
Space-Efficient Bounded Model Checking

Author names

Abstract
Current algorithms for bounded model checking use

SAT methods for checking satisfiability of Boolean
formulae. Methods based on the validity of Quantified
Boolean Formulae (QBF) allow an exponentially more
succinct representation of formulae to be checked,
because no “unrolling” of the transition relation is
required. These methods have not been widely used,
because of the lack of an efficient decision procedure for
QBF. In this paper we present an algorithm for bounded
model checking that uses as succinct representation of
formulae as possible with QBF-based techniques. We also
provide a comparison of our technique with SAT-based
and QBF-based ones, using a few available solvers, on
real-life industrial benchmarks.

1 Introduction

Model checking is a technique for the verification of

the correctness of a finite-state system with respect to a
desired behavior. The system is traditionally modeled as a
labeled state-transition graph, and the behavior is
specified by a temporal logic formula [1]. Early
implementations, based on explicit-state model checking
[2], suffered from the state explosion problem. The
introduction of symbolic model checking with BDDs [3,
4] and other recently developed methods succeeded in
partially overcoming this problem and enabled industrial
applications of model checking for real-life systems,
mostly in the hardware industry. However, all those
methods still suffer from the memory explosion problem
on modern test cases . In this work we present a method
which is much more space-efficient, sometimes by orders
of magnitude, in comparison with the existing techniques.

In symbolic model checking the states of the state-
graph are encoded by a vector of Boolean encoding
variables; sets of states are represented with characteristic
functions; transitions in the graph are represented with a
transition relation: that is, a propositional formula over
two sets of encoding variables. Properties are usually
specified in a temporal logic. In this work we restrict our
attention to safety properties – those that can be disproved
by examining a finite computation path.

Symbolic model checking uses image computation to
verify properties. Despite the increased capacity,

compared to an explicit-state model checking, BDD-
based techniques still suffer from the state explosion
problem for models beyond a few hundred state variables,
because BDDs do not always represent Boolean functions
compactly.

In [5, 6], the authors evaluate SAT methods instead of
BDDs for image computation. They use an explicit
quantifier elimination to reduce the problem of
reachability checking to the problem of propositional
satisfiability, and then apply SAT solvers to check the
satisfiability. The explicit quantifier elimination, however,
causes exponential blow-up in the size of the generated
formulae in the worst case.

More recent papers [7-13] propose algorithms for
SAT-based reachability analysis , where the quantifier
elimination is implicitly implemented in the SAT solvers.
The SAT solvers are modified such as to find all possible
solutions rather than one solution, by adding a blocking
clause for each new solution found. Storing all the
solutions in a compact data structure is a challenge,
though. There have been attempts to use BDDs, zero-
suppressed BDDs, or disjunctive normal form, but all of
them are still of exponential size in the worst case.

Bounded Model Checking (BMC), introduced in [14,
15], is based on the representation of computation paths
of a bounded length that falsify the property being
checked. BMC with a specific bound k represents the
paths of length k in the system by “unrolling” the
transition relation k times, and examines whether the set
of states falsifying the property is reached by these paths.
The composed formula is sent to a SAT solver, and any
satisfying assignment represents a counter-example of
length k for the property. The usage of BMC increased the
capacity of model checkers to thousands of state
variables, however, at a price: one no longer gets a fully
certified answer to the verification problem, but rather an
assurance that there are no counterexamples of a given
length. To implement a complete model checking
procedure the bound should be increased iteratively up to
the length of the longest simple path in the system.
Determining the sufficient bound for BMC is generally
intractable, but it is exponential in the number of
encoding variables in the worst case. Hence, the number
of copies of the transition relation within the formulae
being checked for validity increases from iteration to
iteration up to an exponential number of times, leading,
again, to a memory explosion for large systems and large

bounds.
Induction based methods [16] provide another

technique for estimating whether a bound is sufficient to
ensure a full proof. Induction is particularly successful for
local properties, but there are still many cases where the
induction depth is exponential in the size of the model.

