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1 Introduction

In [6], Toyama proved that the union of two confluent (Church-Rosser) term-
rewriting systems that share absolutely no function symbols or constants is
likewise confluent. The proof of this beautiful modularity result was later
substantially simplified in [3]. Unfortunately, confluence is not, in general,
preserved when the two systems have constructors in common.

When, however, the union of the two systems is terminating, confluence
is preserved by constructor-sharing unions, as an immediate consequence of
Knuth’s Critical Pair Lemma [4]. Better yet, Ohlebusch [5] showed that
confluence is preserved when each system is (weakly) normalizing. We are
looking for weaker conditions that imply modularity.

In this paper we look at a further simplification of the proof of Toyama’s
result for confluence, which shows that the crux of the problem lies in two dif-
ferent properties: a cleaning lemma, whose goal is to anticipate the applica-
tion of collapsing and constructor-lifting reductions; a modularity property of
ordered completion, namely, that ordered completion commutes with unions.
And we show that both properties are satisfied by constructor-sharing unions
under Ohlebush’s assumption that constructor-lifting derivations are weakly-
terminating. In conclusion, we show by means of an example that this as-
sumption can be relaxed, provided the modularity of completion remains
satisfied, as well as a weaker form of the cleaning lemma.



2 Preliminaries

We assume given a signature (or vocabulary) F of function symbols together
with their arity, and a set X of variables. Let T(F,X) and T(F) denote
respectively the set of terms built up from F and X, and the set of ground
terms built up from F only. We assume familiarity with the basic concepts
and notations of term rewriting systems. We refer to [2] for supplementary
definitions, notations and examples.

Terms are identified with finite labelled trees as usual. Positions are
strings of positive integers, the root position corresponding to the empty
string A. Concatenation of positions u and v is written w-v. Positions can be
compared in the prefix ordering as follows: p < g iff ¢ = p- ¢’ for some ¢’. We
use Pos(t) (resp. FPos(t)) to denote the set of positions (resp. non-variable
positions) of ¢, and #(p) to denote the symbol at position p in ¢ (when p = A
we also use the notation root(t)). The subterm of t at position p is denoted by
t|, and the result of replacing ¢|, with u at position p in ¢ is denoted by t[u],.
This notation is also used to indicate that u is a subterm of t. Var(t) denotes
the set of variables occuring in ¢. A term ¢ such that Var(t) = {z,...,2,} is
linear if each x; occur exactly once in ¢, in whicvh case we write t[z1, ..., ;).

Substitutions are written as in {z; — t1,...,x, — t,} where ¢; is as-
sumed different from z;. Dom(o) = {x1,...,x,} is the domain of . We use
greek letters for substitutions and postfix notation for their application. We
say that s subsumes t or that t is an instance of s if t = so for some sub-
stitution o, and write s < ¢t. The relation s = t iff s = ¢£ for some bijective
mapping £ : X — X called a variable renaming is the equivalence associated
to subsumption.

A rewrite rule is a pair of terms, written [ — r, such that [ ¢ X and
Var(r) C Var(l). A term rewriting system is a set of rewrite rules R =
{li = r;};. A term t rewrites to a term u at position p with the rule | — r
and the substitution o, written ¢t —, u, if t|, = lo and v = t[ro],. A
term t as above is called reducible. An irreducible term is called a normal
form. The reflexive transitive closure of the relation —, denoted by —*, is
called derivation, while its symmetric, reflexive, transitive closure, denoted
by <»* is called conversion. A term rewriting system R is confluent if t —* u
and ¢ —* v implies u —* s and v —* s for some s, weakly normalizing
if every term s has a normal form ¢, terminating (or strongly normalizing)
if all reduction sequences are finite, and convergent if it is confluent and
terminating.

Given a term rewriting system R, its vocabulary F can be partitioned
into a set D ={f € F | f =root(l),l - r € R} of defined symbols and
a set C = F — D of constructors. We will often write D U C instead of F.



