjardet. The multiple facets of the canonical direct
implicational basis. Cahiers de la MSE b05052, Maison des Sciences Economiques,
Université Paris Panthéon-Sorbonne, June 2005. Submitted. Available at http:

//ideas.repec.org/p/mse/wpsorb/b05052.html (viewed 13 August 2006).
10. Karell Bertet and Mirabelle Nebut. Efficient algorithms on the Moore family asso-

ciated to an implicational system. Discrete Mathematics and Theoretical Computer
Science, 6:315–338, 2004.

11. Garrett Birkhoff. Lattice Theory. American Mathematical Society, New York,
revised edition, 1948.

12. Maria Paola Bonacina and Nachum Dershowitz. Abstract canonical inference.
ACM Transactions on Computational Logic, 8(1), January 2007.

13. Maria Paola Bonacina and Mnacho Echenim. On variable-inactivity and polyno-
mial t-satisfiability procedures. Journal of Logic and Computation, in press:1–
20, 2007. Published as advance access on August 21, 2007 (doi: 10.1093/log-
com/exm055).

14. Maria Paola Bonacina and Mnacho Echenim. Rewrite-based satisfiability pro-
cedures for recursive data structures. In Byron Cook and Roberto Sebastiani,
editors, Proceedings 4th Workshop on Pragmatics of Decision Procedures in Au-
tomated Reasoning (PDPAR), 3rd International Joint Conference on Automated

32

Reasoning (IJCAR) and 4th Federated Logic Conference (FLoC), August 2006,
volume 174(8) of Electronic Notes in Theoretical Computer Science, pages 55–70.
Elsevier, June 2007.

15. Maria Paola Bonacina and Mnacho Echenim. T-decision by decomposition. In
Frank Pfenning, editor, Proceedings of the Twenty-first International Conference
on Automated Deduction (CADE), volume 4603 of Lecture Notes in Artificial In-
telligence, pages 199–214. Springer, July 2007.

16. Maria Paola Bonacina and Jieh Hsiang. On rewrite programs: Semantics and rela-
tionship with Prolog. Journal of Logic Programming, 14(1 & 2):155–180, October
1992.

17. Maria Paola Bonacina and Jieh Hsiang. Towards a foundation of completion pro-
cedures as semidecision procedures. Theoretical Computer Science, 146:199–242,
1995.

18. Thomas Carl Brown, Jr. A Structured Design-Method for Specialized Proof Proce-
dures. PhD thesis, California Institute of Technology, Pasadena, CA, 1975.

19. Guillaume Burel and Claude Kirchner. Completion is an instance of abstract
canonical system inference. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and
Josè Meseguer, editors, Algebra, Meaning and Computation – Essays in Honor of
Joseph Goguen, volume 4060 of Lecture Notes in Computer Science, pages 497–520.
Springer-Verlag, 2006.

20. Nathalie Caspard and Bernard Monjardet. The lattice of Moore families and clo-
sure operators on a finite set: A survey. Electronic Notes in Discrete Mathematics,
2, 1999.

21. Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, 1973.

22. Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez,
Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications.
http://www.grappa.univ-lille3.fr/tata, 2005.

23. Hubert Comon-Lundh and Veronique Courtier. New decidability results for frag-
ments of first-order logic and application to cryptographic protocols. In Robert
Nieuwenhuis, editor, Proceedings 14th Conference on Rewriting Techniques and Ap-
plications, Valencia (Spain), volume 2706 of Lecture Notes in Computer Science,
pages 148–164. Springer-Verlag, 2003.

24. Nachum Dershowitz. A note on simplification orderings. Information Processing
Letters, 9(5):212–215, November 1979.

25. Nachum Dershowitz. Equations as programming language. In Proceedings of the
4th Jerusalem Conference on Information Technology, pages 114–124, Jerusalem,
Israel, May 1984. IEEE Computer Society.

26. Nachum Dershowitz. Computing with rewrite systems. Inf. Control, 64(2/3):122–
157, May/June 1985.

27. Nachum Dershowitz. Canonical sets of Horn clauses. In J. Leach Albert, B. Monien,
and M. Rodŕıguez Artalejo, editors, Proceedings 18th International Colloquium on
Automata, Languages and Programming, Madrid (Spain), volume 510 of Lecture
Notes in Computer Science, pages 267–278, Berlin, July 1991. Springer-Verlag.

