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Abstract 
Current algorithms for bounded model checking use 

SAT methods for checking satisfiability of Boolean 
formulae. Methods based on the validity of Quantified 
Boolean Formulae (QBF) allow an exponentially more 
succinct representation of formulae to be checked, 
because no “unrolling” of the transition relation is 
required. These methods have not been widely used, 
because of the lack of an efficient decision procedure for 
QBF. In this paper we present an algorithm for bounded 
model checking that uses as succinct representation of 
formulae as possible with QBF-based techniques. We also 
provide a comparison of our technique with SAT-based 
and QBF-based ones, using a few available solvers, on 
real-life industrial benchmarks. 

 
 

1 Introduction 
 
Model checking is a technique for the verification of 

the correctness of a finite-state system with respect to a 
desired behavior. The system is traditionally modeled as a 
labeled state-transition graph, and the behavior is 
specified by a temporal logic formula [1]. Early 
implementations, based on explicit-state model checking 
[2], suffered from the state explosion problem. The 
introduction of symbolic model checking with BDDs [3, 
4] and other recently developed methods succeeded in 
partially overcoming this  problem and enabled industrial 
applications of model checking for real-life systems, 
mostly in the hardware industry. However, all those 
methods still suffer from the memory explosion problem 
on modern test cases . In this work we present a method 
which is much more space-efficient, sometimes by orders 
of magnitude, in comparison with the existing techniques. 

In symbolic model checking the states of the state- 
graph are encoded by a vector of Boolean encoding 
variables; sets of states are represented with characteristic 
functions; transitions in the graph are represented with a 
transition relation: that is, a propositional formula over 
two sets of encoding variables. Properties are usually 
specified in a temporal logic. In this work we restrict our 
attention to safety properties  – those that can be disproved 
by examining a finite computation path. 

Symbolic model checking uses image computation to 
verify properties. Despite the increased capacity, 

compared to an explicit-state model checking, BDD-
based techniques still suffer from the state explosion 
problem for models beyond a few hundred state variables, 
because BDDs do not always represent Boolean functions 
compactly.  

In [5, 6], the authors evaluate SAT methods instead of 
BDDs for image computation. They use an explicit 
quantifier elimination to reduce the problem of 
reachability checking to the problem of propositional 
satisfiability, and then apply SAT solvers to check the 
satisfiability. The explicit quantifier elimination, however, 
causes exponential blow-up in the size of the generated 
formulae in the worst case. 

More recent papers [7-13] propose algorithms for 
SAT-based reachability analysis , where the quantifier 
elimination is implicitly implemented in the SAT solvers. 
The SAT solvers are modified such as to find all possible 
solutions rather than one solution, by adding a blocking 
clause for each new solution found. Storing all the 
solutions in a compact data structure is a challenge, 
though. There have been attempts to use BDDs, zero-
suppressed BDDs, or disjunctive normal form, but all of 
them are still of exponential size in the worst case. 

Bounded Model Checking (BMC), introduced in [14, 
15], is based on the representation of computation paths 
of a bounded length that falsify the property being 
checked. BMC with a specific bound k  represents the 
paths of length k  in the system by “unrolling” the 
transition relation k  times, and examines whether the set 
of states falsifying the property is reached by these paths. 
The composed formula is sent to a SAT solver, and any 
satisfying assignment represents a counter-example of 
length k  for the property. The usage of BMC increased the 
capacity of model checkers to thousands of state 
variables, however, at a price: one no longer gets a fully 
certified answer to the verification problem, but rather an 
assurance that there are no counterexamples of a given 
length. To implement a complete model checking 
procedure the bound should be increased iteratively up to 
the length of the longest simple path in the system. 
Determining the sufficient bound for BMC is generally 
intractable, but it is exponential in the number of 
encoding variables in the worst case. Hence, the number 
of copies of the transition relation within the formulae 
being checked for validity increases from iteration to 
iteration up to an exponential number of times, leading, 
again, to a memory explosion for large systems and large 



bounds. 
Induction based methods [16] provide another 

technique for estimating whether a bound is sufficient to 
ensure a full proof. Induction is particularly successful for 
local properties, but there are still many cases where the 
induction depth is exponential in the size of the model. 