Let now R and S be two rewrite systems over the respective vocabularies
fR = CRUDR and -,FS = CSUDS such that fRﬂfS = CRﬁCS = C.
The system RU S is a combined or constructor-sharing union. A constructor
context is a linear term C[zy,...,x,] € T(C,X). We say that a rewrite rule
[ — r is constructor-lifting if root(r) € C, constructing if r € T(C, X'), and
collapsing if r € X. We say that a derivation Cluy,...,v,| —*C[v], ..., v}]
is constructor-lifting if some v] is constructor-headed. We denote by Reyift
the infinite set {u —} v} of constructor-lifting R-derivations, similarly for
Seift-

From now on, we assume given two rewrite systems R and S sharing a
set C of constructors as above.

3 Slicing Terms

Definition 1 Let R and S be two rewrite systems over the respective vocab-
ularies Fpr = CrRUDp and Fg = Cs U Dg such that FrNFs =CrNCs =C.
A term in the union T (FrU Fs, X) is homogeneous if it uses symbols of Fr
or Fs exclusively.

A non-homogeneous term can be (recursively) decomposed into a topmost
maximal homogeneous part, its cap, and a multiset of remaining subterms,
its aliens. The cap of a (shared) constructor-headed term may not be unique.
Since R and S play symmetric roles, we give the definitions for R only.

Definition 2 (Cap, Aliens, and Equalizers) Given a term t in a com-
bined union, a subterm t = t|, is called an alien with respect to Fp if
t(q) € Fs \ Fr and ¥p < q, t(p) € Fr and 3p < q such that t(p) € Fr\ Fs.

Let € be a one to one mapping from a denumerable set Y O X to the
set of terms T(Fr U Fs,X), such that {(x) = x for all x € X. Ift is
homogeneous with respect to Fr, then the (unique) R-cap of t is the term
tr = t, and its R-aliens substitution v is the identity. Otherwise, t = L[,
where tp € T(Fr U Fs,Y) is homogeneous and mazximal with respect to
subsumption, and Yy € Var(t), yyf = £(y). The multiset of R-aliens of t is
the multiset {yvE |y € Var(tg) N (Y \ X)}, in which each term yyE appears
as many times as the number of occurrences of y in tg.

We say that y is an equalizer substitution if the instance Clxy, ..., x|y
of some arbitrary constructor context Clxy,...,x,| such that Dom(y) =
{x1,...,2,} is an equalizer, and that t is an equalizer iff Vo, y € Dom(y,), © =
y iff &(x) <% s E(Y), and 7y is an equalizer substitution.

The rank of an homogeneous term is defined to be 0. For an heterogeneous
term, its rank is 14+ the maximal rank of its aliens.



Example 3 Let Fp = {f,c},Fs = {g,¢},X = {z},Y D {x,y}. The cap
of the term c(f(g(x)), g(x)) with respect to Fg is the homogeneous term
c(f(y),y), and there are two aliens, the occurrences of g(x). Let now S =
{9(x) — z}. Then, the term c(f(g(z)),g(x)) is an equalizer, while the term

c(f(g(x)),x) is not.

In practice, we will usually leave implicit the signature Fr or Fg with
respect to which the cap of a term originating a derivation is computed. More
precisely, the cap § of the first term in a derivation is chosen to be S or §g
if both exist. Then, the caps of its successive reducts are chosen accordingly,
as explained next.

Given a choice for the cap of s, we will write s — ¢ (called a cap re-
duction) if s —b, ot with p € FPos(8), and s — 4t (alien reduction) if
s —b ot with p & FPos(§).

Lemma 4 Assume that s —* t with § = §g. Then, tg exists, and we define
t =1tgr. Moreover, t =5 if s and t are equalizers.

Proof: Because FPos(3z) C FPos(t), and tz(p) = 5g(p) for all p €
FPos(5g). O

Lemma 5 Assume that s = lo for some homogeneous term [ such that
Dom(l) C Dom(8) and some substitution o. Then, o = 07, for some substi-
tution 0.

