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Abstract

Undecidability results in rewriting have usually been proved by reduc-
tion from undecidable problems of Turing machines or, more recently, from
Post’s Correspondence Problem. Another natural candidate for proofs re-
garding term rewriting is Recursion Theory, a direction we promote in
this contribution.

We present some undecidability results for “primitive” term rewrit-
ing systems, which encode primitive-recursive definitions, in the manner
suggested by Klop. We also reprove some undecidability results for or-
thogonal and non-orthogonal rewriting by applying standard results in
recursion theory.

1 Introduction

Indeed, if general recursive function
is the formal equivalent of effective calculability,

its formulation may play a role
in the history of combinatory mathematics

second only to that of the formulation of natural number.

— Emil Post (1944)

A number of models of computation vie for the rôle of “most basic” mech-
anism for defining effective computations. These include: semi-Thue systems,
Markov’s normal algorithms, Church’s lambda calculus, Schönfinkel’s combina-
tory logic, Turing’s “logical computing” machines, and Gödel’s recursive func-
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tions. Although they operate over different domains (strings, terms, numbers),
they are all of equivalent computational power.1

First-order term rewriting makes for a very natural symbolic programming
paradigm based on subterm replacement, without bound variables or built-in
operations. The two most basic properties a rewrite system may possess are
termination (a.k.a. strong normalization) and confluence (the famous Church-
Rosser property). Variations on these include (weak) normalization, unique
normal forms, and ground confluence. For a comprehensive text on rewriting,
see the recent volume by the “Terese” group, based in Amsterdam [38].

It comes as no surprise that rewrite systems have the same computational
power as the other basic models.2 Moreover, rewrite systems may be re-
stricted in various ways, including left-linearity, orthogonality, and constructor-
basedness, without weakening the model from the point of view of computability.

To quote Klop [31, p. 356]: “As is to be expected, most of the properties of
TRSs [term rewriting systems] are undecidable. Consider only TRSs with finite
signature and finitely many reduction rules. Then it is undecidable whether
confluence holds, and also whether termination holds.” Early undecidability
results in string and term rewriting were proved by reduction from undecidable
problems of Turing machines (e.g. [9, 25]). More recently, Post’s Correspondence
Problem [47] has been used: for string rewriting by Book [6]; for term rewriting
in [28, 36] (see also [14, 15] and [38, Sect. 5.3.3]). The most natural candidate
for proofs regarding term rewriting, however, is recursion theory, a direction we
promote here.

Recursive function theory is a uniquely suitable candidate for demonstrating,
by means of suitable reductions, that various properties of members of classes
of rewrite systems are undecidable. Standard works on recursion theory include
[41, 45, 48, 53]. The encoding of recursive functions as term-rewriting systems
is part of the field’s age-old “folklore”, and is mentioned by Klop as an exercise
in his 1992 survey [32].

This paper present some undecidability results for “primitive” term rewrit-
ing systems, which encode primitive-recursive definitions. Primitive rewriting
is defined in Sect. 3. Section 4 shows how to also faithfully encode partial-
recursive functions. Kleene’s computation predicate—which is central to the
undecidability results—is coded as a primitive rewrite system in the Appendix,
and its properties are discussed in Sect. 5. In Sects. 6 and 7, we reprove (and
improve) some undecidability results for orthogonal and non-orthogonal rewrit-
ing (see [38, Chap. 5]) by applying standard results in recursion theory. The
concluding section lists what we believe to be new by way of sufficient conditions
for undecidability obtained in this way.

1See [4, 5] for a discussion of problems pertaining to comparisons of computational power
of models operating over diverse domains.

2Of course, the classical Church-Turing Thesis asserts that these sets of functions are
exactly what are mechanistically computable. See [3].
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2 Background

A total function f over the natural numbers is primitive recursive if it is the
constant λ.0, a projection function λx1, . . . , xk.xi, the successor function λx.x+
1, the composition of other primitive-recursive functions, or else is itself definable
by primitive recursion of the form:

f(n, . . . , xi, . . .) :=
{

g(. . . , xi, . . .) n = 0
h(f(n− 1, . . . , xi, . . .), n− 1, . . . , xi, . . .) otherwise ,

where g and h are already known to be primitive recursive.
A partial function f over the natural numbers is partial recursive if it is

primitive recursive, or if it can be defined by composition or primitive recursion
from other partial-recursive functions, or if it can be defined by minimization
(µ-recursion):

f(. . . , xi, . . .) := µn∈N{q(n, . . . , xi, . . .)} ,

where q is a partial-recursive predicate.3 Recursive functions are computed
leftmost-innermost [48, Sect. 1.2], which is the computation rule that goes into
an infinite loop whenever any computation rule can (see, e.g., [37]). In other
words, the result is always the least-defined partial function possible.4

A partial-recursive function is (general) recursive if it is total (always de-
fined). It is well-known that the class of general recursive functions coincides
with the Turing-computable (total) functions over (encodings of) the naturals.