Finally, in [17] the author uses Craig interpolation as
an over-approximation technique for image computation
aimed at reducing the number of iterations for a complete
model checking procedure. The interpolants are obtained
as a by-product of the SAT solver used to check BMC
problems. This technique, like other techniques based on
image computation, also suffers from a potential memory
blow-up.

In this paper we present an algorithm for BMC, which
does not perform unrolling of the transition relation and,
thus avoids the memory explosion problem.

The rest of the paper is organized as follows. Section 2
presents formulations of the bounded reachability analysis
problem with propositional and quantified formulae.
Section 3 describes our new algorithm for such an
analysis ; and Section 4 compares the performance of our
algorithm to the usage of the existing SAT and QBF
solvers in BMC. In section 5 we conclude and present
future directions.

2 Formulations of bounded reachability
checking problem

Given a system M=(S, I, TR), where S is the set of

states, I is the characteristic function of the set of the
initial states, and TR is the transition relation, the problem
of reachability of the final states given by a characteristic
function F in exactly k steps can be expressed in a number
of ways.

As in BMC [14], the fact that the state Zk is reachable
from the state Z0 in exactly k steps may be formulated by
“unrolling” the transition relation k times:

(1) 0 1 1 0 1

1

0
(,) ,..., : () () (,)k k k k i i

k

i
R Z Z Z Z I Z F Z TR Z Z− +

−

=
= ∃ ∧ ∧∧

The validity of this formula may be proven or

disproved by performing the SAT decision procedure on
the propositional formula:

(2) 0 1

1

0
() () (,)k i i

k

i
I Z F Z TR Z Z +

−

=
∧ ∧∧

Noticeably, the number of copies of the transition

relation in this formula is as the number of steps being
checked. When iteratively increasing the bound k , each

next iteration checks reachability of the final states in one
more step than the previous iteration. Thus, for a
complete check, SAT procedure needs to be invoked on
formulae containing an exponential number of copies of
the transition relation.

To partially overcome the potential memory explosion,
a QBF formulation of bounded reachability problem can
be used:

(3)

0 1 1 0

1

1

0

(,) ,..., : () ()

, : () () (,)

k k k k

i i

k

i

R Z Z Z Z I Z F Z

U V U Z V Z TR U V

−

+

−

=

= ∃ ∧ ∧
 
 ∀ ↔ ∧ ↔ →
 
 
∨

Note that (3) contains only one copy of the transition

relation. Increasing the bound, thus, would mean an
addition of a new intermediate state and a term of the
form (U↔Zi)∧(V↔Zi+1). Hence, the formula increase
from iteration to iteration does not depend on the size of
the transition relation, which is usually the biggest
formula in the specification of the model.

The solution of (3) with a QBF solver usually requires
a transformation of the propositional part of the formula
into a CNF. Linear-time translation of a propositional
formula to an equisatisfiable CNF formula [18] introduces
artificial variables, resulting with a QBF having ∃∀∃
pattern of the quantifier prefix. The number of the
universally quantified variables does not change in the
QBF from iteration to iteration.

This approach to reachability checking partially solves
the issue of formula growth, reducing the growth of the
formula from iteration to iteration, but still requires an
exponential number of iterations to fully verify the
reachability.

To reduce the number of iterations, it is possible to
apply the “iterative squaring” technique, similar to the
one used in BDD-based model checking [1]. In this
technique, each successive iteration checks the
reachability of a final state in twice as many steps as the
previous iteration. Given a formula Rk/2(X,Y) for
checking reachability in k /2 steps, the following formula
checks the reachability in k steps:

(4)
0 0

0 /2

(,) : () () , :

() () () () (,)
k k k

k k

R Z Z Z I Z F Z U V

U Z V Z U Z V Z R U V

=∃ ∧ ∧∀

↔ ∧ ↔ ∨ ↔ ∧ ↔ →  

The transition relation appears in (4) only once, as in

the previously described technique. However, the number
of universally quantified variables and the number of
quantifier alternations grows from iteration to iteration.