Finally, in [17] the author uses Craig interpolation as 
an over-approximation technique for image computation 
aimed at reducing the number of iterations for a complete 
model checking procedure. The interpolants are obtained 
as a by-product of the SAT solver used to check BMC 
problems. This technique, like other techniques based on 
image computation, also suffers from a potential memory 
blow-up. 

In this paper we present an algorithm for BMC, which 
does not perform unrolling of the transition relation and, 
thus avoids the memory explosion problem. 

The rest of the paper is organized as follows. Section 2 
presents formulations of the bounded reachability analysis  
problem with propositional and quantified formulae. 
Section 3 describes our new algorithm for such an 
analysis ; and Section 4 compares the performance of our 
algorithm to the usage of the existing SAT and QBF 
solvers in BMC. In section 5 we conclude and present 
future directions. 

 

2 Formulations of bounded reachability 
checking problem 

 
Given a system M=(S, I, TR), where S is the set of 

states, I is the characteristic function of the set of the 
initial states, and TR is the transition relation, the problem 
of reachability of the final states given by a characteristic 
function F in exactly k  steps can be expressed in a number 
of ways. 

As in BMC [14], the fact that the state Zk is reachable 
from the state Z0 in exactly k  steps may be formulated by 
“unrolling” the transition relation k  times: 
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The validity of this formula may be proven or 

disproved by performing the SAT decision procedure on 
the propositional formula: 
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Noticeably, the number of copies of the transition 

relation in this formula is as the number of steps being 
checked. When iteratively increasing the bound k , each 

next iteration checks reachability of the final states in one 
more step than the previous iteration. Thus, for a 
complete check, SAT procedure needs to be invoked on 
formulae containing an exponential number of copies of 
the transition relation. 

To partially overcome the potential memory explosion, 
a QBF formulation of bounded reachability problem can 
be used: 
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Note that (3) contains only one copy of the transition 

relation. Increasing the bound, thus, would mean an 
addition of a new intermediate state and a term of the 
form (U↔Zi)∧(V↔Zi+1). Hence, the formula increase 
from iteration to iteration does not depend on the size of 
the transition relation, which is usually the biggest 
formula in the specification of the model.  

The solution of (3) with a QBF solver usually requires 
a transformation of the propositional part of the formula 
into a CNF. Linear-time translation of a propositional 
formula to an equisatisfiable CNF formula [18] introduces 
artificial variables, resulting with a QBF having ∃∀∃ 
pattern of the quantifier prefix. The number of the 
universally quantified variables does not change in the 
QBF from iteration to iteration. 

This approach to reachability checking partially solves 
the issue of formula growth, reducing the growth of the 
formula from iteration to iteration, but still requires an 
exponential number of iterations to fully verify the 
reachability. 

To reduce the number of iterations, it is possible to 
apply the “iterative squaring” technique, similar to the 
one used in BDD-based model checking [1]. In this 
technique, each successive iteration checks the 
reachability of a final state in twice as many steps as the 
previous iteration. Given a formula Rk/2(X,Y) for 
checking reachability in k /2 steps, the following formula 
checks the reachability in k  steps: 
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The transition relation appears in (4) only once, as in 

the previously described technique. However, the number 
of universally quantified variables and the number of 
quantifier alternations grows from iteration to iteration. 

This  technique allows reducing the number of 
iterations to be as the number of the state encoding 
variables in the model, since it would then cover the 



worst-case diameter of the model. Note that not all 
bounds are checked by this technique, but only the bounds 
that are a power of 2. It is possible, however, to overcome 
this problem by adding a self-loop in each state of the 
model, which would not change the reachability between 
states, but rather make (4) check reachability in k or fewer  
steps, instead of exactly k  steps. 

