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“Goods Satisfactory or Money Refunded” – The Eaton Promise

Abstract. We study – within the framework of propositional proof com-
plexity – the problem of certifying unsatisfiability of CNF formulas under
the promise that any satisfiable formula has many satisfying assignments,
where “many” stands for an explicitly specified function Λ in the number
of variables n. To this end, we develop propositional proof systems under
different measures of promises (that is, different Λ) as extensions of reso-
lution. This is done by augmenting resolution with axioms that, roughly,
can eliminate sets of truth assignments defined by Boolean circuits. We
then investigate the complexity of such systems, obtaining an exponen-
tial separation in the average-case between resolution under different size
promises:
(i) Resolution has polynomial-size refutations for all unsatisfiable 3CNF

formulas when the promise is ε·2n, for any constant 0 < ε < 1.
(ii) There are no sub-exponential size resolution refutations for random

3CNF formulas, when the promise is 2δn (and the number of clauses
is o(n3/2)), for any constant 0 < δ < 1.

1 Introduction

Demonstrating unsatisfiability of propositional formulas is one of the most fun-
damental problems in complexity theory, as well as in hardware and software
validation. Any standard sound and complete propositional proof system has
the ability to separate the set of unsatisfiable formulas in conjunctive normal
form (CNF) from the set of CNF formulas having at least one satisfying assign-
ment, in the sense that every unsatisfiable CNF has a refutation in the system,
while no satisfiable CNF has one. Our goal is to develop and study, within the
framework of propositional proof complexity, systems that are “sound and com-
plete” in a relaxed sense: they can separate the set of unsatisfiable CNF formulas
from the set of CNF formulas having sufficiently many satisfying assignments
(where the term “sufficiently many” stands for an explicitly given function of the
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number of variables in the CNF). We call such proof systems promise refutation
systems, as they are complete and sound for the set of CNF formulas promised
to be either unsatisfiable or to have many satisfying assignments.

As the proof systems we develop here intend to prove the unsatisfiability
of CNF formulas (in other words, to refute them, which is to validate their
negation), we will work solely with refutation systems, and shall speak about
refutations and proofs interchangeably, always intending refutations, unless oth-
erwise stated. In particular, we work with refutation systems that extend the
widely studied resolution refutation system.

Our first task is to introduce a natural model for promise propositional refu-
tation systems. This is accomplished by augmenting the standard resolution
refutation system (or any other propositional proof system extending resolution)
with an additional collection of axioms, the promise axioms. Each refutation in
a promise refutation system can make use of at most one promise axiom. The
promise axioms are meant to capture the idea that we can “ignore” or “discard”
a certain number of truth assignments from the space of all truth assignments,
and still be able to certify (due to the promise) whether the given CNF is un-
satisfiable or not. The number of assignments that a promise axiom is allowed
to discard depends on the promise we are given, and specifically it needs to be
less than the number of assignments promised to satisfy a given CNF (unless it
is unsatisfiable).

Assuming we have a promise that a satisfiable CNF has more than Λ satisfy-
ing assignments then we can discard up to Λ assignments. We refer to Λ as the
promise. This way the refutation system is guaranteed not to contain refutations
of CNF formulas having more than Λ satisfying assignments, as even after dis-
carding (at most Λ) assignments we still have at least one satisfying assignment
left, and on the other hand, any unsatisfiable CNF formula has a refutation in
the system, as resolution already has a refutation of it. We now explain (some-
what informally) what it means to discard assignments and how promise axioms
formulate the notion of discarding the correct number of truth assignments.

Essentially, we say that a truth assignment a is discarded by some Boolean
formula if a falsifies the formula. More formally, let X := {x1, ..., xn} be the set
of the underlying variables of a given CNF, called the original variables. Let A be
some CNF formula in the X variables, and assume that A also contains variables
not from X called extension variables. Let a ∈ {0, 1}n be a truth assignment to
the X variables, and assume that there is no extension of a (to the extension
variables) that satisfies A. Thus, any assignment satisfying A must satisfy also
X 6≡ a (that is, A |= X 6≡ a), and so any (implicationally) complete proof
system can prove X 6≡ a from A, or, in the case of a refutation system, can
refute X ≡ a, given A. In this case, we say that the assignment a is discarded
by A.

The promise axioms we present have two main properties:

(I) They discard assignments from the space of possible assignments to the
variables X .



