
THE EVOLUTIONOF PROGRAMS:
A SYSTEM FORAUTOMATICPROGRAMMODIFICATION

NachumDershowitz and Zohar Manna

Stanford Artificial Intelligence Laboratory, Stanford University, Stanford, California
and

Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

ABSTRACT

A plog! a17~mer spencfs mot-e t]rne modifying already existing
plogtams than ccnlstructing o!lginal ones An attempt IS made to
formulate tcctlnlques of program nmcllhcatlon, whereby a program
that actlleves one result can be transformed Into a new program
that uses thr sat71r ptinclpies to achieve a different goal. For
example, a plo~ram that uses the binary search paradlgrn to
divlcte two numbers may be modified to calculate the square-root
of a number ItI a slmllar manner,

F’ro~i am debugging is considered as a special case of
nmcflficatlon if a program compurcs wrong results, it must be
n~odlflmi tcl achieve [he intended Iesuks The application of
abstt acr p! (>}P,Iam schemara to concrete probleims IS also viewed
from [be pm spec(lve of modification techniques.

M’e, ll:lve elmbedded [Ills approach In a running
llll[llclllrll tatl(~ll; cm r methods ate Illustrated with several
ex atmplcs that have been performed by It.

1. INTRODUCTION

Tyl)tcaily, a plo~, ranlmer dl!ects more of his effort at the
Imocllflcation of pto~rams that have already been written than at
ttle dcvclopmcnt of new ptograms. Even when nomjnally
enga~,ed III Llle consttwctlon of a new program, he M constantly
r.ecyclinp, “~lsrd” programs and adapting basic programming
pt Inciplcs that have alreacly been incorporated into other
ptogtanls

hfuch al!tomatic programming resea)-ch has focused on the
ot IgIt Iat ImI of [llcj~,talns, but ve)y Ii f[le of this woik shows how to
pI oflt II mm p3st cxpct Ience when apl)roachill~ a new problem.]n
this plwt, we wlst) to emulate th{s latter aspect of programming
in tbc cloi][rxr of an automatic p]o~,t am development systcm. The
esscllcf of OIt I al, [,roactl I]cs iii lhc ability to Fotlmulate ail analogy
bct;vcrn two SCIS of spccihcattons, those of a p]ogram that has
already bvrll coltscructd and those of the 1)]-o~ran] that we desire
to Collsrl [l Ct. TIIIs analosy is then used as the basis for
tt ansfo) r]in~ tile eslstlng pt ogram to meet the new specifications,

As a I)lc)$talnlnwr M by nature error prone, hls mistakes must
be co! I ccted. “I-his deb\}p;Sing pl ocess]s an impott ant spcc!al case
clf pi o~i al-n Imoclifjca!ion It-I our approach, the properties of an
Incor)ect p] o?,t-anl are compared wfth the spec]hcat]oos, and a
n~ocliflcation (ccmrect!on) sought that transforms the incorrect
pt-ogl-am Into a correct one

past successes Abstract program schemata are often a convenient
form fot- Incotpot sting pto~ramming knowledge; they may
embocly basic techniques and strategies such as the
Scnetate-ancl-tmt paradigm or the binary search technique. The
application of these schemata to programming tasks may be
consldei ed wjttltn the framework of modification. A schema
wlltch achieves some abstract goal M modified (instantiated) to
achieve a concrete goal on the basis of a comparison of the
abstract specifications of the schema with the concrete
specifications of the desired program.

The use of analogy m problem solvjng in general, and theorem
p]ov]np, in partlcolar, is discussed by Khng [1971]. The
n~c]dlflcat[m~ of an alteady existing prograin to solve a somewhat
cliffe; ent tasL was su~)gested as a powerful approach by Manna
211cI Walcllnfgcr [1!175], AIso,’ tbc S7’RIPS (Flkes, Hart and
NIlsson [i{17~]) and FIACKER (Sossman [1972]) sys~ems were
to scnme cxtrnt ca[]able of generalizing and reoslng [he robot plans
they p,enelatrc]. The compilation of a handbook of program
sct]emata has tecently been advocated by Gerhart [1975]; their
use]n ttle context of program synthesis has been discussed by
D.erstlc)witz and Manna [1975].

