
Qumran Letter Restoration
by Rotation and Reflection Modified PixelCNN

Lior Uzan
Blavatnik School of Computer Science

Tel Aviv University
Tel Aviv, Israel

lioruzan@mail.tau.ac.il

Nachum Dershowitz
Blavatnik School of Computer Science

Tel Aviv University
Tel Aviv, Israel

nachum@cs.tau.ac.il

Lior Wolf
Blavatnik School of Computer Science

Tel Aviv University
Tel Aviv, Israel
wolf@cs.tau.ac.il

Abstract—The task of restoring fragmentary letters is fun-
damental to the reading of ancient manuscripts. We present a
method to complete broken letters in the Dead Sea Scrolls, which
is based on PixelCNN++. Since the generation of the broken
letters is conditioned on the extant scroll, we modify the original
method to allow reconstructions in multiple directions. Results on
both simulated data and real scrolls demonstrate the advantage
of our method over the baseline. The implementation may be
found at github.com/ghostcow/pixel-cnn-qumran.

I. INTRODUCTION

The Dead Sea Scrolls date from the third century BCE to
the first century CE and are written on parchment or papyrus,
mainly in Hebrew (in various scripts), but also in Aramaic
and Greek. They are in the process of undergoing high-quality
digitization.1

Reconstructing the original texts from extant fragmentary
ones is a major aspect of Qumran studies. Broken letters
continue to pose a major challenge for scroll researchers. In
many cases, research papers are dedicated to the implications
of reading a broken or missing letter one way or another.
In this work, we train a neural-network model to predict the
pixel values of incomplete (broken) letters that are found at
the edges of extant fragments.

Our model is based on the PixelCNN++ [1] method. This
system, as well as the PixelCNN [2] and PixelRNN [3]
methods, are all designed to generate an entire image pixel-
by-pixel. Therefore, they are typically applied in a raster order
from top to bottom and from left to right. In our application,
a random part of the letter is missing, and the bulk of the
completion takes place in any direction relative to the existing
information. We therefore modify the method in order to
support arbitrary completion directions.

Our method is of immediate applicability. Due to the
deterioration of the scrolls over time, they contain many
broken letters, as can be seen in Fig. 1. These letters are usu-
ally interpreted by human scholars, deciphered using domain

Research supported in part by Grant #01019841 from the Deutsch-
Israelische Projektkooperation (DIP), Grant #1330/14 of the Israel Science
Foundation (ISF), Grant #I-145-101.3-2013 from the German-Israeli Founda-
tion for Scientific Research and Development (GIF), and a grant from the
Blavatnik Family Fund. It forms part of L.U.’s M.Sc. thesis at Tel Aviv
University.

1http://www.deadseascrolls.org.il.

knowledge and context. Although there exists an agreement
about some completions, many are debated. Thus, a tool to
complete these letters automatically and provide estimated
probabilities of different possible reconstructions would be of
great value to Qumran researchers.

Accordingly, we present a dataset of whole letters sampled
from undamaged parts of the scrolls, and a probabilistic
generative model trained on these samples to complete broken
letters.

Our contributions are the following:
a) Collection and annotation of a dataset of whole letters

from fragments belonging to manuscript 11Q5, the Great
Psalms Scroll.

b) Collection of edge patches to evaluate the algorithm’s
ability to complete broken letters.

c) Baseline results using PixelCNN++ on said dataset.
d) The development of PixelCNN++ variants that are able

to complete equally well in all directions.
The paper is organized as follows: Section II covers data

collection; Sections III-A and III-B explain autoregressive
modeling and the PixelCNN model, respectively; Section IV
is our method for letter completion; and Section V reports on
our experiments. It is followed by a brief discussion.

A. Previous Work

PixelCNN [3] is a powerful class of autoregressive models
for modeling natural images. They display diversity [4], are
easy to train [1] and are becoming more and more competitive
with GANs [5], [6], [7], [8] for generating natural images,
while offering inherent advantages such as explicit density
modeling. While some experiments on inpainting have been
performed using these types of models, usually the inpainted
area is a static rectangle [2], [9]. In our data, the missing
sections of broken letters changes from letter to letter. This is
both a challenge and a blessing. While the variability requires
a more comprehensive solution, it also allows us to exploit
some regularities from the underlying scroll when generating
images.