(II) They express the fact that not too many assignments to the variables X are
being discarded (in a manner made precise).

The first property is achieved as follows: Let C be any Boolean circuit with
n output bits. Then we can formulate a CNF formula denoted by A (using
extension variables) expressing the statement that the (vector of) variables X
is equal to the output of C. This enables A to discard every truth assignment
to the X variables outside the image of the Boolean map defined by C (as if an
assignment a to the X variables is not in the image of C then no extension of a

can satisfy A, assuming the formulation of A is correct). (The actual definition
is a bit different than described here, due to technical reasons; see Sect. 3).

The second property is achieved as follows: Assume we can make the state-
ment that the domain of the map defined by the Boolean circuit C above is of
size at least 2n −Λ explicit (see Sect. 3 for more details on this). Then, in order
for the second property to hold it is sufficient that the axiom formulates the
statement that the circuit C defines an injective map (and thus the image of the
map contains enough truth assignments), which can be done quite naturally.

Given a certain promise and its associated promise axiom, we call a refutation
of resolution augmented with the promise axiom a resolution refutation under
the (given) promise.

Our second task, besides introducing the model of promise refutation sys-
tems, is to investigate the basic properties of this model and in particular to
determine its average-case proof complexity with respect to different size of
promises (see below for a summery of our findings in this respect).

1.1 Background and Motivation

In propositional proof complexity theory, it is standard to consider an abstract or
formal propositional proof system (usually called a Cook-Reckhow proof system,
following [3]) as a polynomial-time algorithm A that receives a Boolean formula
F (usually in CNF) and a string π over some finite alphabet (“the (proposed)
refutation” of F ), such that there exists a π with A(F, π) = 1 if and only if F
is unsatisfiable. (A string π for which A(F, π) = 1 is also called a witness for
the unsatisfiability of F .) Equipped with this abstract definition of propositional
proof systems, showing that for every abstract proof system there exists some
family of formulas F for which there is no polynomially-bounded family of proofs
π of F is equivalent to showing NP6=coNP.

For this reason (among others), it is customary in proof complexity theory
to concentrate on specific (sometimes provably weaker) proof systems for which
proofs have a simple structure. This makes the complexity analysis of such proof
systems simpler. Prominent examples of such systems are Frege systems and
weaker subsystems of Frege, the most notable of which is the resolution refutation
system, which also plays an important rôle in many automated theorem provers.
In accordance with this, we shall be interested not with abstract promise proof
systems (that is, not with finding general witnesses for unsatisfiability, possibly



under a promise), but rather with specific and more structured proof systems,
and specifically with refutation systems built-up as extensions of resolution.

A natural relaxation of the problem of unsatisfiability certification is to re-
quire that, if a CNF is satisfiable, then it actually have many satisfying assign-
ments. As mentioned above, we call the specific number of assignments (as a
function of the number of variables n) required to satisfy a satisfiable CNF for-
mula, the promise. Accordingly, one can define an abstract promise proof system
in an analogous manner to the definition of an abstract proof system. It is thus
natural to ask whether giving such a promise can help in obtaining shorter proofs
of unsatisfiability.

In the case of a big promise, that is, a constant fraction of the space of
all truth assignments (Λ = ε · 2n, for a constant 0 < ε < 1), there is already
a deterministic polynomial-time algorithm for any fixed natural number k that
certifies the unsatisfiability of all unsatisfiable kCNF formulas under the promise:
The algorithm receives a kCNF that is either unsatisfiable or has more than Λ
satisfying assignments and answers whether the formula is unsatisfiable (in case
the formula is satisfiable, the algorithm provides a satisfying assignment); see the
papers by Hirsch [6] and Trevisan [7] for such efficient algorithms. This trivially
implies the existence of polynomial-size witnesses for any unsatisfiable kCNF
under the promise ε · 2n. But does already resolution admit such short witnesses
of unsatisfiability (that is, resolution refutations) under a big promise? We show
that the answer is positive (for all unsatisfiable 3CNF formulas).