This technique allows reducing the number of
iterations to be as the number of the state encoding
variables in the model, since it would then cover the

worst-case diameter of the model. Note that not all
bounds are checked by this technique, but only the bounds
that are a power of 2. It is possible, however, to overcome
this problem by adding a self-loop in each state of the
model, which would not change the reachability between
states, but rather make (4) check reachability in k or fewer
steps, instead of exactly k steps.

We have used a bounded model checker to generate
the three kinds of formulae mentioned above. We have
evaluated a few available state-of-the-art DPLL-based
SAT and QBF solvers, to check the feasibility of the QBF
formulations of the reachability checking problem on a
number of real-life industrial examples. Section 4 presents
the details of the evaluation. Unfortunately, the QBF
solvers were unable to solve practically any of the
formulae, while many of the corresponding propositional
formulae were solved by the SAT solvers, many of them
in a matter of seconds.

Noticeably, all the three kinds of formulae contain
exactly the same information, but in different form. In (2)
the formula contains explicitly the relation between any
two successive states in the path from the initial state to
the final one. Such an explicit representation often allows
a solver to restrict the choice of a next state in the path
immediately as the previous one has been chosen. For
example, when in (2) the state Z0 has been chosen by the
algorithm, the Boolean Constraint Propagation (BCP)
process [20] would possibly deduce the values of some
variables in Z1. Also, the choice of an impossible value
for one of Z1’s variables could immediately cause a
conflict. We may say that, in a sense, the SAT-based
approach examines for being final only the states within
the set of states reachable from the initial ones.

In the QBF-based approaches this is not the case. The
information about the relation between any two
successive states is not found explicitly in the formula.
Therefore, in the formula (3) the DPLL-based solvers are
unable to deduce anything about Z1, when Z0’s value is
set. This is because the relation between Z0 and Z1 is

dependent on all possible choices of U and V.
Additionally, a general-purpose DPLL-based QBF solver
is restricted in the decision process to first set the values
for the variables quantified in the outer level (Z0, Z1, etc.),
before proceeding to the inner ones (U and V).
Essentially, this means that the solver first chooses values
for Z0, Z1, …, Zk and only then checks whether such a
choice constitutes a path in the model. In the solution of
(4), not all states in the path have variables representing
them in the formula, which further complicates the
solution process.

3 jSAT decision procedure

Our research was motivated by the inefficiency of

QBF solvers demonstrated on formulae of the form (3).
To improve the efficiency of the solution, it is required to
achieve a similar way of exploration of the state space as
a SAT solver would make on an equivalent propositional
formula of the form (2). Indeed, our algorithm tries to
emulate in some sense the behavior of a SAT solver on
(2), while maintaining in memory the representation
similar to that of (3). In fact, as in (3), jSAT holds in
memory the encoding variables representing the states Z0,
Z1, …, Zk, U and V, but only holds the following
propositional formula:

(5) 0() (,) ()kI Z T R U V F Z∧ ∧

The states Zi represent a path; the states U and V

represent two neighboring states in that path. Instead of
explicitly holding the fact that U and V represent a pair of
neighboring states as done in (3) with assistance of the
terms of the form (U↔Zi)∧(V↔Zi+1), our algorithm
implicitly assumes this information. The idea of the
algorithm is to iteratively associate U and V with a pair of
successive states, called the current state and the next
state, until all states are decided. We call U and V aliases,
since at each point of time during the algorithm they act
as the states they are associated with.