Kleene’s Normal-Form Theorem [48, Thm. 1-X] states that there exist prim-
itive recursive functions U and TK such that

λx̄. U(µz.TK(j, x̄, z)) (1)

enumerates all the partial-recursive functions (x̄ is a sequence of variables). The
computation predicate TK(j, ā, z) (“Kleene’s T”; see [29]), checks whether z ∈ N
is (a numerical encoding of) a list beginning with the term fj(ā), with arguments
ai ∈ N, continuing step-by-step as in a valid computation, and ending with a
natural number for the value of fj(ā); U extracts that number. In modern
parlance, we would say that the partial-recursive function

λj.λx̄. U(µz.TK(j, x̄, z)) (2)

is an “interpreter” for partial recursion, analogous to the Universal Turing Ma-
chine.

Two basic undecidability results in recursion theory (due to Kleene [29])
follow from the existence of this partial-recursive function:

3By predicate we mean any function, but with 0 interpreted as false and non-zero (usually
1) signifying truth.

4For example, with definitions κ(x) := 1 and ω := µ{0}, κ(ω) is undefined.
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DEF(f, n). Given a definition of a partial-recursive function f : N ⇀
N and a natural number n ∈ N, it is undecidable whether f(n) is
defined [48, Thm. 1-VII]. By “definition”, we mean here the index
of an enumeration or the Gödel number of a program.

TOT(f). Given a definition of a partial-recursive function f : N ⇀
N, it is undecidable whether f is recursive [48, Thm. 1-VIII]. The
TOT problem, like its analogue for Turing machines, is not even
semi-decidable.

In the appendix, we define an injection ] : f 7→ f ] from the definition
of a partial-recursive function f (that is, from the sequence of compositions,
recursions, and minimizations that define f) into the naturals. The rewrite
program TK given there defines a primitive-recursive function T such that
(restricting to one-argument functions):

DEF(f, n) ⇔ ∃y ∈ N. T (f ], n, y) = 1 . (3)

For j ∈ N that do not correspond to any program, T (j, n, y) = 0, for all n and
y. This suffices for our purposes.

3 Primitive Rewriting

In [32, Ex. 2.2.9], Klop mentioned that the primitive-recursive functions can
be directly programmed as a terminating, orthogonal, constructor-based term-
rewriting system, where the two constructors are the constant 0 and the unary
successor function s. There are collapsing rules

πk
i (x1, . . . , xk) → xi ,

for each k and i, 1 ≤ i ≤ k, corresponding to projections. All other functions f
are defined by rules that are either recursion-free compositions of the following
form:

f(. . . , xi, . . .) → g(h1(. . . , xi, . . .), . . . , hk(. . . , xi, . . .)) ,

or else primitive recursions of the form

f(0, . . . , xi, . . .) → g(. . . , xi, . . .)
f(s(n), . . . , xi, . . .) → h(f(n, . . . , xi, . . .), n, . . . , xi, . . .) .

More conveniently, one can allow arbitrary compositions of previously de-
fined functions on right-hand sides of defining rules. Thus, primitive-recursive
functions can be defined either by composition:

f(. . . , xi, . . .) → G[. . . , xi, . . .] ,
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or by non-nested recursion over the naturals:

f(0, . . . , xi, . . .) → G[. . . , xi, . . .]
f(s(n), . . . , xi, . . .) → H[f(n, . . . , xi, . . .), n, . . . , xi, . . .] ,

where G and H are “contexts” (terms with holes) built from already-defined
functions, and the recursive call and the arguments n and xi may appear any
number of times in H. (One can also allow the recursive decrease to be in any
one, fixed position.) Such definitions can be easily deconstructed into a sequence
of composed functions, preserving derivability, →+.

Numbers n ∈ N are represented by terms n̂ = sn(0) in standard unary
successor notation. Let N̂ = {n̂ : n ∈ N} be the set of these “tally” numbers.
Factorial, for example, is defined as follows (using standard infix notation):

0 + x → x
s(z) + x → s(z + x)

0× x → 0
s(z)× x → (z × x) + x

0! → s(0)
(s(z))! → s(z)× (z!) .

Such primitive rewriting systems can be made non-erasing (sometimes called
“regular”), in the sense that all variables on the left of a rule also appear on the
right, and non-collapsing—no right side just a variable, by using the following
primitive functions:

ι(0) → 0
ι(s(n)) → s(ι(n))
ε(0, n) → ι(n)

ε(s(m), n) → ε(m,n) .

Then the right side xi of each projection rule πk
i can be enveloped with calls to

ε for each of the irrelevant variables:

πk
i (x1, . . . , xk) → ε(x1, . . . ε(xi−1, ε(xi+1, . . . , ε(xn, xi) · · ·)) · · ·) .

To reduce the depth of right sides, one can use a sequence of “erasure” rules,
instead:

π1
1(x) → x

πk
1 (x1, . . . , xk) → ε(xk, πk−1

1 (x1, . . . , xk−1)) k > 1

πk
i (x1, . . . , xk) → ε(x1, π

k−1
i−1 (x2, . . . , xk)) i, k > 1 .

