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1. INTRODUCTION

We examine the hypothetical distinction between texts of priestly (P) and non-priestly (nonP) origin in the books of
Genesis and Exodus, for which exists a surprisingly large agreement amongst biblical scholars (e.g., 8; 9; 5). Examining
this distinction with an independent, unsupervised computational methodology would establish a measure of confidence
therein and encourage its application to additional instances of biblical texts, especially those of greater controversy,
where our approach could help tilt the scale in favor of one hypothesis over another.

2. METHODOLOGY

We intertwine descriptive and inferential statistics. The first is used in text classification and interpretability analyses,
whereas the latter quantifies uncertainty through hypothesis testing. While descriptive statistics were successfully
applied to specific texts (e.g., 7; 10), we are unaware of similar studies where uncertainty quantification was considered.
Furthermore, identification of literary features responsible for the classification, as opposed to cluster-wise significant
feature detection (e.g., 6; 2; 11), is novel for stylometry.

2.1. Corpus

We use STEPBible! (digitized Leningrad codex), with its morphological and semantic tags for all words, prefixes, and
suffixes. We consider two representations of the text: word-wise and a grammatical representation by phrase-dependent
parts-of-speech (pdps).

We obtained a scholarly labeling assigning each verse in Genesis and Exodus as P /nonP.

2.2. Parameterization and Embedding

Our underlying assumption is that significant literary differences between texts manifest in simple linguistic param-
eters. Therefore, we consider three parameters, distinct combinations of which result in different classifications. These
are: (1) word-/pdp-wise representations, (2) n-gram size, the length of sequences of consecutive words/pdps, and (3)
running-window size, the number of verses surrounding the original, providing additional context.

We use tf-idf to encode each verse, assigning a relevance score to each feature in the context (1). The critical
consideration behind choosing this traditional embedding is that it allows interpretability of the results, unlike neural-
net-based language models, which are convoluted (e.g., 3; 4).

2.3. Optimization

We use k-means to classify the embedded verses and use an unbalanced accuracy measure to quantify the goodness of
classification. We perform cross-validated grid-search on a range of running-window and n-gram sizes for words/pdps,
identifying the combination that yields the highest accuracy (Fig. 1).
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Figure 1. Cross-validated grid-search optimization for Exodus (pdps). Left Matrix: averaged accuracy over 10 simulations
with respect to combinations of window sizes (y-axis) and n-gram sizes (z-axis). The best-fit combination yields ~ 89.51.96%
accuracy, and the cells of feature combinations within 1o thereof are marked with red. Right Matrix: standard deviation of
the left matrix.

2.4. Testing and Validating

Through hypothesis testing, we aim to establish statistical significance of the distinction. We perform two tests,
under the null hypothesis that our labels were randomly assigned: (1) arbitrary permutations, and (2) cyclic permu-
tations, where we generate the null by shifting the labeling cyclically, seeking to conserve implicit correlations between
consecutive verses.

2.5. Feature Importance

Minimizing k-means loss is equivalent to maximizing inter-cluster variances. Leveraging this, we extract a vector of
feature-wise importance that maximizes the inter-cluster variance found by 2-means. This vector allows us to trace
the features most responsible for the classification (Fig. 2).

3. CONCLUSIONS

We examined the hypothesized P/nonP distinction in Genesis and Exodus and introduced a novel computational
and statistical methodology for text stylometry that is essentially independent of-, but in synergy with- established
philological practices. We sought an optimal single feature—a combination of running-window and n-gram sizes, and
extracted features that contribute most to classification and their respective proportions. We achieve a 73% and 90%
(balanced) accuracy for Genesis and Exodus. The difference in accuracy between the two seems to arise from the more
sporadic distribution of P in Genesis, as opposed to a more formulaic one in Exodus.
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