Pixel order in autoregressive models for image density
modeling has been studied in the context of completing
MNIST digits [9], yet there too the inpainted area is a regular
square. Inpainting has been performed on patches with random

lioruzan@mail.tau.ac.il
nachum@cs.tau.ac.il
wolf@cs.tau.ac.il
https://github.com/ghostcow/pixel-cnn-qumran
http://www.deadseascrolls.org.il


Fig. 1. Deteriorated area in a Qumran scroll. Left: infrared photograph. Right: full-color image.

contours with GANs [10], [11], yet these systems do not
provide precise likelihood scores for the generation, which are
important for our application.

II. DATA COLLECTION

Before we discuss our data collecting methods, we present
an informal explanation about the digital format of the scrolls.
All scrolls are photographed in high resolution at several
frequencies, both in visible light and in infrared (IR). Infrared
shows ink better, since it negates some discolorations and other
imperfections, so we proceed to use the (black and white) IR
images exclusively.

The scroll photographs are annotated with a number of
parameters. Some, such as plate number, fragment number,
and recto/verso, serve to identify the original fragment. Others,
such as LED light position, wavelength, date, and time, pertain
to the conditions under which the photograph was taken.
We seek to extract letters automatically from the images
and simulate the broken letters on scroll edges using semi-
synthetic masks. The data collection process is described in
the following subsections.

A. Whole Letters

The Qumran scrolls are made up of many fragments, surviv-
ing in varying degres of quality. To get the most complete and
clean letters, we use fragments from PAM plates 974–979,
all of which contain excerpts from the Great Psalms Scroll
(siglum 11Q5). We selected these fragments because they are
large and relatively well preserved, one of the best preserved
Biblical manuscripts discovered in the Qumran caves.

To extract letters from the scrolls, we use a simple word
spotting algorithm [12]. The algorithm receives a binarized
image as input and then uses connected components in order
to detect, group, and subsequently crop letters from the pho-
tographs. Configuration parameters include minimal/maximal
component height/width/size.

We note that there is a great variation between images
with regard to color intensity levels and size. Even within
two photographs of the same fragment there may be great
variability. For example, if one photograph is slightly darker
than the other, the same binarization threshold may produce
clear letters in one image, yet noisy or incoherent letters in

Fig. 2. Noise, broken letters, and frames containing more than one letter were
discarded.

Fig. 3. Some samples of the letters in the dataset. First row: whole letters.
Second row: artificially broken letters.

the other. This problem hinders efficient data collection, as
manually modifying the threshold for each photograph is both
time consuming and introduces inconsistencies in letter shape
and thickness. We leave this problem for future work. In the
version used in this paper, all thresholds were set manually.

The output of the connected component filtering step is a set
of rectangles cropped closely to individual letters. Size range
is 140–340 over 110–230. We discarded images of non-letters
(such as holes in the scroll), broken letters, and images that
clearly have more than one whole letter in them. Examples of
discarded letters can be seen in Fig. 2.

We then resize the letter images using bicubic interpolation
to 32×32, while maintaining the aspect ratio. Samples can be
viewed in Fig. 3 (top). Using this process, we extracted a total
of 4284 valid complete letter samples. We also attempted to
annotate the samples, but the varying style of writing between
fragments lead to some incorrectly labeled labels. We did not
use these annotations in our experiments; letter statistics for
are collected for posterity’s sake in Fig. 4.

B. Semi-Synthetic Masks

With the whole letter dataset in place, we need a way to
evaluate our model on the task of broken letter completion.



Fig. 4. Histogram of the annotated letters in the dataset. Letters marked with
an exclamation mark are Aramaic.

Fig. 5. Mask extraction process.