So massaged, every primitive rewrite system possesses the following proper-
ties:

1. it is terminating;
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2. it is what we will call definitional, that is,

(a) orthogonal—left-linear with no critical pairs, hence

(b) confluent,

(c) constructor-based—all but the outermost symbols on the left are con-
structors (either 0 or s) or variables,

(d) constructor complete—every non-constructor variable-free term is re-
ducible,5

(e) non-erasing, and

(f) non-collapsing;

3. and it is 3-deep (having maximum nesting, on the left and on the right,
of 3), with only variables occuring at depth 3 (that is, below at most 2
symbols).

Plaisted [46] noted that every primitive-recursive function written as a
rewrite system (as above) is provably terminating with his simple path ordering
(of order type ωωN

). Likewise, they can be shown terminating with a lexico-
graphic or multiset path ordering (see [11]). In the other direction, Hofbauer
[23] (taking the exponential termination functions of Iturriaga [27] a few steps
further) showed that any rewrite system that can be proved terminating using
a recursive path ordering must have primitive-recursive derivation length. For
some recent related results, see [1, 8].

4 Partial Rewriting

Algebraic rewriting does not have bound variables, so to simulate general re-
cursion we employ a trick, namely, separate minimization functions for each
predicate:

µq(z, s(y), . . . , xi, . . .) → z
µq(z, 0, . . . , xi, . . .) → µq(s(z), q(s(z), . . . , xi, . . .), . . . , xi, . . .) ,

where q is a partial-recursive predicate. Better yet, we can let an arbitrary
expression serve as test, with any non-zero value signifying truth:

µQ(z, s(y), . . . , xi, . . .) → z
µQ(z, 0, . . . , xi, . . .) → µQ(s(z), Q[s(z), . . . , xi, . . .], . . . , xi, . . .) .

5Sufficient completeness (the “no junk” condition) means that every ground (variable-
free) term is equal (convertible) to a constructor-only term. In a rewriting context, one
normally asks that ground non-constructor terms actually normalize to constructor-only terms
(incorporating a degree of ground confluence). Since we already have a separate termination
property, we only ask that every ground non-constructor term be rewritable. Combined with
termination, this yields the usual sufficient-completeness property. (I am borrowing the term
“constructor completeness” from notes by Heinrich Hußmann.)
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Then, to compute a function f defined by minimization vis-à-vis Q, we start off
with

f(. . . , xi, . . .) → µq(0, Q[0, . . . , xi, . . .], . . . , xi, . . .) .

To avoid introducing spurious cases of nontermination, q (or Q) must
be monotonic, in the sense that q(k, x̄) > 0 implies q(m, x̄) > 0 for all
m > k. Were we to allow non-monotonic predicates q, then the computation of
µq(N̂ , 0, . . . ,Ki, . . .) might diverge for large N , even as f itself never does, since
q(z, . . . , xi, . . .) may yield false for all but one z.

Luckily, with no loss of generality, any ordinary predicate q′ can be recast
monotonically as

q(n, . . . , xi, . . .) :=
n∑

i=0

q′(i, . . . , xi, . . .) ,

where the sum serves as disjunction, and is primitive recursive when q is. The
minima µq and µq′ satisfying the two tests (when starting from 0) are the same.

By extension, such rewrite systems, built from primitive recursion and mono-
tonic minimization, will be called partial recursive. When they terminate they
are general recursive.

For example, natural-number division (which is actually primitive recursive)
may be defined as follows:

p(0) → 0
p(s(z)) → z

x · 0 → x
x · s(z) → p(x · z)

µ(z, s(v), x, y) → z
µ(z, 0, x, y) → µ(s(z), (y × s(s(z))) · x, x, y)

x÷ y → µ(0, y · x, x, y) .

Rules for the base case of minimization can be made non-erasing, like we did
for projections. That done, a term reduces to a numeral only if it is a ground
term built from the constructors, 0and s, and from functions defined according
to the above schemata.

Partial-recursive rewrite systems are definitional, and, as such, they are con-
fluent. General-recursive systems are definitional and terminating. These inclu-
sions are summarized in Fig. 1.

It is important to take note of the fact that partial-recursive rewrite systems
terminate regardless of strategy (in other words, they are strongly normalizing)
if, and only if, they terminate via innermost rewriting, since partial systems are
orthogonal [42] ([38, Thm. 4.8.7]).6 Furthermore, as they are also non-erasing,
a partial-recursive rewriting system terminates if, and only if, it is (weakly)

6Left-linearity is inessential [16]; the non-overlapping condition can also be weakened [21,
13].
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primitive-recursive system
∩

general-recursive system
∩

partial-recursive system
∩

definitional system

Figure 1: Hierarchy of recursive rewriting.

normalizing [7] ([38, Thm. 4.8.5]). These observations remain true for questions
regarding specific initial terms, too [38, p. 128].

Our rewriting implementation of primitive and partial recursion is sound:

Proposition 1 For all partial-recursive functions f : Nk ⇀ N, implemented as
described above by a symbol f in rewrite system F ,

f(a1, . . . , ak) = n ⇔ f(â1, . . . , âk) !−→
F

n̂ ,

for all n, a1, . . . , ak ∈ N, where n̂ is the (normal form) term representing the
number n and →! is reduction to normal form—using any arbitrary rewriting
strategy.