In the case of a smaller promise, by which we mean Λ = 2δn for a con-
stant 0 < δ < 1, it is possible to efficiently transform any CNF over n variables
to a new CNF with n′ = ⌈n/(1 − δ)⌉ variables such that the original CNF is
satisfiable if and only if the new CNF has at least 2δn′

satisfying assignments.
This can be achieved by adding “dummy variables” (e.g. variables that do not
occur at all in the formula or by adding any satisfiable CNF consisting of these
dummy variables to the original CNF). Thus, the worst-case complexity of cer-
tifying CNF unsatisfiability under such a promise is polynomially equivalent to
the worst-case complexity of certifying CNF unsatisfiability without a promise.
However, it is still possible that a promise of 2δn might give some advantage
(that is, a super-polynomial speedup over refutations without a promise) in cer-
tifying the unsatisfiability of certain (but not all) CNF formulas; for instance, in
the average-case.3

Feige, Kim and Ofek [5] showed that when the number of clauses is Ω(n7/5)
there exist polynomial-size witnesses that witness the unsatisfiability of 3CNF
formulas in the average-case. On the other hand, Beame et al. [1] and Ben-Sasson
and Wigderson [2] showed that resolution does not provide sub-exponential refu-

3 Note that if we add dummy variables to a 3CNF then we obtain an “atypical in-
stance” of a 3CNF. Thus, assuming we have polynomial-size witnesses of unsatis-
fiability of 3CNF formulas under a small promise in the average-case (the “typical
case”), the reduction alone (that is, adding dummy variables) does not automati-
cally yield polynomial-size witnesses for 3CNF formulas in the average-case without
a promise as well.



tations for 3CNF formulas in the average-case when the number of clauses is at
most n(3/2)−ǫ, for any constant 0 < ǫ < 1/2. This shows that general witnessing
of 3CNF unsatisfiability is strictly stronger than resolution refutations. But is it
possible that under a promise of 2δn resolution can do better in the average-case?
We show that the answer is negative.

There are several reasons that motivate the study of propositional proofs
under a given promise and their complexity. The first is to answer the natural
question whether CNF unsatisfiability certification enjoys any advantage given a
certain promise. As already mentioned, the answer is positive when the promise
is a constant fraction of all the truth assignments, and our results imply that this
phenomenon already occurs for resolution. For a small promise of 2δn, we can
show that at least in the case of resolution refutations of most 3CNF formulas (of
certain clause-to-variable density) the answer is negative. In fact, we can show
that the answer stays negative even when the promise is bigger than 2δn, and

specifically when Λ = 2n/2nξ

for some constant 0 < ξ < 1.
Furthermore, it is an interesting general goal to develop natural frameworks

for propositional proofs that are not sound in the strict sense, but rather possess
an approximate notion of soundness (like showing that certain “approximations”
give speed-ups). This might also shed light on the complexity of standard proof
systems, an issue where most problems (and in particular lower bounds) seem
hard to tackle. For this purpose, the proof systems we propose formalize – in a
natural way – the notion of separating unsatisfiable CNF formulas from those
that have many satisfying assignments. The promise axioms we present also
allow for a natural way of controlling the size of the promise, which in addition
leads to an exponential separation between different size promises.

This paper introduces the concept of propositional proofs under a promise,
analyzes the proof complexity of these proof systems with respect to different
promise sizes, giving a separation between promises of different sizes, and also
illustrates several new facts about the widely studied resolution proof system.

1.2 Results

We show that resolution refutations are already enough to efficiently separate
unsatisfiable 3CNF formulas from those 3CNF formulas with an arbitrarily small
constant fraction of satisfying assignments. In particular, in Section 4, we show
the following:
First Main Result: Let 0 < ε < 1 be some constant and let Λ = ε · 2n

be the given promise. Then every unsatisfiable 3CNF with n variables has a
polynomial-size (in n) resolution refutation under the promise Λ.

The proof resembles a deterministic algorithm of Trevisan [7] for approxi-
mating the number of satisfying assignments of kCNF formulas.

In contrast to the case of a big promise, we also show that, at least for
resolution, a small promise of Λ = 2δn (for any constant 0 < δ < 1) does not
give any advantage over standard resolution (resolution without the promise
axioms) in most cases (that is, in the average-case). Specifically, in Section 5, we
show the following:



Second Main Result: Let 0 < δ < 1 be any constant and let Λ = 2δn be
the given promise. Then, there is an exponential lower bound on the size of
resolution refutations of random 3CNF formulas under the promise Λ, when the
number of clauses is o(n3/2).