We have used a bounded model checker to generate 
the three kinds of formulae mentioned above. We have 
evaluated a few available state-of-the-art DPLL-based 
SAT and QBF solvers, to check the feasibility of the QBF 
formulations of the reachability checking problem on a 
number of real-life industrial examples. Section 4 presents 
the details of the evaluation. Unfortunately, the QBF 
solvers were unable to solve practically any of the 
formulae, while many of the corresponding propositional 
formulae were solved by the SAT solvers, many of them 
in a matter of seconds.  

Noticeably, all the three kinds of formulae contain 
exactly the same information, but in different form. In (2) 
the formula contains explicitly the relation between any 
two successive states in the path from the initial state to 
the final one. Such an explicit representation often allows 
a solver to restrict the choice of a next state in the path 
immediately as the previous one has been chosen. For 
example, when in (2) the state Z0 has been chosen by the 
algorithm, the Boolean Constraint Propagation (BCP) 
process [20] would possibly deduce the values of some 
variables in Z1. Also, the choice of an impossible value 
for one of Z1’s variables could immediately cause a 
conflict. We may say that, in a sense, the SAT-based 
approach examines for being final only the states within 
the set of states reachable from the initial ones.  

In the QBF-based approaches this is not the case. The 
information about the relation between any two 
successive states is not found explicitly in the formula. 
Therefore, in the formula (3) the DPLL-based solvers are 
unable to deduce anything about Z1, when Z0’s value is 
set. This is because the relation between Z0 and Z1 is 

dependent on all possible choices of U and V. 
Additionally, a general-purpose DPLL-based QBF solver 
is restricted in the decision process to first set the values 
for the variables quantified in the outer level (Z0, Z1, etc.), 
before proceeding to the inner ones (U and V). 
Essentially, this means that the solver first chooses values 
for Z0, Z1, …, Zk and only then checks whether such a 
choice constitutes a path in the model. In the solution of 
(4), not all states in the path have variables representing 
them in the formula, which further complicates the 
solution process. 

 

3 jSAT decision procedure  

 
Our research was motivated by the inefficiency of 

QBF solvers demonstrated on formulae of the form (3). 
To improve the efficiency of the solution, it is required to 
achieve a similar way of exploration of the state space as 
a SAT solver would make on an equivalent propositional 
formula of the form (2). Indeed, our algorithm tries to 
emulate in some sense the behavior of a SAT solver on 
(2), while maintaining in memory the representation 
similar to that of (3). In fact, as in (3), jSAT holds in 
memory the encoding variables representing the states Z0, 
Z1, …, Zk, U and V, but only holds the following 
propositional formula: 
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The states Zi represent a path; the states U and V 

represent two neighboring states in that path. Instead of 
explicitly holding the fact that U and V represent a pair of 
neighboring states as done in (3) with assistance of the 
terms of the form (U↔Zi)∧(V↔Zi+1), our algorithm 
implicitly assumes this information. The idea of the 
algorithm is  to iteratively associate U and V with a pair of 
successive states, called the current state and the next 
state, until all states are decided. We call U and V aliases, 
since at each point of time during the algorithm they act 
as the states they are associated with.  

The pseudo code of the algorithm is shown in Fig. 1. It 

 

InitializeCurrentState(); 
while (true) { 
    bCurrentAndNextStatesDecided = SelectDecisionVariable(); 
 
    If (bCurrentAndNextStatesDecided == true) { 
        If (AllStatesDecided() == true)  return true; 
 
        bUnresolvableConflict = AdvanceCurrentState(); 
        if (bUnresolvableConflict == true) return false; 
    } 
    do { 
        bConflictProduced = BCP(); 
        if (bConflictProduced == true) { 
            if (ResolveConflict() == false) return false; 
        } 
    } while (bConflictProduced == true); 
} 
Fig. 1a –  Pseudo code for jSAT algorithm 