Proof: If f(a1, . . . , ak) = n, then leftmost-innermost rewriting with F will
mimic the recursive computation and yield n̂. Since orthogonal systems are
confluent, n̂ is the only normal form. The strategy does not matter, since, as just
pointed out, non-erasing orthogonal systems terminate regardless of strategy for
a given term if they normalize using any strategy.7 2

The undecidability of definedness (DEF) for partial-recursive rewriting fol-
lows directly, by a standard diagonalization argument: We have that DEF(F, n),
for rewrite system F and n ∈ N, if ∃m ∈ N̂. f(n̂) →!

F m. Were there a recursive
system defining a recursive function D for deciding DEF, then the following
system X, with the system for D, would be partial recursive (cf. [54]):

¬x → s(0) · x
µ(z, s(y), f) → z

µ(z, 0, f) → µ(s(z),¬D(f, f), f)
X(g) → µ(0,¬D(g, g), g) .

7To explicate: The non-erasing version of κ from footnote 4 would be κ(x) →
ε(x, 1̂). Since the rules for ε would not apply to the term ω or any of its descen-
dants, all computations of κ(ω) diverge. With the erasing version, on the other hand,
κ(ω) →! 1̂.
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But then

X(X]) !−→
X

0 ⇔ ¬D(X], X]) !−→
X

s(0) ⇔

D(X], X]) !−→
X

0 ⇔ ∀m ∈ N̂. X(X])
!

6−→
X

m ,

a contradiction. The first biconditional derives from the definition of X; the
last, from the presumption that D decides DEF.

5 Computations

A primitive rewrite system TK for the computation predicate T (implementing
TK), for functions of any arity, is given in the Appendix. Soundness of this
implementation of TK means the following:

Proposition 2 For all partial-recursive functions f : Nk ⇀ N,

f(. . . , ai, . . .) = n ⇔ ∃y ∈ N̂. T (f ], . . . , âi, . . . , y) !−→
TK

1̂ ∧ U(y) !−→
TK

n̂

and
f(. . . , ai, . . .) = ⊥ ⇔ ∀y ∈ N̂. T (f ], . . . , âi, . . . , y) !−→

TK
0 ,

where ⊥ denotes undefined, T is the symbol for the computation predicate TK

in rewrite system TK, U is the symbol for the last-element function, and f ] is
the numeral representing the rewrite program for f .

The monotonic version of predicate T is the following:

T ∗(j, . . . , xi, . . . , 0) → T (j, . . . , xi, . . . , 0)
T ∗(j, . . . , xi, . . . , s(y)) → T ∗(j, . . . , xi, . . . , y) + T (j, . . . , xi, . . . , s(y)) .

Then, by the Normal Form Theorem, to compute any partial-recursive function
f , one can use primitive-recursive T ∗ along with the following general-recursive
rules:

µ(z, s(y), . . . , xi, . . .) → z
µ(z, 0, . . . , xi, . . .) → µ(s(z), T ∗(f ], . . . , xi, . . . , s(z)), . . . , xi, . . .)

f(. . . , xi, . . .) → U(µ(0, T ∗(f ], . . . , xi, . . . , 0), . . . , xi, . . .)) .

Call this system (including TK, and made non-erasing) Rf .

Proposition 3 For all partial-recursive functions f : Nk ⇀ N, implemented by
a symbol f in rewrite system Rf ,

f(a1, . . . , ak) = n ⇔ f(â1, . . . , âk) !−→
Rf

n̂ .

As previously mentioned, it is also undecidable whether a partial-recursive
system is actually general-recursive. This TOT problem for rewriting can be
shown to be non-semi-decidable by using TK, with no need to rely on results
for Turing machines or recursive functions.
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6 Word Problems

In this and the following section, we restrict attention to properties of unary
functions. As a corollary of Proposition 2, we have

Proposition 4

DEF(f, n) ⇔ ∃y ∈ N̂. T (f ], n̂, y) !−→
TK

1̂ .

Proof: This is due to the fact that TK (see Appendix) is designed so as to
reduce all (ground) terms headed by T to either 0 (for false) or 1̂ (for true). 2

The (rewrite) matching problem, MATCH, is

MATCH(R, t,N) := ∃σ. tσ
!−→
R

N ,

where R is a rewrite system, t is a term containing variables, N is a ground
(that is, variable-free) normal form, and σ is a (ground) substitution.

Theorem 5 Matching of primitive rewriting is undecidable.

The proof of undecidability of matching for terminating confluent systems
in [22, Cor. 3.11] uses a non-erasing, but overlapping system. The simpler
proof in [2], based on the unsolvability of Diophantine equations, uses a system
for addition and multiplication of integers that is overlapping, non-left-linear,
collapsing, erasing, and non-constructor-based. It has recently been shown that
matching (as well as unification) is decidable for confluent systems if no variables
on the right appear below the root [40].