This lower bound actually applies to a more general model of promise proofs.
It remains valid even if we allow (somehow) the promise proofs to discard arbi-
trarily chosen sets of truth assignments (of Λ = 2δn size), and not necessarily
those sets that are definable by (small) Boolean circuits. In fact, the lower bound

applies even to a bigger promise of Λ = 2n−nξ

, for some constant 0 < ξ < 1.
The proof strategy of this lower bound follows that of Ben-Sasson and

Wigderson [2] (the size-width tradeoff approach), and so the rate of the lower
bound matches the one in that paper. The main novel observation is that under
the appropriate modifications this strategy also works when one restricts the
set of all truth assignments to a smaller set (that is, from 2n down to 2n − 2δn

for a constant 0 < δ < 1, and in fact down to 2n − 2n−nξ

, for some constant
0 < ξ < 1).

It is important to note that the two main results above show that the decision
to discard sets of truth assignments defined by Boolean circuits does not effect
the results in any way, and thus should not be regarded as a restriction of the
model of promise refutations (at least not for resolution). To see this, note that
we could allow a promise refutation to discard arbitrarily chosen sets of truth
assignments (of the appropriate size determined by the given promise); that is,
sets of truth assignments that are not necessarily definable by (small) Boolean
circuits. However, although this modification strengthens the model it is not
really necessary for the upper bound in Main result 1, as this upper bound is
already valid when one discards sets of truth assignments by (small) Boolean
circuits. On the other hand, as mentioned above, the lower bound in Main result
2 is already valid when one allows a promise refutation to discard any arbitrarily
chosen set of truth assignments (of the appropriate size).

The exact model of promise propositional proof systems is developed in
Sect. 3. It is preceded by preliminaries and terminological conventions.

2 Preliminaries

Resolution refutation system. Resolution is a complete and sound proof
system for unsatisfiable CNF formulas. Let C and D be two clauses containing
neither xi nor ¬xi, the resolution rule allows one to derive C ∨ D from C ∨ xi

and D∨¬xi. The clause C ∨D is the resolvent of the clauses C ∨xi and D∨¬xi

on the variable xi. The weakening rule allows to derive the clause C ∨ D from
the clause C, for any two clauses C, D.

Definition 1 (Resolution). A resolution proof of the clause D from a CNF
formula K is a sequence of clauses D1, D2, . . . , Dℓ , such that: (1) each clause
Dj is either a clause of K or a resolvent of two previous clauses in the sequence
or derived by the weakening rule from a previous clause in the sequence; (2) the



last clause Dℓ = D. The size of a resolution proof is the total number of clauses
in it. A resolution refutation of a CNF formula K is a resolution proof of the
empty clause 2 from K (the empty clause stands for false).

Let K be an unsatisfiable CNF formula. The resolution refutation size of K
is the minimal size of a resolution refutation of K. If K has a polynomial-size
resolution refutation we say that resolution can efficiently certify the unsatis-
fiability of K. Similarly, if the clause D has a polynomial-size resolution proof
from K we say that D is efficiently provable from K.

Boolean circuit encoding. The promise axioms we introduce use Boolean
circuits to define the set of assignments to be discarded (see Sect. 3). Therefore,
as resolution operates only with clauses, we need to encode Boolean circuits as
collections of clauses (CNF formulas). For most purposes, we will not need an
explicit description of how this encoding is done. Nevertheless, in Sect. 4 we
need to ensure that resolution can efficiently prove several basic facts about the
encoded circuits. For this reason, and for the sake of concreteness of the promise
axioms (see Definition 4), we provide the precise definition of the encoding in
the full version of this paper [4], in addition to proving some of the encoding’s
basic (proof theoretical) properties.

3 Promise Proof Systems

In this section, we define precisely the model of refutations under a promise. As
discussed in the introduction, we work with the resolution refutation system as
our underlying system and augment it with a new set of axioms that we call
the promise axioms. We call this proof system promise resolution. The promise
axioms are meant to express the fact that we can discard a certain number of
truth assignments from the space of all truth assignments and still be able to
certify (due to the promise) whether the input CNF is unsatisfiable or not. Each
promise resolution refutation can use at most one promise axiom.

From now on, we assume that the underlying variables of the CNF formulas
that are meant to be refuted are taken from the set X := {x1, . . . , xn}. The X
variables are called the original variables. Any other variable that appears in a
(promise resolution) refutation is an extension variable.