Unfortunately, average log-likelihood score of the images in
some validation set is not a good metric for this task [13], [1],
[6]. In completing broken letters we have some information
on the letter: we have some existing ink and we know where
the edge of the scroll is. The scroll area (with and without the
ink) can be viewed as a mask on the image.

To address these points, we generate masks synthetically,
and use peak signal-to-noise ratio (PSNR) to evaluate letter
completion in a validation set. See Fig. 3 for examples of the
end result. To obtain mask patches we first select a fragment
with highly deteriorated edges, yet large enough to produce
a multitude of samples. One such fragment is fragment 004
of plate 976. We clear the contents of the fragment, then crop
randomly selected patches of size 256×256 from the edge. The
masks are resized to 32×32 and assigned, one mask per letter,
to the letters in the validation set. The method is described in
Fig. 5, and final samples can be viewed in Fig. 3.

C. Training and Validation Sets

To create a validation set, we must sample uniformly from
our data. Yet, some fragments are so large that they are
photographed in parts, and these parts overlap, so we cannot

share letters from the same fragment between training and
validation sets without risking contamination. We take 147
letters from fragment 4 of plate 976 for validation, and leave
the rest (4137) for the training set. Further implementation
details can be found in the released code.

D. Real Broken Letters

To verify that the system works, we compiled a list of 19
broken letters for which there is a scholarly agreement on their
correct readings. We located them and cropped their images
from the corresponding fragments. Patches were extracted
from the infrared photographs of the fragments like those
in the dataset. We cleaned the patches by deleting all non-
scroll textures, leaving only the ink and some parchment.
We then proceeded to binarize and color-invert the patch to
conform with the data format of the letters in the dataset. The
binary mask was created by whitening the leftover parchment
area. Finally, the letters and masks were resized to 32×32
while preserving the aspect ratio of the images. Due to the
preservation of the aspect ratio, resizing created margins.
We extended the mask to these margins because nothing is
supposed to be generated there. The evaluation protocol will
be described in detail in Section V.

III. MODEL

A. Autoregressive Generative Models

To explain PixelCNN, we must first explain what an au-
toregressive generative model is. An autoregressive generative
model is a generative model that models the probability of
multivariate data by modeling the conditional probabilities
of each dimension on all previous dimensions (given some
ordering). See [9] for an in-depth review of such models. In
our case, the data is the images of whole letters from the
Qumran scrolls, and the individual dimensions correspond to
the pixels in the image. To be precise, let x be an image of
size n×n. Define x1, . . . , xn2 to be the pixels taken from the
image row by row in raster scan order. We assign a probability
p(x) = p(x1, x2, . . . , xn2) to the image, which by repeated
application of Bayes’ theorem can be written as:

p(x) =
n2∏
n=1

p(xi|x1, x2, . . . , xi−1). (1)

The value p(xi|x1, x2, . . . , xi−1) is the probability of the
ith pixel xi given all the previous pixels x1, . . . , xi−1. These
conditional probabilities over all possible pixel values xi ∈
{0, . . . , 255} are modeled by a neural network and are sampled
according to it when generating an image. When sampling
whole images from such a model, one begins by feeding an
empty image (i.e. an array of size n×n zeros), then sampling
from the probabilities over pixel values generated for the top
left corner pixel. Then, this pixel value is copied back to the
input image, and the process is repeated to sample the second
pixel, and so on. This process is repeated n2 times until all
pixels have been sampled.



Fig. 6. PixelCNN algorithm. In this example, PixelCNN completes a broken dalet. Yellow and purple represent the unknown areas; white and black are
known parts of the image; gray denotes areas to be completed. Each completion is a grayscale value between 0 and 255. The process is finished when all
missing pixels have been completed.

The process for completing a broken letter is the same,
except known pixels are not overridden. See Fig. 6 for a
description of the process.

B. PixelCNN and PixelCNN++

PixelCNN, first described in [2] an autoregressive generative
model, designed for image data. In essence, it is a convo-
lutional neural network [14] with “masked” convolutions,
used to model the conditional probabilities of each pixel
p(xi|x1, x2, . . . , xi−1). The model we use in this work is the
improved version called PixelCNN++ [1]. We now explain the
model components in greater detail.