Note that the cap of s is unique here, if [ is a lefthand side of rule, hence
headed by a defined symbol in either R or S.
Proof: Assume that [ € T(F,X). Let x € Var(l), and l|, = l|, = x. Then,
p,q € Dom(8g), therefore vo = s|, = $gyE|, = 8rl,7F = §gr|,€. Similarly,
ro = s|, = $pVE|, = $r|VE = Sr|,E. Since € is a bijection, $g|,& = $gr|,&
implies Sg|, = Sg|s- Therefore, §(x) = §g|, is a well-defined substitution,
and o = dyE. O

Lemma 6 Assume that s — t with the rule | = r € R, hence § = 55 and
substitution o. Then, either

(i) §Rli>u, u=1tr ¢ T(C,Y)\T(C,X) and t = tgYs, in which case we
—r

let t =tg or
(ii) §li>u e TC,V)\T(C,X), hence r € T(C,Var(l)), t = uys and
—r

tA == ??5.
In both cases, t is an equalizer if s is an equalizer.

4



Here, the cap of s is determined by our choice that the rule [ — r rewrites
in its cap. It is important to notice that, in case (i), ¢ may be a term built
from shared constructors and variables in Var(s). Such a term is obtained
iff s[z], € T(C, X), the rule [ — r is constructing or collapsing, and all aliens
are erased, that is, for all x € Var(r), xo is a subterm of §. In case (ii), there
must exist some variable x € Var(r) such that zo is a subterm of s but not
of §, that is, contains an alien of s. As a consequence, the cap of this alien
gets glued to u and the cap of ¢ has to be in the other signature with respect
to the cap of s.

Proof: By lemma 5, 0 = dv,, for some §. Therefore, s = s[s|,], =
59 [1075),]» = (8[10],)7s since p € FPos(8), and t = (8[rd],)ys. There are
two cases:

1. §[ré], & T(C,Y)\T(C,X), that is, either §[rd], contains a defined
symbol, or it does not contain a variable from ) \ X. In both cases,
§—>, . t=§[rd], and t = tv,. Assuming s is an equalizer, ¢ is therefore
an equalizer as well.

2. §[ré], € T(C,Y\T(C,X). Necessarily, r € T(C,Var(l)) and ¢t = u~s
is the instance of a constructor term by aliens of v,. Therefore, there
is no choice for the cap of ¢, it has to be in the signature of the cap
of the aliens of s. Assuming now that s is an equalizer, then ~, is an
equalizer substitution, hence t = u~y, is an equalizer as well.

O

From now on, we will not need to subscript the cap of a term by the
signature R or S, once the choice of a cap for a term originating a derivation
is made, which we will always assume.

4 Stable equalizers

Due to the possible action of constructor lifting or collapsing reductions, the
cap and the aliens may grow or disappear along derivations. In particular,
the cap may disappear if the term is equivalent to one of its maximal aliens,
up to some constructor context.

Definition 7 [Stability] A term s is cap-collapsing if there exist aliens uy, . .., uy,
(n > 0) of s, a constructor context Clxy,...,x,] and a term t such that
s —hus t—rus Clut, - .., uy).
A term s headed by a defined symbol is constructor-lifting if there exists
a constructor headed term t such that s —*t.



A term s 1is cap-stable if it is neither cap-collapsing nor constructor-
lifting, stable if it is cap-stable and its aliens are themselves stable, and alien-
stable if its aliens are stable.

Collapsing a cap arises because of the application of a cap rewrite as de-
scribed in Lemma 6 (ii). Note that we cannot simply take t; = u; as shown by
the following example: R = {f(z,z) — ¢(z)} and S = {a — ¢(d), b — ¢(d)}.
Then, we have f(a,b) — f(c(d),b) — f(c(d), c(d)) — ¢(c(d)) <— ¢(a). Note
that the alien a of the original term has to be rewritten to ¢(d). On the other
hand, the original term is not an equalizer. For equalizers, we could adopt
the simpler definition s —%, ¢ Cluy,...,u,|. Similarly, we cannot take an
empty context in general because of the constructor-lifting rules, as shown
by the same example.