Definition 2 (CNF formulas under a promise). Let Λ be a fixed function
in n (the number of X variables) such that 0 ≤ Λ(n) ≤ 2n. The function Λ is
called the promise. The set of CNF formulas under the promise Λ consists of
all CNF formulas in the X variables that are either unsatisfiable or have more
then Λ(n) satisfying assignments (for n = |X |).

The refutation systems we build are sound and complete for the set of CNF
formulas under a (given) promise. That is, every unsatisfiable CNF formula has
a refutation in the system (this corresponds to completeness), while no CNF
having n variables and more than Λ(n) satisfying assignments has a refutation
in it (this corresponds to soundness under the promise). The soundness (under



the promise) is achieved by requiring that resolution should prove the fact that
we discard the right number of assignments (see Sect. 3.1 for details).

Definition 3 (Assignment discarding). Let A be a CNF in the X variables
that can contain (but not necessarily does) extension variables (that is, variables
not from X). We say that an assignment to the X variables a is discarded by
A if there is no extension of a (to the extension variables in A) that satisfies A.

3.1 Promise Axioms

Big promise. We first concentrate on a promise of a constant fraction of assign-
ments. Let the promise (see Definition 2) be Λ = ε · 2n, for a constant 0 < ε < 1
(we fix this Λ throughout this subsection), and let r = ⌈log(1/ε)⌉ and t = 2r−1.
Let C be a sequence of Boolean circuits C := (C(1), . . . , C(t)). Assume that each
C(i) has n − r input bits and n output bits and computes the Boolean map
fi : {0, 1}

n−r
→ {0, 1}

n
. Assume further that the fi’s are all injective maps and

that the images of all these maps are pairwise disjoint. Denote by Im(fi) the
image of the map fi. For simplicity, we call the union

⋃t
i=1 Im(fi) the image of

C and denote it by Im(C). By the definition of r, we have 2n−r ≤ ε ·2n = Λ, and
by the injectivity and pairwise disjointness of the images of the fi’s we have:

|Im(C)| = t · 2n−r = (2r − 1) · 2n−r = 2n − 2n−r ≥ 2n − Λ . (1)

Therefore, we can treat Im(C) as the set of all possible truth assignments for the
original variables X, without loosing soundness : If K is unsatisfiable then there
is no assignment in Im(C) that satisfies K; and if K is satisfiable then according
to the promise it has more than Λ satisfying assignments, which means that there
is at least one assignment in Im(C) that satisfies K. This idea is formulated as
a propositional formula, as follows:

Definition 4 (Promise Axiom for Λ = ε · 2n). Let the promise be Λ = ε · 2n,
for a constant 0 < ε < 1, and let r = ⌈log(1/ε)⌉ and t = 2r − 1. Let C be a
sequence of Boolean circuits C := (C(1), . . . , C(t)). Assume that each C(i) has
n − r input bits and n output bits and let W1 and W2 be two disjoint sets of
n−r extension variables each. The promise axiom PRMC,Λ is the CNF encoding
of the following Boolean formula (see the encoding in the full version [4]):

(

t
∧

i=1

(

C(i)(W1) ≡ C(i)(W2) → W1 ≡ W2

)

∧
∧

1≤i<j≤t

C(i)(W1) 6≡ C(j)(W2)

)

−→
t
∨

i=1

C(i)(W1) ≡ X.

(The notation W 1 ≡ W 2 means that the ith variable in W 1 is logically equiv-
alent to the ith variable in W 2, and similarly for C(i)(W1) ≡ C(i)(W2); see
the full version of this paper for more details.) The promise axiom PRMC,Λ

expresses the fact that if each circuit in C computes an injective map (this is



formulated as
∧t

i=1(C
(i)(W1) ≡ C(i)(W2) → W1 ≡ W2)), and if the images of

the maps computed by each pair of circuits in C are disjoint (this is formulated
as
∧

1≤i<j≤t C(i)(W1) 6≡ C(j)(W2)), then we can assume that the assignments
to the original variables X are taken from the image of C (this is formulated as
∨t

i=1 C(i)(W1) ≡ X). The fact that the image of C is of size at least 2n − Λ is
expressed (due to Eq. (1)) by the number of input bits (i.e., n−r) of each circuit
in C and the number of circuits in C (i.e., t). Also note that the promise axiom
is of polynomial-size as long as the circuits in C are (since 1/ε is a constant).