The pseudo code of the algorithm is shown in Fig. 1. It

InitializeCurrentState();
while (true) {
 bCurrentAndNextStatesDecided = SelectDecisionVariable();

 If (bCurrentAndNextStatesDecided == true) {
 If (AllStatesDecided() == true) return true;

 bUnresolvableConflict = AdvanceCurrentState();
 if (bUnresolvableConflict == true) return false;
 }
 do {
 bConflictProduced = BCP();
 if (bConflictProduced == true) {
 if (ResolveConflict() == false) return false;
 }
 } while (bConflictProduced == true);
}
Fig. 1a – Pseudo code for jSAT algorithm

ResolveConflict()
{
 nBacktrackingLevel = AnalyzeConflict();

 bFirstUndecidedState = Backtrack(nBacktrackingLevel);

 bUnresolvableConflict =
 RetractCurrentState(bFirstUndecidedState);

 if (bUnresolvableConflict == true) return false;
 return true;
}
Fig. 1b – Pseudo code for jSAT algorithm

is very similar to the classic DPLL algorithm [19, 20, 21],
which is widely used in the current state-of-the-art SAT
and QBF solvers. Given a CNF representation, DPLL
algorithm iteratively chooses variables to assign with a
value, as long as the partial assignment to the variables
does not falsify the formula. When the partial assignment
is found to falsify the formula, i.e. a conflict is
discovered, the algorithm backtracks by unassigning some
of the assigned variables, and assigning an opposite value
to one of them. The process by which the algorithm
decides which variables to unassign and which variable to
assign with an opposite value is called conflict analysis.
The algorithm also incorporates an optimization called
Boolean constraint propagation (BCP) or unit propagation
[20], which aims at speeding up the search by making
obvious decisions as soon as they can be made, based on
the unit literal rule: if the current partial assignment
causes all but one literal of a clause to have the value
false, then the remaining literal must be assigned true in
order not to falsify the clause and, consequently, the
whole formula.

Most of the current state-of-the-art SAT and QBF
solvers use additional optimization techniques, such as
conflict-driven learning and non-chronological
backtracking [20]. Our approach does not rely on any of
above optimizations to be present, but these optimizations
provide a significant advantage, as with other existing
solvers. Numerous other optimization techniques exist,
which may also prove helpful in jSAT.

Intuitively, jSAT algorithm can be seen as a depth-first
search in the state graph of the system from the initial
states to the final ones. The algorithm starts by associating
U with Z0 and V with Z1; thus the formula (5) becomes
semantically equivalent to:

(6) 0 0 1() (,) ()kI Z TR Z Z F Z∧ ∧

The states Z0 and Z1 are then decided, if possible, so

that Z0 is an initial state and Z1 is its successor. As soon as
they are decided, the algorithm makes Z1 to be the current
state and Z2 to be the next one: U becomes an alias to Z1,
and V becomes an alias to Z2. The algorithm proceeds so
on, until all states are successfully decided, or until it
discovers that such a decis ion is impossible. Decision on
each state involves assignment for each of the
corresponding encoding variables.

The described process may also be seen as two nested
search procedures: one looking for a path in the model,
and another, nested one, looking for a suitable next state
(V) from the last found state (U) in the path. Whenever all
encoding variables of the next state V are successfully
assigned, this state becomes the current-state by
associating its variables with U and the variables from the
next state with V. Whenever a conflict caused by an
assignment to a variable from the current-state U is

discovered, the path search backtracks by setting U to be
the previous state and V to be the unsuccessfully chosen
current state; it then tries to find another suitable such
state. Eventually, either all states have been successfully
chosen, which means (3) is valid, or all the initial states
have been unsuccessfully enumerated, which means (3) is
not valid.

The procedure SelectDecisionVariable() in Fig. 1
selects a still unassigned variable out of the encoding
variables of the current state and, if all the encoding
variables of the current state are assigned, out of the next
state. It returns true, if all the encoding variables of the
current and the next states have been decided – at this
moment the current state is advanced. We restrict the
decision strategy to selecting decision variables in the
order of states in the path: encoding variables of the state
Z0 are selected first, then the variables of Z1, then the
variables of Z2, and so on. Such a restriction causes the
algorithm to implement a depth-first search of the state
graph and to “visit” only the states actually reachable
from the initial states. The order of selection of the
encoding variables within one state is not important, and
heuristics similar to the ones existing in SAT/QBF solvers
can be used.