Lemma 8 Assume that v is a stable term such that v—"*t. Then v and t
have their cap in the same signature and t is stable.

Proof: By (outer) induction on the rank, the property is true of the aliens
of v. Therefore, it suffices to prove that the cap of v does not collapse, and
that ¢ is cap-stable. We do it by induction on the length of the derivation
from v to t. The case v =t being trivial, let v — s —* ¢. Using the inner
induction on the derivation s —* ¢, we simply need to prove the property
for s. We distinguish two cases.

1. Assume that v — s. Since v is not cap-collapsing, case (i) of Lemma 6
applies, therefore, both caps are in the same signature and the aliens
of s are aliens of v (hence stable by assumption).

2. Assume now that v — , s. Since v is stable, so are its aliens, and, by
outer induction hypothesis, its reducts. This shows that the aliens of
s are stable. Besides, by Lemma 4, s and ¢ are in the same signature.

We are left to show that s is neither cap-collapsing nor constructor-lifting in
case it is headed by a defined symbol. If it were cap-collapsing, then, using
the notations of Definition 7, there exist aliens uq, ..., u, of s, a constructor
context Cly1, ..., y,] and a term ¢ such that s —%, gt <55 Clu, ..., upl.
Putting the derivations together yields v —%, g t ¢—H g Clu1, - . ., uy]. Since
v is stable, the aliens uq,...,u, of s, are reducts of aliens vq,...,v, of v,
and we obtain therefore v —% ¢t <—% 5 C|v1,...,v,], contradicting our
assumption that v is stable. 0]



Lemma 9 Assume that s — t, where s is an alien-stable equalizer. Then,
there exists a substitution 6 from Var(t) N (Y \ X) to Var(8) N (Y \ X) such
that 5 = t0 and 0, —* ~,. Moreover, 0 is a bijection if t is also an equalizer.

Proof: By Lemma 4, § and { are in the same signature, and by Lemma 8
t is alien-stable, therefore its aliens are stable. Hence, FPos(3) = FPos(t),
Vp € FPos(s), s(p) = t(p), and 3 and { may only differ by the names of
their variables. Now, if |, = t|, = = then t|, = t|,, therefore s|, <+* s, since
s —"% t. Hence s|, = s|, since s is an equalizer. Therefore s, = §|,, and
§ = 10 for some 0 from Var(t)N (Y \ X) to Var(5) N (Y \ X). Also Oy, —* v,
since s — t.

Moreover, if ¢ is also an equalizer, §|, = §|, = = implies t|, = t|,, therefore
tl, = t|,, and @ is a bijection. O

5 Structure Lemma

The goal of this section is to show that proofs between equivalent non-
homogenous alien-stable terms can be decomposed into a proof between their
caps, and a proof between their aliens.

Due to collapsing reductions, the transitive closure —¢, of the relation
— may actually end up rewriting in a descendant of an alien of the term
originating the derivation. To cope with this problem, abbreviating “original
cap” by OC and “original aliens” by OA, we define the ternary relation
s —H0 v —H4 L, for a given alien-stable term s by induction on derivations
as follows:

1. s=v—1,

2. s—cv = Cluy,...,v,] —*t, where C[zy,...,z,] is a constructor
context and v, ..., v, are aliens of s,

3. s —cu—5Hc v —5H4 t, where u is not of the form Clvy, ..., v,], with
Clzy,...,x,] a constructor context and vy, ..., v, aliens of s.

Similarly, we define the number n of rewrite steps in the original cap of
the alien-stable term s originating the derivation s —* ¢, called its indez, as
follows:

1. if s =1, then n =0,

2. if s—,u and w —*t is a derivation of index m, then n = m,



3. if s — v where v = Cluy, ..., v,] for some constructor context C' and
aliens vq,...,v, of s, then n =1,

4. otherwise s —u and u # Clvy,...,v,], and u —* 1 is a derivation
of index m, then n = m + 1,

A key property of alien-stable equalizers is the following:

Lemma 10 (Commutation) Let s be an alien-stable equalizer such that
s —*v. Then, s —5How —H 4 v, where w is an alien-stable equalizer.