1) Masked Convolutions and the Dual Stream: In our
scenario, each pixel is considered a random variable that
takes on values from {0, . . . , 255}. Each output must receive
information only from pixels before it in order. Thus, each
convolution must be masked such that the output at each step
does not see “forward” pixels (Fig. 7). The size of the filter
in each layer is small, however, the receptive field increases
with depth, and after a sufficient number of layers, each output
receives information from all pixels before it. Some problems
arise when using masked convolutions regarding receptive field
growth. The shape of the masked convolution creates “dead
zones” in the receptive field, from which no information is
received. The solution given in [2] is to create two “streams”
of convolutions, one with a filter that expands the RF to pixels
above and to the right of current pixel, and one that expands
up and to the left. For brevity we omit details; please refer
to [2] for further explanation.

2) Gated Convolutions: The rectified linear units between
convolutions are replaced with multiplicative units, or gated
activation units:

y = tanh(Wk,f ∗ x)� σ(Wk,g ∗ x)

Where k is the layer number, σ the logistic sigmoid func-
tion, � the element-wise product, and ∗ is the convolutional

Fig. 7. Masked convolution. The center input pixel is used in all but the first
layer.

operator. At the output, in our case, each pixel has one
value: intensity. This is modeled as a multiclass classification
problem where the classes are {0, . . . , 255}. The network
outputs are set to size n× n× 256. Let the output at location
i ∈ {1, . . . , n2} be o ∈ R256. Let o = (o0, . . . , o255), then the
probability pixel i receives value k is defined by the Softmax
function:

P (xi = k) =
eok∑255
j=0 e

oj
,

and is optimized using the conventional cross entropy loss.

C. PixelCNN++ Architectural Improvements

PixelCNN++ [2] improves upon the original PixelCNN
architecture, without changing the underlying method.

1) Subsampling for Expanding Receptive Field: The au-
thors of [1] use subsampling within the network to further
enlarge the receptive field of network layers. Subsampling has
been shown to expand the receptive field of convolutions both
theoretically and effectively [15]. In contrast with PixelCNN,
where all convolutions retained spatial resolution of the in-
put, PixelCNN++ downsamples twice by a factor of 2, then
upsamples twice to regain the original resolution.



2) Discretized Logistic Mixture Likelihood: The Softmax
distribution, while extremely flexible, is costly in terms of
memory and inhibits efficient optimization in various ways
[1]. PixelCNN++ instead uses discretized logistic mixture to
model conditional pixel probabilities, with the loss function
being simply the likelihood of the pixel values in the image.

IV. MODIFYING PIXELCNN++ FOR BROKEN LETTERS

Our goal is to improve broken letter completion over a
PixelCNN++ baseline, using existing information about scroll
orientation. One possible approach is to increase the amount of
known scroll pixels the model is conditioned upon at the start
of the generation sequence. This can be done by reordering
the pixels, such that the known pixels will be at the start of
the sequence. However, by changing the pixel order arbitrarily,
we lose the ability to exploit 2D topology information. This
is crucial for PixelCNN, because it’s convolutional layers rely
on local pixel correlations to learn [14].

Our approach is instead to adaptively rotate and reflect the
broken letters in a way that advances known pixels from the
scroll up the order of completion. We train a baseline of
PixelCNN++ and three variants to this end:

• Single model adaptive orientation.
• Single model adaptive orientation; conditional.
• Multiple model adaptive orientation.

A. Adaptive Orientation

We notice that when completing letters on the edges of
scrolls, the mask will consistently be attached to one of the
sides of the letter (see Fig. 5). Thus, transforming the image
using reflections and rotations of 90 degrees, we can have
the mask be in the top part of the image. This order places
most of the known pixels first. For example, in Fig. 8 the
orientation that maximizes the number of known pixels in
the top rows, is the orientation on the second row, second
column. This guarantees an increased amount of known pixels
be conditioned on, without deforming or breaking 2D topology
structure. In addition, these orientations comprise an extremely
small number of transformations, relative to the possible space
of pixel permutations.