ResolveConflict() 
{ 
    nBacktrackingLevel = AnalyzeConflict(); 
 
    bFirstUndecidedState = Backtrack(nBacktrackingLevel);
 
    bUnresolvableConflict = 
        RetractCurrentState(bFirstUndecidedState);  
 
    if (bUnresolvableConflict == true) return false; 
    return true; 
} 
Fig. 1b –  Pseudo code for jSAT algorithm 



is very similar to the classic DPLL algorithm [19, 20, 21], 
which is widely used in the current state-of-the-art SAT 
and QBF solvers. Given a CNF representation, DPLL 
algorithm iteratively chooses variables to assign with a 
value, as long as the partial assignment to the variables 
does not falsify the formula. When the partial assignment 
is found to falsify the formula, i.e. a conflict is 
discovered, the algorithm backtracks by unassigning some 
of the assigned variables, and assigning an opposite value 
to one of them. The process by which the algorithm 
decides which variables to unassign and which variable to 
assign with an opposite value is called conflict analysis. 
The algorithm also incorporates an optimization called 
Boolean constraint propagation (BCP) or unit propagation 
[20], which aims at speeding up the search by making 
obvious decisions as soon as they can be made, based on 
the unit literal rule: if the current partial assignment 
causes all but one literal of a clause to have the value 
false, then the remaining literal must be assigned true in 
order not to falsify the clause and, consequently, the 
whole formula. 

Most of the current state-of-the-art SAT and QBF 
solvers use additional optimization techniques, such as 
conflict-driven learning and non-chronological 
backtracking [20]. Our approach does not rely on any of 
above optimizations to be present, but these optimizations 
provide a significant advantage, as with other existing 
solvers. Numerous other optimization techniques exist, 
which may also prove helpful in jSAT. 

Intuitively, jSAT algorithm can be seen as a depth-first 
search in the state graph of the system from the initial 
states to the final ones. The algorithm starts by associating 
U with Z0 and V with Z1; thus the formula (5) becomes 
semantically equivalent to: 
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The states Z0 and Z1 are then decided, if possible, so 

that Z0 is an initial state and Z1 is its successor. As soon as 
they are decided, the algorithm makes Z1 to be the current 
state and Z2 to be the next one: U becomes an alias to Z1, 
and V becomes an alias to Z2. The algorithm proceeds so 
on, until all states are successfully decided, or until it 
discovers that such a decis ion is impossible. Decision on 
each state involves assignment for each of the 
corresponding encoding variables.  

The described process may also be seen as two nested 
search procedures: one looking for a path in the model, 
and another, nested one, looking for a suitable next state 
(V) from the last found state (U) in the path. Whenever all 
encoding variables of the next state V are successfully 
assigned, this state becomes the current-state by 
associating its variables with U and the variables from the 
next state with V. Whenever a conflict caused by an 
assignment to a variable from the current-state U is 

discovered, the path search backtracks by setting U to be 
the previous state and V to be the unsuccessfully chosen 
current state; it then tries to find another suitable such 
state. Eventually, either all states have been successfully 
chosen, which means (3) is valid, or all the initial states 
have been unsuccessfully enumerated, which means (3) is 
not valid. 

The procedure SelectDecisionVariable() in Fig. 1 
selects a still unassigned variable out of the encoding 
variables of the current state and, if all the encoding 
variables of the current state are assigned, out of the next 
state. It returns true, if all the encoding variables of the 
current and the next states have been decided – at this 
moment the current state is  advanced. We restrict the 
decision strategy to selecting decision variables in the 
order of states in the path: encoding variables of the state 
Z0 are selected first, then the variables of Z1, then the 
variables of Z2, and so on. Such a restriction causes the 
algorithm to implement a depth-first search of the state 
graph and to “visit” only the states actually reachable 
from the initial states. The order of selection of the 
encoding variables within one state is not important, and 
heuristics similar to the ones existing in SAT/QBF solvers 
can be used. 