Proof: By induction on the index n of the derivation s —*v. For the
base case (n = 0), w = s. For the induction step, let s —% u —>,t —* v.
By Lemma 9, § = u# for some 6 such that 6y, —"*y,. By Lemma 6, we
have either (i) & — ¢ and v, = v, or (ii) @ — v’ € T(C,¥)\ T(C,X), and
t = u'y,.

In case (i), s = &y, = W0y — o0 t0ys — "ty = tyy = t—*v. By
Lemma 6, 07, is an equalizer (of a rank smaller or equal to that of s),
which is alien-stable by Lemma 8, therefore the index of the derivation
t0vy, —* t —* v is equal to n—1. We conclude by the induction hypothesis.

In case (ii), s = §vs = Whys —> oo WOV —H 4 WYy =t —5 4 v, and we
are done since u'fv, is an alien-stable equalizer (s is an equalizer). O

Lemma 11 (Cap-collapsing) Let e be an alien-stable equalizer. Then,
e is cap-collapsing iff é —% s Cly1,...,yn] for some constructor context

Clyr, - ya] € T(C, Y\ X).

Proof: Using the notations of Definition 7, let e —* t «—* Cluy, ..., u,]| for
some aliens uy, ..., u, of e. We write e —7, €' —¢ 4 t by Lemma 10, where
¢’ is an alien-stable equalizer.

Since uq, ..., u, are aliens of ¢, the caps of e and uy, ..., u, are not in the
same signature. Since e is alien-stable, the caps of uy,...,u, do not change
by rewriting, therefore the caps of e and ¢ are not in the same signature.
By definition of e —7, €, the cap cannot change along that derivation ex-
cept, possibly, during the last step. Assume now that e’ and e have their
cap in the same signature. Then, ¢’ —, , ¢ must occur in the aliens of €',
which does not change the cap by Lemma 4, a contradiction. Therefore, the
caps of e and € must be in different signatures, hence the derivation from

*
e to ¢ must have the form e —e”" — € = C"[vy,...,v,], where
OC ~ 15C'[w1ymsm]

C"yry---yyp) € T(C,Y)\T(C,X), and vy,...,v, are aliens of ¢”. By re-
peated applications of Lemma 6, ¢ —*¢”, €’ is an alien-stable equalizer,



and € — C"[y1,...,y,) € T(C,Y)\ T(C, X), hence é —* C"[yy,...,y,). O

Lemma 12 (Cleaning) Assume that every term in T(Fg,Y) (resp., T(Fs,Y))
has a (non necessarily unique) normal form with respect to Reyp (resp.,
Sciirt). Let t be a term whose aliens are confluent in R U S. Then, there
exists a stable equalizer e such that t —7, g e.

Proof: By induction on the rank of ¢ = ¢v,. By confluence assumption,
v —* 74 such that v(x) <* v (y) iff v/(z) = ~/(y). By induction hypothesis,
vl —* . a stable equalizer substitution. Let now s = £7”, hence t —s.
We now compute s and v,, show that v, is a stable equalizer substitution,
and that s rewrites to a stable equalizer e.

Let y € Var(f) \ Var(t), and assume without loss of generality that the
cap of t belongs to the signature R. Let 6(y) = 5z. By construction, s = 0¢,
t0 = §, and &|var(s)\var(s) = 7s- Now, since 7, is made of subterms of 7/ or
alien subterms of 7/, it is a stable equalizer.

If s is cap-collapsing, then § —*Clyi,...,yn], by Lemma 11, hence
s —* Cly17s, - - -, YnYs), which is a stable equalizer and we are done.