The following claim states that the promise axioms are sound with respect to
the promise Λ in the sense that they do not discard too many truth assignments
(see the full version [4] for the proof):

Claim. The promise axioms PRM C,Λ discards at most Λ truth assignments.
That is, there are at most Λ distinct assignments a to the X variables such that
PRM C,Λ |= X 6≡ a.

Smaller promise. We are also interested in formulating promise axioms for
promises smaller than ε·2n. Specifically, we are interested in the promise Λ = 2δn

for a constant 0 < δ < 1. For such a promise, the promise axiom is essentially
similar to Definition 4, except that the number of input bits of each circuit in C
needs to be modified accordingly. Due to space limitations, we do not describe
the formulation of this kind of promise axiom (and refer the interested reader to
the full version [4]).

3.2 Promise Resolution

Definition 5 (Promise resolution). Let Λ be the promise (see Definition
2) and let K be a CNF in the X variables. A promise resolution (under the
promise Λ) proof of the clause D from a CNF formula K is a sequence of clauses
D1, D2, . . . , Dℓ such that: (1) Each clause Dj is either a clause of K or a clause
of a promise axiom PRMC,Λ (where PRMC,Λ is either a big or a smaller promise
axiom as defined, for instance, in Definitions 4, and C is an arbitrary sequence
of circuits with the prescribed input and output number of bits) or a resolvent
of two previous clauses in the sequence or a weakening of a previous clause; (2)
The sequence contains (the clauses of) at most one promise axiom; (3) The last
clause Dℓ = D. The size, width and refutations of promise resolution is defined
the same as for resolution.

Note that promise resolution is a Cook-Reckhow proof system (see the in-
troduction for a definition), in the sense that it is possible to efficiently verify
whether a given CNF is an instance of the promise axiom, and hence to verify
whether a sequence of clauses constitute a legitimate promise refutation. This
can be done by “decoding” the CNF that encodes the promise axiom PRMC,Λ

and then checking that each circuit in C has the right number of input and
output bits.



Proposition 1. Let Λ be the promise (where Λ is either ε ·2n or 2δn, for 0 <
ε, δ < 1). Then, promise resolution under promise Λ is a sound and complete
proof system for the set of CNF formulas under the promise Λ. In other words,
every unsatisfiable CNF has a promise resolution refutation, and every CNF
that has more than Λ satisfying assignments does not have promise resolution
refutations.

Proof. Completeness stems from completeness of resolution. Soundness under
the promise Λ stems from Claim 3.1. (This claim refers to the big promise, but
a similar argument holds also for the smaller promise axiom.)

The full paper [4] contains a brief discussion of the definition of promise
proofs and the choice made in formulating the above promise axioms.

4 Big Promise – Upper Bound

We sketch a proof showing that under the promise Λ = ε · 2n , for any constant
0 < ε < 1, resolution can efficiently certify the unsatisfiability of all unsatisfiable
3CNF formulas. The method resembles the algorithm presented by Trevisan [7]
for approximating the number of satisfying assignments of a kCNF formula.

The idea behind the refutations in this section is based on the following
observation: Given an unsatisfiable 3CNF formula K and a constant c, either
there are 3(c − 1) variables that hit4 all the clauses in K or there are at least
c clauses in K over 3c distinct variables denoted by K ′ (that is, each variable
in K ′ appears only once). In the first case, we can consider all the possible
truth assignments to the 3c variables inside resolution: If K is unsatisfiable
then any such truth assignment yields an unsatisfiable 2CNF formula, which
can be efficiently refuted in resolution. In the second case, we can make use
of a promise axiom to efficiently refute K ′ (this set of clauses has less then Λ
satisfying assignments, for sufficiently large c). Specifically, in the second case,
we construct a sequence of small circuits C for which any satisfying assignment
for K ′ is provably in resolution (with polynomial-size proofs) outside the image
of C. The following is the main result of this section:

Theorem 1. Let 0 < ε < 1 be a constant and let Λ = ε · 2n be the given
promise. Then every unsatisfiable 3CNF with n variables has a polynomial-size
(in n) resolution refutation under the promise Λ.