Let the center of mass of some mask be cx, cy , and c̃x, c̃y be
the the center of mass after some combination of rotations and
reflections. We define this sequence of rotations/reflections to
be correct if 0 ≤ c̃x ≤ n/2, c̃y ≤ c̃x in image coordinates.
Since the image can be rotated and reflected so that any
single point will be in the aforementioned area, one can
find a rotation-reflection sequence simply by trying all 8
options. When completing a broken letter, we rotate it first
to the correct orientation, then complete the missing pixels as
explained in Section III-A.

B. The PixelCNN++ Variants in Our Experiments

1) Unmodified PixelCNN++ Baseline: To use the regular
PixelCNN++ on our data, we make the changes described
earlier in Section IV, and simply feed our data to the model.
Precise hyper-parameters are specified in Section V-A.

Fig. 8. Different orientations. Our method selects the sixth orientation (second
row, second column) to complete the gray area.

2) Single Model Adaptive Orientation: In this variant, we
rotate each minibatch of images randomly every training
iteration. The idea is that once shown a broken letter to
complete in some orientation, the model would deduce which
one it is and complete it accordingly. This can also be an
issue, because we do not control the orientation “guessed” by
the model. We attempt to rectify this in the next variant.

3) Single Model Adaptive Orientation, Conditional: Let h
be a latent vector that describes some high-level property in
an image. We seek to model p(x|h), to be able to generate
samples influenced by this property. The previous model
was trained on all orientations, yet the orientation cannot be
explicitly stated during completion. We attempt to solve this
problem by setting h to be a label describing the correct
orientation of the input. We train an adaptive orientation model
conditioned on the current sample orientation. The network
architecture is described in Section V-A.

4) Multi-model Adaptive Orientation: In this variant, we
train seven more models in addition to the baseline, each
one with a fixed orientation, totaling eight models – one per
orientation. At test time, we select which model to use on each
sample based on its correct orientation. This can be seen as
an alternative method to controlling in what direction a letter
should be completed.

V. EXPERIMENTS

A. Model Specifications

We first perform model selection for all methods by select-
ing the top performing models in bits/dim on the validation
set, as in [3], [2], [1]. Bits/dim is the total discrete log-
likelihood, normalized by the image dimensions (in our case
32 × 32 = 1024). This represents the number of bits that
a compression scheme based on this model would need to
compress every pixel color value [13].

All models share the same basic modified PixelCNN++
architecture described in Section IV. Namely, there are six
blocks of five ResNet style, two-stream, gated masked convo-
lutional layers. Two downsamples and two upsamples are per-
formed between blocks (1, 2), (2, 3), (4, 5), (5, 6) via strided
convolutions and transposed strided convolutions, respectively.
In addition to this, skip connections are used to connect
blocks of same spatial resolution. Logistic mixtures of five



components are used for the probability modeling. Dropout is
used in each ResNet style layer between convolutions, with
dropping probability p = 0.5. For the set orientation models,
we use 30 filters per convolution; for the multi-orientation
single models we use 80 filters. In the conditional model,
conditioning is done as described in [1], via dynamic biases
in each layer. To each layer is added a bias dependent on the
current orientation label.

B. Evaluation Methods

We perform two sets of evaluations. First, an evaluation on
broken letters from our validation set, where we know the
ground truth. Second, we evaluate real broken letters, where
we use human evaluation to measure performance, as we don’t
have the whole letter as ground truth.

In the first set of experiments, we employ the synthetic
masks on the test set in order to simulate broken letters. For
this benchmark, we complete the letters of the entire validation
set using the various methods, compare the completions with
the corresponding ground truth, which contains the whole
letters, and measure PSNR. Since we sample from our model
probabilistically, a single sample might not yield the correct or
best completion, so each result reported is the mean average
PSNR over the test set, over 10 runs.