If s is not cap-collapsing, we take a normal form under the constructor-
lifting derivations and we are done again. U

We finally come to the structure lemma. For this, we will use a tool called
ordered paramodulation, or, in the context of equations, ordered completion.
Given a set E of equations and a rewrite ordering > total on ground terms,
ordered completion computes a (possibly infinite) set of equations E* which
is ground confluent in the following sense: s <}, tiff s — 00 v and t —}0 u,
where v — po w iff v|, = lo,w = v[ro], and v > w for some [ = r € E*.
The main observation is that in the absence of shared constructors, then
(RU S)>® = R>® U S for any rewrite ordering > total on ground terms.
Note that the result of completion is not changed by adding a set of free
variables provided the ordering is extended so as to remain a total rewrite
ordering. This is possible with, e.g., the lexicographic path ordering. We will
show in Section 7 under which condition this observation remains true when
there are shared constructors. Saying this, we assume that R*° and R have
the same set of constructors, that is, symbols in C never appear at the head
of a lefthand side of a rule in R*.

Lemma 13 Assume that the alien-stable equalizer u is cap-collapsing with
respect to R U S°°. Then, u is cap-collapsing with respect to RU S.



Proof: By Lemma 11, 4 —}0 g0 C[x1,. .., 2,]. Since @ is homogeneous,

we may assume without loss of generality that & — %5 C[z1, ..., ], hence
U4 Clz1, ..., 2,) and therefore @ <% C|xq, ..., z,], and by confluence of
R, 4 —% Clzy,...,x,], and therefore 4 —7% o Clxy,...,z,]. We conclude
by Lemma 11 again. U

Lemma 14 (Structure) Let RU S be a combined union for which ordered
completion is modular. Let v and w be two equalizers whose aliens are con-
fluent, and such that

(i) v and w are stable with respect to — g,

(11) v <5 g W.
Then,

(i) U <% 5 Wn and

(ii) Yo <55 M 1w for some bijection 1 : Var(d) N Y — Var(w) N Y.

Proof: By assumption, <37, ¢ = *he g0, and R*US® is confluent. There-
fore, v —ho0 ygo 5 ANd W — o0 g0 § fOr some s. By Lemma 13, v and w
must be stable with respect to R* U S*°. By Lemmas 10 and 8, there exist
two stable equalizers v' and w' such that v —6¢ geoyge V' =04 peouge
and w —{¢ peoygoe W =54 gouse S Since aliens of v and w are confluent,
the aliens of s are confluent as well, hence, by Lemma 6, s can be assumed
without loss of generality to be an equalizer. By Lemma 6 again (smce v, W
are stable), & —* v’ and @ —* w’. Since v’ —% s, by Lemma 9, v" = §p,
and gy, —* 7, for some bijection p. Similarly w’ = sv and vy, —* 7, for
some bijection v. Let 1 be the bijection ‘. Then, v/ = w'n, yielding (i),
and py, —* v —* vy, yielding (ii). O

6 Modularity of Confluence
We can now conclude:

Theorem 15 Assume ordered completion is modular. Then, the union of
two confluent rewrite systems R,S with shared constructors C, such that
Reiife, Sciife are weakly-terminating, is confluent.

Proof: We show the Church-Rosser property: v <+% ¢ w implies v —* +—* w
by induction on the maximal rank of the pair (v, w). See the figure.

There is a first difficulty, that we must choose the cap of v and w ac-
cordingly. We can actually choose the cap of all term in the proof v<*w
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non-deterministically, and verify that the rules which define the cap of a
reduct are satisfied. If there is a proof, it is easy to see that there must be a
consistent choice, which we now assume.

By the cleaning Lemma 12, v —7%, ¢ v and w —*w', v’ and w' being
stable equalizers.

By the structure Lemma 14, v/ <% ¢ w'n and yy <% 6 1 Yar-

By confluence assumptions on R and S, o/ —* s «—* w'n.

By induction hypothesis applied to 7, and '+, whose ranks are strictly
smaller than the maximal rank of v, w, 7y, —* o +—*n" 1y,

Therefore, v/ = 07y —* 57y —* 50 —* s Yy — Wy =
w', and we are done. O

RS 1. Cleaning Lemma
R+ (L © g+

. @O,
’ A 2. Structure Lemma

A v’ * w’'n
V=voy R - w=w' nnly
\@ /
R R
® ; ®)
E3

* 3. Confluence assumption on R
@,

R S '
\*\\@/ 4. Induction hypothesis

Figure 1: Proof of the modularity theorem

We are now left with the modularity property of ordered completion, a
straightforward property when there are no shared constructors.