Adjustment of the current and the next state happens
not only when a next state is successfully chosen. When,
as part of conflict resolution by ResolveConflict(), the
algorithm backtracks and a variable of the current state
becomes unassigned, the current and the next state are
retracted so that the next state V is associated with the
earliest undecided state in the path.

When the current and the next states are adjusted, new
relations between the encoding variables become
apparent. Thus, for example, when U and V are moved
from the pair of states (Z0, Z1) to the next pair (Z1, Z2), the
relations between the encoding variables of Z1 and Z2
become explicit in TR(U, V). Since the newly discovered
information may contradict some of the already made
decisions, conflicts may arise during the adjustment
operations.

An important difference of our algorithm from the
SAT solvers follows from the fact that U and V represent
different states among Zi at different points of time. It is,
therefore, generally incorrect to produce learned conflict
clauses that involve variables of U, V or any artificial
variable resulting from the translation of TR(U, V) to
CNF, as they will become useless as soon as U and V are
adjusted to represent another pair of states. Therefore, the
learned clauses must be formulated in terms of encoding
variables of Zi. Our conflict analysis technique achieves
this by using only decision variables in the learned
clauses, somewhat similar to Last UIP learning scheme
described in [27].

4 Experimental results

We have implemented jSAT algorithm to measure its

applicability to the problem of BMC. Our implementation
is based on the single-threaded version of the solver
described in [22], which is reported to have slightly
slower performance than zChaff [23].

In our implementation the clause set is represented
with Watched Literals data-structure. Our decision
strategy selects variables from earlier states of the path
first; among the variables of the same state the decisions
are chosen according to VSIDS heuristics [23].

The implication graph [27] is not explicitly built in our
algorithm. Instead, each variable is associated with the
clause that implied it – the antecedent clause, if the
variable was assigned by the BCP process. Because of
this, there is some information loss incurred by the
operation of adjustment of the current and the next states :
if a variable’s antecedent clause belongs to TR(U, V) part
of the formula, then it is incorrect to consider that clause
antecedent after the adjustment of U and V to another pair
of states. Thus, some or all of the edges of the implication
graph are lost during the adjustment. This fact
significantly affects the efficiency of conflict-driven
learning, as more variables need to be included in the
learned clauses than would be possible if the information
were not lost.

We implemented non-chronological backtracking and
conflict-driven learning, but no restarting or other
advanced optimizations.

To measure the applicability of our algorithm we used
a bounded model checker to generate formulae of the
forms (2), (3), (4) and (5). The formulae of the form (2)
were generated in DIMACS format and can be fed into
many available SAT solvers. The formu lae of the forms

(3) and (4) were generated in QDIMACS format and can
be fed into available QBF solvers. The formulae of the
form (5) are generated in a slightly customized DIMACS
format, which adds the specification of the encoding
variables to the formula description.

We used a set of thirteen proprietary Intel® model
checking test cases of different sizes to compare the run-
time and memory consumption of our algorithm to those
of the SAT and QBF solvers on formulae described
above. For each test case we generated formulae of all
kinds for the bounds in range from 3 to 20, resulting in
the total amount of 234 formulae of each kind. Twenty of
the formulae of the form (3) and (4) were publicly
disclosed and participated in the QBF solver evaluation
during SAT2004 conference. We used a dual Intel®
Xeon™ 2.8 GHz Linux RH7.1 workstation with 4GB of
memory for the experiments, and set a 300 seconds time
out and 1 GB memory out limits on all the solvers.