28. Nachum Dershowitz. Ordering-based strategies for Horn clauses. In Proceedings of
the 12th International Joint Conference on Artificial Intelligence, pages 118–124,
Sydney, Australia, August 1991.

29. Nachum Dershowitz, Guan-Shieng Huang, and Mitchell A. Harris. Enumera-
tion problems related to ground Horn theories. Located at http://lat.inf.

tu-dresden.de/∼harris/enumhorn.pdf (viewed 13 August 2006).

33

30. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: Formal
Methods and Semantics, chapter 6, pages 243–320. North-Holland, Amsterdam,
1990.

31. Nachum Dershowitz and Claude Kirchner. Abstract canonical presentations. The-
oretical Computer Science, 357:53–69, 2006.

32. Nachum Dershowitz and Zohar Manna. Proving termination with multiset order-
ings. Communications of the ACM, 22(8):465–476, 1979.

33. Nachum Dershowitz, Leo Marcus, and Andrzej Tarlecki. Existence, uniqueness,
and construction of rewrite systems. SIAM Journal of Computing, 17(4):629–639,
1988.

34. Nachum Dershowitz and David A. Plaisted. Logic programming cum applicative
programming. In Proceedings of the IEEE Symposium on Logic Programming,
pages 54–66, Boston, MA, July 1985.

35. Nachum Dershowitz and David A. Plaisted. Equational programming. In J. E.
Hayes, D. Michie, and J. Richards, editors, Machine Intelligence 11: The logic and
acquisition of knowledge, chapter 2, pages 21–56. Oxford Press, Oxford, 1988.

36. Nachum Dershowitz and David A. Plaisted. Rewriting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 9,
pages 535–610. Elsevier Science, 2001.

37. Nachum Dershowitz and Uday Reddy. Deductive and inductive synthesis of equa-
tional programs. Journal of Symbolic Computation, 15:467–494, 1993.

38. Gilles Dowek. Confluence as a cut elimination property. In Robert Nieuwenhuis,
editor, Proceedings 14th Conference on Rewriting Techniques and Applications,
Valencia (Spain), volume 2706 of Lecture Notes in Computer Science, pages 2–13.
Springer-Verlag, 2003.

39. William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional Horn formulæ. J. of Logic Programming, 1(3):267–
284, 1984.

40. Christian Fermüller, Alexander Leitsch, Ulrich Hustadt, and Tanel Tammet. Res-
olution decision procedures. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, volume 2, chapter 25, pages 1793–1849. North
Holland, 2001.

41. Laurent Fribourg. Slog—Logic interpreter for equational clauses. In Fourth An-
nual Symposium on Theoretical Aspects of Computer Science (STACS), pages 479–
480, London, UK, 1987. Springer-Verlag.

42. Jean Gallier, Paliath Narendran, David A. Plaisted, Stan Raatz, and Wayne Sny-
der. Finding canonical rewriting systems equivalent to a finite set of ground equa-
tions in polynomial time. Journal of the Association for Computing Machinery,
40(1):1–16, 1993.

43. Jean H. Gallier. Fast algorithms for testing unsatisfiability of ground Horn clauses
with equations. Journal of Symbolic Computation, 4:233–254, 1987.

44. Harald Ganzinger. A completion procedure for conditional equations. Journal of
Symbolic Computation, 11(1 & 2):51–81, 1991.

45. Joseph A. Goguen and José Meseguer. Eqlog: Equality, types, and generic mod-
ules for logic programming. In D. DeGroot and G. Lindstrom, editors, Logic Pro-
gramming: Functions, Relations, and Equations, pages 295–363. Prentice-Hall, En-
glewood Cliffs, NJ, 1986.

46. Michael Hanus. The integration of functions into logic programming: From theory
to practice. Journal of Logic Programming, 19&20:583–628, 1994.