Adjustment of the current and the next state happens 
not only when a next state is successfully chosen. When, 
as part of conflict resolution by ResolveConflict(), the 
algorithm backtracks and a variable of the current state 
becomes unassigned, the current and the next state are 
retracted so that the next state V is associated with the 
earliest undecided state in the path. 

When the current and the next states  are adjusted, new 
relations between the encoding variables become 
apparent. Thus, for example, when U and V are moved 
from the pair of states (Z0, Z1) to the next pair (Z1, Z2), the 
relations between the encoding variables of Z1 and Z2 
become explicit in TR(U, V). Since the newly discovered 
information may contradict some of the already made 
decisions, conflicts may arise during the adjustment 
operations. 

An important difference of our algorithm from the 
SAT solvers follows from the fact that U and V represent 
different states among Zi at different points of time. It is, 
therefore, generally incorrect to produce learned conflict 
clauses that involve variables of U, V or any artificial 
variable resulting from the translation of TR(U, V) to 
CNF, as they will become useless as soon as U and V are 
adjusted to represent another pair of states. Therefore, the 
learned clauses must be formulated in terms of encoding 
variables of Zi. Our conflict analysis technique achieves 
this by using only decision variables in the learned 
clauses, somewhat similar to Last UIP learning scheme 
described in [27]. 

 



4 Experimental results 
 
We have implemented jSAT algorithm to measure its 

applicability to the problem of BMC. Our implementation 
is based on the single-threaded version of the solver 
described in [22], which is reported to have slightly 
slower performance than zChaff [23]. 

In our implementation the clause set is represented 
with Watched Literals data-structure. Our decision 
strategy selects variables from earlier states of the path 
first; among the variables of the same state the decisions 
are chosen according to VSIDS heuristics [23]. 

The implication graph [27] is not explicitly built in our 
algorithm. Instead, each variable is associated with the 
clause that implied it – the antecedent clause, if the 
variable was assigned by the BCP process. Because of 
this, there is some information loss incurred by the 
operation of adjustment of the current and the next states : 
if a variable’s antecedent clause belongs to TR(U, V) part 
of the formula, then it  is incorrect to consider that clause 
antecedent after the adjustment of U and V to another pair 
of states. Thus, some or all of the edges of the implication 
graph are lost during the adjustment. This fact 
significantly affects the efficiency of conflict-driven 
learning, as more variables need to be included in the 
learned clauses than would be possible if the information 
were not lost. 

We implemented non-chronological backtracking and 
conflict-driven learning, but no restarting or other 
advanced optimizations. 

To measure the applicability of our algorithm we used 
a bounded model checker to generate formulae of the 
forms (2), (3), (4) and (5). The formulae of the form (2) 
were generated in DIMACS format and can be fed into 
many available SAT solvers. The formu lae of the forms 

(3) and (4) were generated in QDIMACS format and can 
be fed into available QBF solvers. The formulae of the 
form (5) are generated in a slightly customized DIMACS 
format, which adds the specification of the encoding 
variables to the formula description. 

We used a set of thirteen proprietary Intel® model 
checking test cases  of different sizes to compare the run-
time and memory consumption of our algorithm to those 
of the SAT and QBF solvers on formulae described 
above. For each test case we generated formulae of all 
kinds for the bounds in range from 3 to 20, resulting in 
the total amount of 234 formulae of each kind. Twenty of 
the formulae of the form (3) and (4) were publicly 
disclosed and participated in the QBF solver evaluation 
during SAT2004 conference. We used a dual Intel® 
Xeon™ 2.8 GHz Linux RH7.1 workstation with 4GB of 
memory for the experiments, and set a 300 seconds time 
out and 1 GB memory out limits on all the solvers. 