We used QuBE [24] and Semprop [25] QBF solvers to
solve formulae of the form (3) and (4) for all the test
cases. Unfortunately, both solvers were unable to solve
practically any of the 234 formulae (QuBE, in fact,
managed to solve three of them). We do not relate to the
performance of the QBF solvers in the following
paragraphs for brevity.

To solve formulae of the form (2), we used the solver
described in [22], and an Intel proprietary DPLL-based
solver, which performs as good as the best current
publicly available solvers. We compare the run-time and
memory usage of these solvers with jSAT. Table 1 shows
the sizes of the test cases in terms of the state variables in
the model, and the number of formulae each of the solvers
successfully coped with. As evident, jSAT managed to
solve more than a half of the formulae, significantly more
than the general-purpose QBF solvers.

Table 2 shows the run-time and the memory usage of

 # state vars jSAT [22] Intel solver
test08 10 16 18 18
test12 11 18 18 18
test10 12 18 18 18
test03 39 18 18 18
test06 160 1 12 17
test09 160 18 18 18
test05 199 0 18 18
test11 220 17 18 18
test04 626 1 6 18
test13 662 18 18 18
test02 914 0 6 15
test07 1055 0 11 18
test01 2013 18 5 9

Total (out of 234): 143 184 221
Table 1 – Number of bounds solved by each

solver per test case.

jSAT [22] Intel solver
 sec MB sec MB sec MB
test08 >300 2.5 0.3 3.4 0.0 3.1
test12 0.0 3.1 0.0 3.1 0.0 3.1
test10 0.2 2.6 1.2 4.9 0.5 4.9
test03 0.0 3.1 0.0 3.1 0.0 3.1
test06 >300 4.4 >300 46.1 >300 50.3
test09 0.0 3.1 3.8 20.3 0.8 36.0
test05 >300 9.7 74.5 40.8 9.8 36.8
test11 205.1 4.8 8.9 25.6 2.7 44.2
test04 >300 19.5 >300 264.0 292.4 227.0
test13 2.0 9.7 109.1 95.9 22.2 104.1
test02 >300 15.7 >300 80.4 >300 133.8
test07 >300 19.5 >300 145.5 293.1 144.7
test01 5.4 44.6 >300 624.8 14.2 >1024

Table 2 – Run-time and memory usage of each
solver for bound 20 per test case.

the three solvers on all the test cases for bound 20. As
expected, the memory consumed by jSAT is significantly
lower than by the other solvers, in some cases by orders
of magnitude. Noticeably, in the largest test case “test01”,
jSAT achieved a better run-time, in addition to the
significantly lower memory usage.

The slower run-time of jSAT can be attributed mainly
to the following reasons:
• The overhead of the state adjustment operation is

very high in our implementation. Indeed, the number
of path backtracks in the depth-first path search in a
highly connected state graph is very large.

• There is a loss of information about antecedent
clauses, as described above.

• Our implementation does not use many of the
advanced optimizations, which are implemented in
the other solvers.

5 Conclusions

We presented an algorithm for checking whether a set

of final states is reachable from a set of initial states in a
state graph of a system for use in BMC. Our algorithm
solves quantified formulae of the form (3) for real-life
industrial examples, which cannot be solved by the to-
date state-of-the-art QBF solvers. The main contribution
of this work is in that our algorithm is significantly more
space-efficient than the existing SAT-based BMC
algorithms, as it does not require “unrolling” of the
transition relation.

A number of improvements to our algorithm can be
made, and they are subject for the future research:
• Data structures for efficient state adjustment

operations.
• Alternative representation of the implication graph to

avoid information loss incurred by state adjustments.
• Incorporation of additional optimization techniques

used in the current state-of-the-art solvers.

6 References

[1] E. Clarke, O. Grumberg, D. Peled. “Model Checking”.
MIT Press, 2000.

[2] E.M. Clarke, E.A. Emerson, A.P. Sistla. "Automatic
Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications". ACM Transactions on
Programming Languages and Systems, 8(2):244-263,
1986.