Undecidability can be shown from the older recursion theory results—
without recourse to the difficult resolution of Hilbert’s Tenth Problem, as fol-
lows:

Proof: The reduction is from undecidable DEF(f, n) to the instance
MATCH(TK, T (f ], n̂, y), 1̂). We have

DEF(f, n) ⇔ ∃y ∈ G. T (f ], n̂, y) !−→
TK

1̂

⇔ ∃σ. T (f ], n̂, y)σ !−→
TK

1̂

⇔ MATCH(TK, T (f ], n̂, y), 1̂) ,

where G is the set of ground (variable-free) terms over the vocabulary of TK.
The first equivalence is Proposition 4, except that we need the fact that TK is
constructor complete to ensure that any ground y that satisfies T reduces to a
numeral, since it must be a numeral for TK to reduce the term to normal form.
The second step is simply because y is the sole variable in the initial term. 2

It is similarly undecidable if two terms have the same normal form.
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The ground confluence problem GCR (for terminating systems) is

GCR(R) := ∀s, t, u ∈ G. u
!−→
R

s ∧ u
!−→
R

t ⇒ s = t ,

where G is the set of variable-free terms over the vocabulary of R.

Theorem 6 Ground confluence of terminating left-linear constructor-based
non-erasing non-collapsing constructor-complete rewrite systems is undecidable.

Ground confluence of terminating systems was shown undecidable in [28],
both for terminating string systems (which are left- and right-linear, non-
erasing, and non-collapsing) and for terminating left- or right-linear systems
with right-side depth limited to 2. One can’t have orthogonality (absence of
critical pairs, in addition to left-linearity) here, since orthogonal systems are
confluent.

Proof: The reduction is

DEF(f, n) ⇔ ¬GCR(TK ∪Kn
f ) ,

where Kn
f contains the (non-erasing, non-collapsing) rule

T (f ], n̂, y) → ε(y, 0) .

Note that this rule overlaps rules of TK. If, and only if, f(n) is defined, is there
a (ground) numeral ŷ ∈ N̂ such that

T (f ], n̂, ŷ) !−→
TK

1̂ ,

making for two normal forms (0, 1̂) for T (f ], n̂, ŷ). 2

The confluence problem CR is

CR(R) := ∀s, t, u. u
∗−→
R

s ∧ u
∗−→
R

t ⇒ ∃v. s
∗−→
R

v ∧ t
∗−→
R

v .

Theorem 7 Confluence of non-overlapping constructor-based non-erasing non-
collapsing rewriting is undecidable.

Undecidability of confluence of nonterminating systems is claimed in [26]:
“The property of confluence is undecidable for arbitrary rewriting systems, since
a confluence test could be used to decide the equivalence, for instance, of re-
cursive program schemes.” Standard proofs (e.g. [38, Thm. 5.2.1]) are based on
overlapping, but left-linear, constructions. Since orthogonal systems are always
confluent, one can’t have both left-linearity and non-overlappingness.8

Confluence is known to be undecidable (in fact, not even semi-decidable or
co-r.e.) even if the rules are left- and right-linear, constructor-complete, and

8Recursive program schemes [38, Def. 3.4.7] are orthogonal, but two schemes together are
not.
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constructor-based, and all critical pairs obtained from overlaps resolve (i.e. the
system is locally, or weakly, confluent) [15, Sect. 4]. The terminating case is
decidable, even in the presence of overlapping left sides, by the famous Critical
Pair Lemma of Knuth [33]; see [38, Thm. 2.7.16]. It has also recently been shown
that confluence is decidable for right-linear systems if no variables appear below
depth 1 [18] (extending earlier decidability results [44, 20]).

Proof: We cannot use the same Kn
f as in the previous proof, since its left side

overlaps rules of TK. Instead let Bn
f be

B(1̂, y) → s(B(T (f ], n̂, y), y)) ,

which has the property that

B(1̂, ŷ) !−→ s(B(1̂, ŷ)) ,

for some numeral ŷ, if, and only if, T (f ], n̂, ŷ) →∗ 1̂. Now

DEF(f, n) ⇔ ∃y ∈ N̂. T (f ], n̂, y) !−→
TK

1̂

⇔ ¬CR(TK ∪Bn
f ∪H) ,

where non-linear system H is

H(x, x) → ε(x, a)
H(s(x), x) → ε(x, c) .

The rules for B and H are akin to Huet’s [24] example of non-terminating
non-overlapping non-confluence. So, if f(n) is defined, then H(B(1̂, ŷ),B(1̂, ŷ))
rewrites to a term containing a by the first rule of H and to a term containing
c in two stages, applying Bn

f , followed by the second H rule. Since there is no
other way for a term t to rewrite to s(t), non-confluence is a perfect indication
that f(n) is defined. 2

The modular (shared-constructor) confluence problem CR2 is

CR2(R,S) := CR(R ∪ S) ,

where R and S are confluent systems with only constructors in common.
Since H shares no defined symbols with TK or B:

Corollary 8 Modular confluence of constructor-based rewriting is undecidable.