This theorem is a consequence of the three lemmas that follow (their proofs
appear in the full version [4]):

Lemma 1. Let K be a 3CNF formula. For every integer c one of the following
holds: (i) there is a set of at most 3(c − 1) variables that hit all the clauses in
K; or (ii) there is a sub-collection of clauses from K, denoted K ′, with at least
c clauses and where each variable appears only once in K ′.

4 A set of variables S that hit all the clauses in a CNF formula K is a set of variables
for which every clause in K contains some variable from S.



If case (i) of the prior lemma holds, then the following lemma suffices to
efficiently refute the 3CNF:

Lemma 2. Let c be constant and K be an unsatisfiable 3CNF formula in the X
variables (where n = |X |). Assume that there is a set S ⊆ X of at most 3(c− 1)
variables that hit all the clauses in K. Then, there is a polynomial-size (in n)
resolution refutation of K.

If case (ii) in Lemma 1 holds, then it suffices to show that resolution under a
big promise can efficiently refute any 3CNF formula T with a constant number
of clauses (for a sufficiently large constant), where each variable in T occurs
only once (such a T is of course satisfiable, but it has less than an ε fraction of
satisfying assignments for a sufficiently large number of clauses):

Lemma 3. Fix the constant c = 3⌈log7/8(ε/2)⌉. Let Λ = ε ·2n, where 0 < ε < 1
is a constant and n is sufficiently large. Assume that T is a 3CNF with c/3
clauses (and c variables) over the X variables, where each variable in T occurs
only once inside T . Then, there is a polynomial-size resolution refutation of T
under the promise Λ.

The proof of this consists of constructing a sequence of polynomial-size cir-
cuits C (where the parameters of the circuits in C are taken from Definition 4;
that is, r = ⌈log(1/ε)⌉ and t = 2r − 1), such that: (i) resolution can efficiently
prove the injectivity and the pairwise disjointness of the images of the circuits
in C; and (ii) there is a polynomial-size refutation of T and PRMΛ,C . In other
words, there is a polynomial-size derivation of the empty clause from the clauses
of both T and PRMΛ,C .

5 Smaller Promise – Lower Bound

In this section, we state an exponential lower bound on the size of resolution
refutations under the promise 2δn, for any constant 0 ≤ δ ≤ 1. The lower bound
applies to random 3CNF formulas with o(n3/2) number of clauses (where n is
the number of variables in the 3CNF). This lower bound matches the known
lower bound on resolution refutation-size for random 3CNF formulas (without
any promise). Basically, the proof strategy of our lower bound is similar to that
of [2], except that we need to take care that every step in the proof works with
the augmented (smaller) promise axiom.

The lower bound is somewhat stronger than described above in two respects.
First, we show that restricting the set of all 2n truth assignments to any smaller
set (not just those sets defined by small circuits) that consists of 2n − 2δn as-
signments (for any constant 0 ≤ δ ≤ 1), does not give resolution any advantage
in the average-case. One can think of such a restriction as modifying the se-
mantic implication relation |= to take into account only assignments from some
prescribed set of assignments S, such that |S| = 2n − 2δn (in other words, for
two formulas A, B, we have that A |= B under the restriction to S iff any truth



assignment from S that satisfies A also satisfies B). Formally, this means that
the lower bound does not use the fact that the restricted domain of size 2n−2δn

is defined by a sequence C of polynomial-size circuits (nor the fact that the
circuits in C ought to have polynomial-size resolution proofs of their injectivity
and pairwise disjointness). Second, we could allow for a promise that is bigger

than 2δn, and in particular for a promise of 2n(1−1/n1−ξ) = 2n/2nξ

, for some
constant 0 < ξ < 1.

The following defines the usual average-case setting of 3CNF formulas:

Definition 6 (Random 3CNF formulas). For a 3CNF formula K with n
variables X and β ·n clauses, we say that β is the density of K. A random 3CNF
formula on n variables and density β is defined by picking β ·n clauses from the
set of all 23 ·

(

n
3

)

clauses, independently and indistinguishably distributed, with
repetitions.

Finally, the next theorem gives our lower bound. A complete proof appears
in the full version [4].

Theorem 2. Let 0 < δ < 1 and 0 < ǫ < 1/2. With high probability a random
3CNF formula with β = n1/2−ǫ requires a size exp(Ω(β−4/(1−ǫ) · n)) resolution
refutation under the promise Λ = 2δn.
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