[3] R. E. Bryant. “Graph-Based Algorithms for Boolean
Function Manipulation”. IEEE Trans. Computers 35(8),
1986.

[4] K. L. McMillan. “Symbolic Model Checking”. Kluwer
Academic Publishers, 1993.

[5] P.A. Abdulla, P. Bjesse, N. Een. ”Symbolic Reachability

Analysis based on SAT Solvers”. TACAS, 2000.
[6] P.F. Williams, A. Biere, E.M. Clarke, A. Gupta.

"Combining Decision Diagrams and SAT Procedures for
Efficient Symbolic Model Checking". CAV, 2000.

[7] O. Grumberg, A. Schuster, A. Yagdar. "Reachability using
Memory Efficient All-Solutions SAT Solver". FMCAD,
2004.

[8] K.L. McMillan. "Applying SAT Methods in Unbounded
Symbolic Model Checking". CAV, 2002.

[9] H. J. Kang, I.-C. Park. “SAT-Based Unbounded Symbolic
Model Checking”. DAC, 2002.

[10] A. Gupta, Z. Yang, P. Ashar, A. Gupta. "SAT-Based
Image Computation with Application in Reachability
Analysis". FMCAD, 2000.

[11] P. Chauhan, E. M. Clarke, D. Kroening. “Using SAT based
Image Computation for Reachability Analysis”. Technical
Report CMU-CS-03-151, CMU, School of Computer
Science, 2003.

[12] B. Li, M. S. Hsiao, S. Sheng. "A Novel SAT All-Solutions
Solver for Efficient Preimage Computation". DATE, 2004.

[13] M. Iyer, G. Parthasarathy, K.-T. Cheng "SATORI -- A Fast
Sequential SAT Engine for Circuits". ICCAD, 2003.

[14] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu. “Symbolic
Model Checking without BDDs”. TACAS, 1999.

[15] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu.
“Symbolic Model Checking Using SAT Procedures instead
of BDDs”. DAC, 1999.

[16] M. Sheeran, S. Singh, G. Stalmarck. “Checking Safety
Properties Using Induction and a SAT-Solver”. FMCAD,
2000.

[17] K.L. McMillan. "Interpolation and SAT-based Model
Checking". CAV, 2003.

[18] D. A. Plaisted, S. Greenbaum. “A structure-preserving
clause form translation”. Journal of Symbolic Computation
2 (1986), 293-304.

[19] M. Davis, G. Logemann, D. W. Loveland. “A machine
program for theorem proving”. Journal of the ACM, 394-
397, 1962.

[20] I. Lynce, J. P. Marques-Silva. “An Overview Of Backtrack
Search Satisfiability Algorithms”. 5th Intn'l. Symp. on
Artificial Intelligence and Mathematics, 1998.

[21] J. Gu, P. W. Purdom, J. Franco, B. W. Wah, “Algorithms
for the satisfiability (SAT) problem: A survey", URL:
http://citeseer.ist.psu.edu/56722.html, 1996.

[22] Y. Feldman, N. Dershowitz, Z. Hanna. “Parallel
Multithreaded Satisfiability Solver: Design and
Implementation”. PDMC, 2004.

[23] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S.
Malik. “Chaff: engineering an efficient SAT solver”. DAC,
2001.

[24] QuBE QBF solver. URL: http://www.qbflib.org/~qube/.
[25] R. Letz. “Lemma and Model Caching in Decision

Procedures for Quantified Boolean Formulas”.
TABLAUX, 2002. URL: http://www4.informatik.tu-
muenchen.de/~letz/semprop/.

[26] D. Le Berre, l. Simon, A. Tacchella. “Challenges in the
QBF arena: the SAT’03 evaluation of QBF solvers”. SAT,
2003.

[27] L. Zhang, C. F. Madigan, M. H. Moskewicz, S. Malik.
“Efficient Conflict Driven Learning In A Boolean
Satisfiability Solver”. ICCAD, 2001.