That constructor-sharing combinations need not preserve confluence was
pointed out in [35] (just consider H together with b → s(b)).
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7 Halting Problems

The normalizability problem NORM is

NORM(R, t) := ∃z. t
!−→
R

z .

Theorem 9 Normalizability of definitional rewriting is undecidable.

That normalizability is undecidable for non-constructor-based rewriting is
obvious from the rewrite system CL for combinatory logic in Klop’s monograph
[30, Sect. 2.2].

Proof: DEF(f, n) reduces to NORM(F, f(n̂)), where F is the partial recursive
rewrite system for f . This is basically just faithfulness of F , as stated in Propo-
sition 1. Thus, normalizability for partial-recursive rewriting is undecidable,
and, a fortiori, for arbitrary definitional rewriting. 2

For the (weak) normalization problem WN,

WN(R) := ∀t. NORM(R, t) ,

the situation is the same:

Theorem 10 Normalization of definitional rewriting is not semi-decidable.

Proof: The reduction is

TOT(f) ⇔ WN(Rf ) .

By Proposition 3, f is total if, and only if, Rf normalizes all terms f(â). So, if
f is not total, there is a term that Rf fails to normalize.

For the other direction, when a term (ground or not) is non-terminating
for non-overlapping Rf , there must be—by standard techniques in rewriting
[10, 16]—an infinite innermost derivation,

µ(z, 0, a) −→
Rf

µ(s(z), T ∗(f ], a, s(z)), a) +−→
Rf

µ(s(z), 0, a) +−→
Rf

· · · ,

punctuated by instances of the main µ-rule (the only potentially non-
terminating rule), all subterms of which are already in normal-form. Considering
how Rf looks, that means that

T ∗(f ], a, si(z)) +−→
Rf

0 ,

for all i > 0. Since Rf is non-erasing and constructor-based, this can only be if
the culprits z and a reduce to numerals. Since T ∗ is monotonic, we have

T ∗(f ], n̂, y) +−→
Rf

0 ,

13



for all y ∈ N̂, where n̂ is the normal form of a. In other words, f(n) admits no
finite computation.

We needed to use Kleene Normal Form here (that is, Rf instead of F ) to
preclude the possibility that f is total, whereas a function g that it uses is not,
in which case some term containing g would never terminate. 2

The (uniform/strong) termination problem SN is

SN(R) := ¬∃t. t−→
R

⊥ ,

where the postfixed notation → ⊥ indicates the existence of a divergent deriva-
tion: t →R ⊥ for system R if there are terms {ti}i such that t →R t0 →R

t1 →R · · ·.

Corollary 11 Termination of definitional rewriting is not semi-decidable.

Proof: As mentioned above, non-erasing orthogonal systems like Rf termi-
nate (SN) if and only if they are normalizing (WN). 2

Termination (and normalization) of (overlapping) string rewriting was
proved undecidable in a technical report by Huet and Lankford [25], using
a Turing-machine construction for the semi-Thue word problem. (See [38,
Sect. 5.3.1] for a similar proof; such a reduction was given by Davis in [9];
see also [53].) Lescanne’s proof in [36] is left-linear and constructor-based and
can be made non-overlapping. It has recently been shown that termination is
decidable for right-linear systems if no variables appear on the right below depth
1 [19] (extending earlier decidability results [25, 10]).

The (disjoint) modular termination problem SN2 is

SN2(R,S) := SN(R ∪ S) ,

where R and S are terminating systems with no common function symbols or
constants at all.

Theorem 12 ([39]) Modular termination of left-linear rewriting is undecid-
able.

Modular termination of left-linear rewriting was found undecidable in [39,
50].9 Were the systems also locally confluent, their disjoint union would perforce
be terminating [52].

Proof: The reduction is

DEF(f, n) ⇔ ∃y ∈ N̂. T (f ], n̂, y) !−→
TK

1̂

⇔ ¬SN(TK ∪Gn
f ∪ Z)

⇔ ¬SN2(TK ∪Gn
f , Z) ,

9Middeldorp [39, p. 65] credits the author of this paper with simultaneity.
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where Gn
f is

G(0, x, y) → x

G(1̂, x, y) → y
G(T (f ], n̂, z), x, y) → x ,

and Z (cf. [51]) is
Z(a, b, z) → Z(z, z, z) .

The point here is that Z alone is terminating, but turns nonterminating when
combined with (terminating) rules that rewrite some term to both a and b.
System Gn

f , though not containing those constants, does just that if, but only
if, T (f ], n̂, z) reduces to 1̂, for some computation z. (The first G rule is only
there to keep one of the systems sufficiently complete.) 2

The undecidability of termination for various forms of hierarchically com-
bined systems [12, 34, 43] follows directly from the strictly hierarchical form
of partial-recursive rewriting, whose right-hand sides only refer to previously
defined symbols and whose left sides are, by nature, non-overlapping.

8 Conclusion

The relation between the lambda calculus, combinatory logic, and recursion
theory is classical. In 1980, Klop [30] forged the link between combinators and
rewriting. Here, we have tried to flesh out the “missing” connection, bridging
recursive function theory and term rewriting.