We used QuBE [24] and Semprop [25] QBF solvers to 
solve formulae of the form (3) and (4) for all the test 
cases. Unfortunately, both solvers were unable to solve 
practically any of the 234 formulae (QuBE, in fact, 
managed to solve three of them). We do not relate to the 
performance of the QBF solvers in the following 
paragraphs for brevity. 

To solve formulae of the form (2), we used the solver 
described in [22], and an Intel proprietary DPLL-based 
solver, which performs as good as the best current 
publicly available solvers. We compare the run-time and 
memory usage of these solvers with jSAT. Table 1 shows 
the sizes of the test cases in terms of the state variables in 
the model, and the number of formulae each of the solvers 
successfully coped with. As evident, jSAT managed to 
solve more than a half of the formulae, significantly more 
than the general-purpose QBF solvers. 

Table 2 shows the run-time and the memory usage of 

  # state vars jSAT [22] Intel solver 
test08 10 16 18 18 
test12 11 18 18 18 
test10 12 18 18 18 
test03 39 18 18 18 
test06 160 1 12 17 
test09 160 18 18 18 
test05 199 0 18 18 
test11 220 17 18 18 
test04 626 1 6 18 
test13 662 18 18 18 
test02 914 0 6 15 
test07 1055 0 11 18 
test01 2013 18 5 9 

Total (out of 234): 143 184 221 
Table 1 –  Number of bounds solved by each 

solver per test case. 

jSAT [22] Intel solver 
  sec MB sec MB sec MB 
test08 >300 2.5 0.3 3.4 0.0 3.1 
test12 0.0 3.1 0.0 3.1 0.0 3.1 
test10 0.2 2.6 1.2 4.9 0.5 4.9 
test03 0.0 3.1 0.0 3.1 0.0 3.1 
test06 >300 4.4 >300 46.1 >300 50.3 
test09 0.0 3.1 3.8 20.3 0.8 36.0 
test05 >300 9.7 74.5 40.8 9.8 36.8 
test11 205.1 4.8 8.9 25.6 2.7 44.2 
test04 >300 19.5 >300 264.0 292.4 227.0 
test13 2.0 9.7 109.1 95.9 22.2 104.1 
test02 >300 15.7 >300 80.4 >300 133.8 
test07 >300 19.5 >300 145.5 293.1 144.7 
test01 5.4 44.6 >300 624.8 14.2 >1024 

Table 2 –  Run-time and memory usage of each 
solver for bound 20 per test case. 



the three solvers on all the test cases for bound 20. As 
expected, the memory consumed by jSAT is significantly 
lower than by the other solvers, in some cases  by orders 
of magnitude. Noticeably, in the largest test case “test01”, 
jSAT achieved a better run-time, in addition to the 
significantly lower memory usage. 

The slower run-time of jSAT can be attributed mainly 
to the following reasons: 
• The overhead of the state adjustment operation is 

very high in our implementation. Indeed, the number 
of path backtracks in the depth-first path search in a 
highly connected state graph is very large. 

• There is a loss of information about antecedent 
clauses, as described above. 

• Our implementation does not use many of the 
advanced optimizations, which are implemented in 
the other solvers. 

 

5 Conclusions  
 
We presented an algorithm for checking whether a set 

of final states is reachable from a set of initial states in a 
state graph of a system for use in BMC. Our algorithm 
solves quantified formulae of the form (3) for real-life 
industrial examples, which cannot be solved by the to-
date state-of-the-art QBF solvers. The main contribution 
of this work is in that our algorithm is significantly more 
space-efficient than the existing SAT-based BMC 
algorithms, as it does not require “unrolling” of the 
transition relation. 

A number of improvements to our algorithm can be 
made, and they are subject for the future research: 
• Data structures for efficient state adjustment 

operations. 
• Alternative representation of the implication graph to 

avoid information loss incurred by state adjustments. 
• Incorporation of additional optimization techniques 

used in the current state-of-the-art solvers. 
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