I’he next sectton elucidates the basic aspects of our approach to
pI-OF,I an] mocllflcatlon With the aid of several relatively
sttalgtltforwatd examples. hiore subtle facets of the techniques
are [Illustrated In the third section. The methods described are
almcllable tc, autornatlon, and have been implemented m O~LISP
(Wliber [1975]). All examples of modlrlcations that we present
ran successfully on our system; a sample run may be found m the
Appendix,

Il. OVERVILW

‘1’yi)lcally, p)og!am spcclftcatlons are expressed in a hl~h-levei
a.rje>izon [17n,q1i17{t’ In telms of an mit,buts,hc(i$ccz[ion – detailing
thr cl~sircd rcl. tiot, sl>tp betu>een tl, e progtatw variables ul,on
tct 17~inatlon, atlcl an input ~ptxi$cafion -- definins the set of “legal”
input< foi wt!lch the ptogram IS expected to work. For program
ntodijic(71r on, OIIe IS given a known correct program with its
inpot.output spcc)flcatlon and the specification for a new program.
C.omparmm of the two speclhcations sug~,ests a transformation
ttlat is tltrn applied to ttle given prog!-am. Even if the
transfotmecl pro~, ram cioes not exactly fulfill the speclficatlons, it
can sclve as ttle basis for constructing the desired new program.

The human programmer does have the ability to learn from

144

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1977 ACM 0-12345-678-9…$5.00

1. lkic TccAniquc: Global Tronsjot mctiort

in ttle app] oactl to program mocflfication presented in this
pallet, we stress transformations iti which rzl/ occurrences of a
par’ttcular symbol throughout a program are affected, Such
ttansfotma[[ons are tetmecf “global”, In contrast with “local”
transformations which ate applled only to a particular seynent of
a pto~ran).

As a Sllnple example, consider the follow ins pl-op;ram
(annotafrxf will] its output specification):

y+n
lpop until y = O

Llfy-1] + if fl[2y-1] s A[2y] then A[2Y-1]
else /![2y] fi

y + y-1
repeat

assert .4[0] = rrrirr(A[n:2rr]) .

Given an array /l[n:2n], which M non-empty (i./., n IS
ncm-nc~ative), when this program terminates, /l[O] will contain
the n~lninmnl of the values of the n+l array elements A[n],
A[n+l], ,4[2n], This output specification is formally
expressed in the final statement:

assert AIO] = rn7n(A[n:2n]) .

To n]ocflfy thlsprogran~ tocolmpute themaxlmumof the array,
rather tllan the mlnimurn, we compare thts specification with the
cfesirecl:

assert AIO] = rnax(A[n:2rrJ)
and note that since nrax(ll) = -nrirr(-A) (where -A M equal
to the array A wl[h each element negated),thisis equlvalentto

assert -A IO] = mirr(-A[n:2n]) .
Thus, thetlansformatlon “ A 6CCCWWS-A “ transforms the given
specification into theclestred.

Applying this transformation to the program affects only the
conditional assignment:

A[y-1] + if A[2y-1] s A[2Y] then A[2y-1]
else A[2yJ fi ,

which becoimes:
-A[y-1] ~ if -A[2y-1] s -A[2Y] then -A[2Y-1]

else -A[2Y] fi
It is “llleSal’’for the array -A to appearon the left-hand sldeof
an assignment; therefore, both sides of the assignment are
multiplied by -1 And since the test -A[2y-1] s -A[2Y] is
equivalent to A[2Y] s A[2y-1], we obtain the statement:

A[y-1] - if A[2Y] s A[2y-1] then A[2Y-IJ
else A[2Y] fi ,

yielding a pl”ograrn that computes the maximum. Note that the
array -A no longer appears m the program; only the original
A is actually used.