34

47. Wilfrid Hodges. Logical features of Horn clauses. In C. J. Hogger Dov M. Gab-
bay and John Alan Robinson, editors, Handbook of Logic in Artificial Intelligence
and Logic Programming, volume I: Logical Foundations, pages 449–503. Oxford
University Press, 1993.

48. Alfred Horn. On sentences which are true of direct unions of algebras. Journal of
Symbolic Logic, 16:14–21, 1951.

49. J. Hsiang. Refutational theorem proving using term rewriting systems. Artificial
Intelligence, 25:255–300, 1985.

50. Jieh Hsiang and Michaël Rusinowitch. On word problems in equational theories.
In Th. Ottman, editor, Proceedings 14th International Colloquium on Automata,
Languages and Programming, Kaiserslautern (Germany), volume 267 of Lecture
Notes in Computer Science, pages 54–71. Springer-Verlag, 1987.

51. Gérard Huet. A complete proof of correctness of the Knuth–Bendix completion
algorithm. J. of Computer and System Sciences, 23(1):11–21, August 1981.

52. Jean-Pierre Jouannaud and Bernard Waldmann. Reductive conditional term
rewriting systems. In Proceedings of the 3rd IFIP Working Conference on For-
mal Description of Programming Concepts, Ebberup, Denmark, 1986.

53. Stéphane Kaplan. Simplifying conditional term rewriting systems: Unification,
termination, and confluence. Journal of Symbolic Computation, 4(3):295–334, 1987.

54. Stéphane Kaplan and Jean-Luc Rémy. Completion algorithms for conditional
rewriting systems. In Hassam Äıt-Kaci and Maurice Nivat, editors, Resolution
of Equations in Algebraic Structures, volume II: Rewriting Techniques, pages 141–
170. Academic Press, 1989.

55. Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, Oxford, 1970.

56. Emmanuel Kounalis and Michaël Rusinowitch. On word problems in Horn theories.
Journal of Symbolic Computation, 11(1 & 2):113–128, 1991.

57. Dallas S. Lankford. Canonical inference. Memo ATP-32, Automatic Theorem
Proving Project, University of Texas, Austin, TX, December 1975.

58. John Wylie Lloyd. Foundations of Logic Programming. Symbolic Computation
Series. Springer-Verlag, Second, extended edition, 1987.

59. Christopher Lynch and Barbara Morawska. Automatic decidability. In Proceedings
of the 17th IEEE Symposium on Logic in Computer Science, 3rd Federated Logic
Conference, Copenhagen, Denmark, July 2002. IEEE Press.

60. John D. McCharen, Ross A. Overbeek, and Larry Wos. Complexity and related
enhancements for automated theorem proving programs. Computers and Mathe-
matics with Applications, 2(1):1–16, 1976.

61. David A. Plaisted and Andrea Sattler-Klein. Proof lengths for equational comple-
tion. Inf. Comput., 125(2):154–170, 1996.

62. Uday S. Reddy. Narrowing as the operational semantics of functional languages.
In Proceedings of the Symposium on Logic Programming, pages 138–151, Boston,
MA, July 1985. IEEE.

63. Olivier Roussel and Philippe Mathieu. Exact knowledge compilation in predicate
calculus: the partial achievement case. In William W. McCune, editor, Proceedings
14th Conference on Automated Deduction, Townsville (Australia), volume 1249 of
Lecture Notes in Artificial Intelligence, pages 161–175. Springer-Verlag, 1997.

64. Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. 2006. Located
at http://www.research.att.com/∼njas/sequences (viewed 13 August 2006).

65. Mark E. Stickel. Automated deduction by theory resolution. Journal of Automated
Reasoning, 1:333–355, 1985.

35

66. Terese. Term Rewriting Systems. Cambridge University Press, 2003. M. Bezem,
J. W. Klop and R. de Vrijer, eds.

67. Larry Wos, Daniel F. Carson, and George A. Robinson. Efficiency and completeness
of the set of support strategy in theorem proving. Journal of the Association for
Computing Machinery, 12:536–541, 1965.

68. Hantao Zhang. Contextual rewriting in automated reasoning. Fundamenta Infor-
maticae, 24:107–123, 1995.

36