In the second experiment, the baseline and the best per-
forming model is used to complete a held out test set of real
broken letters. With each model, every letter in the test set is
completed 20 times. In total, 2× (20×19) = 760 samples are
generated. We only have information on the test letters based
on expert consensus, because they are broken in the Qumran
scrolls. We therefore employ human reading of the completion
in order to measure our methods’ success. The human expert
reviews the letters from the methods tested in random order,
proceeds to label them according to what letter s/he sees.
Unidentifiable letters are not labeled. We then compare these
labels to the ground truth. The samples are then sorted by
likelihood, as reported by the model.

C. Training Details

For each method tested, early stopping was used. Batch size
was a constant 48; each model was trained on a single GPU.
Polyak averaging was applied on the parameters; geometric
learning rate decay with a factor of 0.9999995 was used for
the set orientation models and a 0.999995 decay rate for the
single-model methods. The fixed-orientation models reached
the low point in validation loss after about 200 epochs, the
single-model adaptive orientation at 556, and the conditional
version after 697 epochs.

D. Results on the Validation of Broken Letters

Results are given in Table I. All models trained on a single
orientation reach approximately the same results on training
and validation sets. The small gap between the two losses
indicates that there was no overfitting in either. Clearly, the
single model method with adaptive orientation is superior
to any fixed orientation model, both in terms of bits/dim

and in terms of PSNR. Also, we see that the multi-model
method is comparable to the single model version. Finally,
the conditional experiment failed, producing poor PSNR re-
sults. The model still achieves good bits/dim results, perhaps
indicating some form of overfitting not captured by this metric.
Operatively, we notice that the conditioning mechanism does
not work well. When we attempt to set the orientation, we
frequently get a letter in some other orientation altogether.

E. Results on Real Broken Letters

As we have seen (Table I), the adaptive single- and multi-
models achieve the best PSNR results. After observing several
completions of validation broken letters, we noticed that the
adaptive single model may complete a letter fixed to one
orientation as a completely different orientation. This behavior
was observed also in the conditional model. Since our work
is application driven, we drop these models from the final
evaluation. (Researchers should not be confused by unexpected
flips or rotations.) Therefore, when we tested and evaluated on
real broken letters, we included only the “no flip or rotation”
baseline and the adaptive orientation multi-model.

Fig. 9 graphs the average correct prediction rate per “top
k” most-likely samples. The correct prediction rate is taken
per letter amongst the top k scoring samples, then an average
is taken over all test letters. As seen, our model significantly
outperforms the baseline in accuracy, with 20% correct com-
pletions on average. Looking at lower-ranked completions
does not help.

We tried also to measure sample diversity by reporting
correct generations per “top k” completions (Fig. 11). For each
of the 19 test letters, we judged a group of generations to
be successful if any of the top k completions were identified
as correct by a human evaluator. When selecting the most
likely examples, the adaptive orientation method outperforms
the baseline at most values of k. Interestingly, when selecting
the most likely sample in the baseline model, we get only 1
correct completion out of the 19, versus 4 correctly completed
letters by the adaptive multi-model. The latter plateaus with
the correct answer among the top 11 completions in 7 out of
the 19 cases.

VI. CONCLUSIONS

We presented a dataset and a novel approach to modeling
broken letters from the edges of the ancient Qumran scrolls.
Our method exploits scroll structure to improve letter comple-
tion. Results were reported for a benchmark of artificially-
created broken letters, as well as for a benchmark of real
broken letters on which there is scholarly agreement. For
both benchmarks, our method clearly outperforms a strong
PixelCNN++ baseline. Future work may leverage recent ad-
vancements in the field to generate samples faster [8] and in
higher resolution [5].

REFERENCES

[1] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++:
Improving the pixelcnn with discretized logistic mixture likelihood and
other modifications,” arXiv Preprint arXiv:1701.05517, 2017.



TABLE I
RESULTS OF VARIOUS METHODS. TRAINING AND VALIDATIONS LOSS VALUES ARE REPORTED IN BITS/DIM. PSNR IS EVALUATED OVER 10 RUNS; THE

STANDARD DEVIATION OF EACH IS IN PARENTHESES.