As a consequence of this connection, and the tool added to our arsenal, we
have made the following small improvements over well-known undecidability
results in rewriting:

• Matching is undecidable for convergent (that is, confluent and terminat-
ing), left-linear, non-erasing, constructor-based systems, even when they
are non-overlapping and sufficiently complete (Theorem 5).

• Matching is undecidable for convergent, sufficiently-complete systems,
even when they are left-linear, non-overlapping, constructor-based, non-
erasing, and non-collapsing (Theorem 5).

• Confluence is undecidable for non-erasing, non-collapsing, constructor-
based systems, even if they are non-overlapping (Theorem 7).

• Ground confluence is undecidable for terminating, left-linear, non-erasing,
non-collapsing, sufficiently-complete systems, even if they are constructor-
based (Theorem 6).

• Modular (shared-constructor) confluence is undecidable—even for non-
erasing, non-collapsing, constructor-based systems (Corollary 8).

• Normalizability is not decidable for orthogonal, constructor-based sys-
tems, even if they are constructor complete and non-erasing (Theorem 9).
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• Termination and (weak) normalization are not semi-decidable for orthogo-
nal, constructor-based systems, even if they are constructor complete and
non-erasing (Theorem 10; Corollary 11).
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Appendix: The Computation Predicate

Most descriptions of computation predicates are non-algorithmic. (An exception
is [41, Chap. I.7].) To fill this lacuna, we give here a complete primitive rewrite
program TK for TK .10

Lists are encoded as pairs (of pairs) in the customary fashion, due to Gödel:

〈m,n〉 7→ 2m(2n + 1) .

The empty list is 0. Lists 〈x1, . . . , xk〉 are just nested pairs of the form
〈x1, 〈x2, 〈· · ·xk〉 · · ·〉〉, etc. Terms are encoded as lists. With this encoding,

10The rules are also online at www.cs.tau.ac.il/~nachum/TK.r, and a faithful coding in
Lisp at www.cs.tau.ac.il/~nachum/TK.l.
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Table 1: Basic arithmetic and logic. Primitive rules for predecessor (p), addition
(+), natural subtraction ( · ), and multiplication (× or juxtaposition) were
given in Sects. 3 and 4 of the text.

1 → s(0) 2 → s(1)
3 → s(2) 4 → s(3)
5 → s(4)

20 → 1 2s(n) → 2 · 2n

¬x → 1 · x δ(x) → ¬¬x
m > n → δ(m · n) true → 1
x ∨ y → δ(x + y) x ∧ y → xy

m 6= n → (m > n) ∨ (n > m) m = n → ¬(m 6= n)
if x then y else z → (x > 0)y + (x = 0)z

div(0, m, n) → 0
div(s(k), m, n) → if m + 1 > (k + 1)n then k + 1 else div(k, m, n)

m÷ n → div(m, m, n) m - n → n > (n÷m)m
lg 0 → 0

lg s(n) → if 2 - (n + 1) then lg n else 1 + lg n

it is easy to show by induction that lg ` is an upper bound on the length of a
list ` (lg nil = lg 0 = 0), and 1 + lg ` on its list-nesting depth.

Table 1 recapitulates definitions of the standard logical and arithmetic oper-
ations, including binary logarithm (lg x := blog2 xc)11 and a conditional if-then-
else that evaluates all three of its arguments.

The primitive-recursive Lisp operations are as follows:

nil → 0
x:y → 2x(2y + 1)

car2(0, y) → nil
car2(s(x), y) → if 2x+1 - y then car2(x, y)

else car2(x, y) + 1
car x → car2(lg x, x)
cdr x → x÷ 2(car x)+1

For readability we use a colon for Lisp’s list constructor, cons. We will need
the fact that, as programmed, car(nil) = cdr(nil) = nil.

11The lg notation for log2 was suggested by Ed Reingold and popularized by Don Knuth.
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Other standard list operations are easy:

cadr x → car(cdr x)
cddr x → cdr(cdr x)

nthcdr(0, y) → y
nthcdr(s(n), y) → cdr(nthcdr(n, y))

nth(n, y) → car(nthcdr(n, y))
length2(0, y) → y

length2(s(x), y) → if nthcdr(lg y · (x + 1), y) = nil then lg y · (x + 1)
else length2(x, y)

|x| → length2(lg x, x)
append2(0, x, y) → y

append2(s(n), x, y) → nth(|x| · (n + 1), x):append2(n, x, y)
x ∗ y → append2(|x|, x, y)

The function |x| gives the list length of x; we use an asterisk ∗ for the list append
function (as did Gödel [17]).

We will have recourse to a few additional functions for lists and terms:

nthcadr(0, x) → x
nthcadr(s(n), x) → cadr(nthcadr(n, x))

prefix(0, x) → nil
prefix(s(n), x) → prefix(n, x) ∗ (nth(n, x):nil)

pos2(0, p, x) → x
pos2(s(n), p, x) → nth(nth(n, p), pos(n, p, x))

pos(p, x) → pos2(|p|, p, x)
U(z) → nth(|z| · 1, z)

Function nthcadr digs down first arguments; pos returns a subterm at a given
Dewey decimal position; U is the last element in a sequence, used in Proposi-
tion 2.