7 Modularity of Ordered Completion

We now want to complete R (and S) in such a way that the shared construc-
tors are still constructors in the completed sets.
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Theorem 16 (Modularity of Ordered Completion) Assume that Rej;if
and Sciipe are weakly terminating. Then (RUS)> = R*°US™ for some well-
founded, stable ordering > which is total on ground terms.

Proof: Since Rejy is weakly-terminating, each term of 7(F,X) has a
normal-form with respect to Rejs. But since R is confluent and Rejipe C
—, this normal form must be unique. Let >p be the relation on ground
terms containing: the pairs (u,v) if u and v are different ground terms such
that v is the constructor-lifting normal form of the ground term u; the pairs
(uo, vo if w and v are different terms such that v is the constructor-lifting nor-
mal form of u, and uo and vo are ground. Let >==>px U >g. > is transitive
and well-founded since all pairs are of the form f (), C[v), where f € F\ C
and C...] is a non-empty constructor context. By Zorn’s lemma, > can be
extended into a total, well-founded ordering on ground terms. The ordering
is then extended to terms with variables by stability: s > t iff so > to for all
substitutions such that so and to are ground. The obtained ordering is again
well-founded, total on ground terms, and stable, hence it allows to perform
ordered completion, as shown in [1].

Our completion process will generate two kinds of critical pairs, made of
homogeneous terms of the same signature, say Fg: pairs whose terms are
both headed by defined symbols. These pairs are normally incomparable,
hence are treated as equations, whose instances are ordered according to
the ordering; and pairs of the form (p = f(ﬁ),q = Clvy,...,v,]), where
f € Fr\C and Clzy,...,x,] is a constructor context. Let w be the unique
normal form of ¢ with respect to R¢jip. Since a lefthand side of rule in R,
hence in Rejf, cannot be headed by a constructor, then w = Clwy, ..., wy],
and v; —>EClift w; if w; is constructor-headed. There are two cases: if w; is
not constructor-headed, then the pair (v;, w;) is left as an equation; if w; is
constructor headed, then it is the constructor-lifting normal form of v;, hence
v; > w; by construction and that pair can be added as a constructor-lifting
rule. We are left to show that p > w. Since R is confluent, p —7}, w' for some
w' such that w —7, w'. But the derivation ¢ —7%, v’ is constructor-lifting,
hence w' = w, and p > w by construction again.

So, all pairs constructor-lifting pairs become rules in our completion pro-
cess, which ensures modularity. O

Toyama’s theorem and Ohlebusch extension are corollaries of Theorem 15
using Theorem 16.
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8 Conclusion

We have given a really simple proof of Ohlebush generalization of Toyama’s
theorem that enabled us to better understand the difficulties of modularity
in presence of shared constructors. Besides, our aqgpproach can easily be
tailored so as to cover new cases that are not covered by Ohlebush’s result.
Indeed, the key to our approach is the structure Lemma. In turn, this Lemma
relies on the modularity of confluence, which cannot be so easily relaxed, and
on the cleaning Lemma, which can be relaxed. Indeed, what is needed in
Lemma 15 is the existence of terms v" and w’ to which the structure lemma
can be applied. The cleaning Lemma says that v and w’ can be chosen to
be constructor-lifting normal forms of v and w. If such normal forms do
not exists, we need to chose some other terms instead. In general, there is
actually no need to go until a normal form is obtained. We can simply rewrite
v and w until enough constructors have been poped up, so as to apply the
structure Lemma. Here is an example where this idea applies:

Example 17 R = {g — c(9)}, and S = {f(z,2) — =z, f(z,cx) — czx}.
Ordered completion generates {c(g) — g, f(x,x) = z, f(z,cx) = cx}. And
the union is indeed confluent.

We have not yet explored this direction, but we believe that it can be
carried out with the same kind of tools. We also believe that there are
a number of modularity results in the literature which could benefit of a
similar treatment.
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