Model Adaptive Train Loss Val. Loss Mean avg PSNR Mean PSNR SD
No flip or rotation No 1.22 1.38 13.33 (0.20) 4.86 (0.22)
90◦ rotation No 1.21 1.39 11.88 (0.11) 4.56 (0.19)
180◦ rotation No 1.21 1.38 10.10 (0.14) 4.07 (0.30)
270◦ rotation No 1.21 1.39 12.26 (0.07) 4.55 (0.29)
Hor. Flip No 1.22 1.38 13.37 (0.17) 5.12 (0.22)
Hor. Flip + 90◦ rotation No 1.22 1.39 12.71 (0.18) 4.77 (0.36)
Hor. Flip + 180◦ rotation No 1.22 1.38 10.19 (0.13) 4.10 (0.39)
Hor. Flip + 270◦ rotation No 1.22 1.39 11.41 (0.12) 4.76 (0.16)
Multi-model Yes - - 15.54 (0.14) 4.70 (0.29)
Single Model Yes 1.19 1.33 15.55 (0.14) 4.61 (0.32)
Single Model, Conditional Yes 1.20 1.33 14.72 (0.09) 4.68 (0.18)

Fig. 9. Average accuracy per top k likely completions. The average is over
the letters in the real letters test set.

Fig. 10. Comparison of successful generations as a function of the most
probable completions in each model.

[2] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent
neural networks,” arXiv Preprint arXiv:1601.06759, 2016.

[3] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt,
A. Graves, and K. Kavukcuoglu, “Conditional image generation
with PixelCNN decoders,” June 2016. [Online]. Available: http:
//arxiv.org/abs/1606.05328

Fig. 11. Examples of completions from the test set, using Adaptive Orienta-
tion. First row: original broken letters. Second row: processed versions. Third
row: the completions, colored to show the completed area.

[4] S. Reed, A. van den Oord, N. Kalchbrenner, V. Bapst, M. Botvinick,
and N. de Freitas, “Generating interpretable images with controllable
structure,” 2016, draft.

[5] S. Reed, A. v. d. Oord, N. Kalchbrenner, S. G. Colmenarejo, Z. Wang,
D. Belov, and N. de Freitas, “Parallel multiscale autoregressive density
estimation,” arXiv Preprint arXiv:1703.03664, 2017.

[6] R. Dahl, M. Norouzi, and J. Shlens, “Pixel recursive super resolution,”
arXiv Preprint arXiv:1702.00783, 2017.

[7] A. Kolesnikov and C. H. Lampert, “Latent variable PixelCNNs for
natural image modeling,” 2016.

[8] P. Ramachandran, T. L. Paine, P. Khorrami, M. Babaeizadeh,
S. Chang, Y. Zhang, M. A. Hasegawa-Johnson, R. H. Campbell,
and T. S. Huang, “Fast generation for convolutional autoregressive
models,” CoRR, vol. abs/1704.06001, 2017. [Online]. Available:
http://arxiv.org/abs/1704.06001

[9] B. Uria, M.-A. Côté, K. Gregor, I. Murray, and H. Larochelle, “Neural
autoregressive distribution estimation,” Journal of Machine Learning
Research, vol. 17, no. 205, pp. 1–37, 2016.

[10] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2536–2544.

[11] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li, “High-
resolution image inpainting using multi-scale neural patch synthesis,”
arXiv Preprint arXiv:1611.09969, 2016.

[12] A. Kovalchuk, L. Wolf, and N. Dershowitz, “A simple and fast word
spotting method,” in Frontiers in Handwriting Recognition (ICFHR),
2014.

[13] L. Theis, A. v. d. Oord, and M. Bethge, “A note on the evaluation of
generative models,” arXiv Preprint arXiv:1511.01844, 2015.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[15] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective
receptive field in deep convolutional neural networks,” in Advances in
Neural Information Processing Systems, 2016, pp. 4898–4906.

http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1704.06001