Primitive programs are enumerated (into the naturals) in the following man-
ner:

• 0 is the constant (function) 0;

• 1 is the unary successor function s;

• 1:i is the ith projection rule πi for any arity;

• 2:g:h̄ is the composition g(. . . , hi, . . .) of g with hi;

• 3:g:h is primitive recursion, with base case g and recursive case h;

• 4:q is minimization over predicate q;

• 5:q is an auxiliary function for minimization.
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A function application f(x1, . . . , xk) is encoded as a list 〈f, x1, . . . , xk〉. Accord-
ingly, the successor of numeral n is the pair 〈1, n〉, while its predecessor is cadr n.
So, normal forms look like 〈1, 〈1, 〈· · · 〈1, 0〉 · · ·〉〉. The auxiliary function, 5:q, is
for minimization starting from some given lower bound. That is, (5:q)(k, c, x̄)
is k when c is true; otherwise, it is the smallest i > k such that q(i, x̄).

To find the next (leftmost innermost) redex, we use a test nf for normal form
(i.e. a numeral) and a function next to find the first non-normal-form in a list:

nf2(0, x) → true
nf2(s(n), x) → (nthcadr(n, x) = 0 ∨ car(nthcadr(n, x)) = 1) ∧ nf2(n, x)

nf(x) → nf2(lg x, x)
next2(0, x) → |x|

next2(s(n), x) → if nf(nth(|x| · (n + 1), x)) then next2(n, x)
else |x| · (n + 1)

next(x) → next2(|x|, x)
redex2(0, x) → nil

redex2(s(n), x) →
if next(cdr(pos(redex2(n, x), x))) = |cdr(pos(redex2(n, x), x))|

then redex2(n, x)
else redex2(n, x) ∗ (1 + next(cdr(pos(redex2(n, x), x))):nil

redex(x) → redex2(1 + lg x, x)

To apply the function definition at that point, we proceed by case analysis
on the different ways of building partial-recursive functions:

succ(x) → 1:x:nil
dist(0, g, x) → nil

dist(s(n), g, x) → (nth(|g| · (n + 1), g):x):dist(n, g, x)
apply(f, x) → if car f = 0 then 0

else if car f = 1 then nth(cdr f, x)
else if car f = 2 then cadr f :dist(|cddr f |, cddr f, x)
else if car f = 3 ∧ car x = 0 then cadr f :cdr x
else if car f = 3 then cddr f :(f :cadr(car x):cdr x):x
else if car f = 4 then (5:cdr f):0:(cdr f :0:x):x
else if car f = 5 ∧ cadr x then car x
else if car f = 5

then f :(cdr f :succ(car x):x):succ(car x):x
else f :x

The helper function dist distributes a list of functions over shared arguments.
Finally, to check the validity of a computation, we check that the first element

is the function call in question, that each step is an application of one of the
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above function applications, and that the final element is a numeral:

change(n, x, y) → prefix(n, x) ∗ (y:nthcdr(n + 1, x))
term(0, p, x) → apply(car x, cdr x)

term(s(n), p, x) → change(nth(|p| · (n + 1), p), x, term(n, p, x))
step(x) → term(|redex(x)|, redex(x), x)

steps(0, z) → true
steps(s(n), z) → step(nth(n, z)) = nth(n + 1, z) ∧ steps(n, z)

T (f, x, y) → (car(y) = f :x) ∧ steps(|y| · 1, y) ∧ nf(U(y))
T ∗(f, x, 0) → T (f, x, 0)

T ∗(f, x, s(y)) → T ∗(f, x, y) + T (f, x, s(y))

The function change(n, x, y) replaces the nth element xn in a sequence x with y;
term substitutes a reduct for redex at a given position; T is Kleene’s computation
predicate; T ∗ is its monotonic counterpart.

With the above definitions, but sans the auxiliary functions, TK boils down
to 42 convergent, orthogonal, constructor-based rules. As explained in the
text, the system should be transformed into one that is non-erasing and non-
collapsing.

Recursive rules are of nesting depth 3 (with only variables on level three) on
the left and on the right, and compositions also have right-depth 3. Were all
right sides non-nested and linear (they are not), then confluence and termination
would be decidable [49]. In fact, one needs only two rules of left nesting-depth
3 to encode all of partial-recursive rewriting and bring on the undecidability
results of the previous sections. To that end, one would systematically replace
each non-shallow recursive definition f , other than the predecessor function p
(defined in the text), with left-shallow rules

f(z, . . . , xi, . . .) → f ′(t(z), p(z), . . . , xi, . . .)
f ′(F, z, . . . , xi, . . .) → g(. . . , xi, . . .)
f ′(T, z, . . . , xi, . . .) → h(f(z, . . . , xi, . . .), z, . . . , xi, . . .) ,

and then add the following:

t(0) → F
t(s(x)) → T .
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