2. S,beciol Case: Program l~ebugging

Plograrn dkuggi?tg may be considered as a special case of
mocflfication: a program which computes wrong results must be
modified to compute the desired (correct) results. If we know
what [he “bad” program actually does, then we may compare that
with the specifications of what it should do, and modify (debug)
the Incorrect program accordingly.

AS an example, consider a program intended to compute the
integer squa]e-root z of the non-negative number c , that is, c
should lie between the squares of the integers z and z+l :

assert Z2 < c < (Z+1)2, z c N ,
where N is the set of natural numbers. The given program is:

(z, s, t) + (1, o, 3)
loop until c < s

(z, 5, t) - (Z+l, S+t, t+2)
repeat

assert (Z-1)2 < c+] < Z2, z c N+ ,

~l]t ta[llet thatl computltlg the Integer square-root of c, this
program arll[eves tl~ere13tloll:

assert (7-1)2 s c+] < Z2, z c N+ ,

wh?te N+ IS the set of positive itltegers. [This follows from the

fact tliat t . 2z+1 and s = Z2-1 througtlou L] The cause of
the bug, was the Inadvertent exchange of the Initial values of z
and s

Con~pattnS the cleslred assertion with the actual assertion, we
note that t!le fotmer may beobtalned from the latter by replacing
z wlttl z+] allcl c with c-l Applying ttle transformation
“c (X<ornes c-1 “ to the ploglam statements affec~s only the exit
test C<s, u,l~ich becomes c-l < .s , or equivalently c s S.
The transfotlnat!on “ z bccomr$.?+1 “ afi’ects two other
statements: tlte lnltlalizatlon z, + 1 becomes z+l + 1 and the
Iool)-bocly asslylnlent z + z+l becomes z+l + 2+2. These
resultant assigllmcnts, however, are “illegal”, inasmuch as an
expression nlay not appear on the left hand sldeof an assignment.
Instead, the expression z+l is given the Initial value 1 by
ass{gnlng z~o, and the value of the expression 2+1 is
incremented to 7+2 by the “legal” assignment z + z+l

Wc have th(!sohtalned the corrected program:

(z, .s, t) + (o, o, 3)
loop until c s s

(7, s, t) e (2+1, S+t, t+2)
repeat

assert Z7 s c < (Z+l)z, z c N .

Note that ttlough this program IS not exactly what the
programmer lntcnded – we claimed that he reversed the mitlal
values of z and s – it M nevertheless correct.

3. CO17rCt71t’3s [Onsidcr’ations

In the ptev Ious examples only input and/or output variables
were tt-ansforrned. It can be shown that such ~,fobal
transformations – wtlere an input variable is sys~ernatlcally
refjlacecl by a function of Input variables, or an output variable
by a futjctlon of output variables – always preserve the
cot-rectnms of a program with respect to its specifications.
However, it jsoftml desirable totransfotm a function, predlcateor
constant, In wtllch case the transformation is no longer guaranteed
to tesult in a coltect program.

FcJl example, we may wish to construct a fjrogram to fit-id the
maximum of a non-empty array – the output specification M
z = max(fl[l: n]) – given the program:

(z, Y) ~ (A[~l, 0)
loop until y = n

y . y+l
z G nrirr(z, A[y])
repeat

assert z = rrlirr(AIO:n])

for finding the Cnjnlmurn. The transformations “ rnin bfcomc~
max “ and “ O fwomcs 1 “ suggest themselves. Though in this
case applym~: these transformations yields a correct program, such
transformations of a function symbol or constant do not
necessarily preserve co]-rectness. Were the function min not
explicitly usecl in the program, c.g,, if thecondltional statement:

if A[y] < z then z + A[y] fi
were substituted for the assignment:

z + rnirr(z,A[y])

145

then the proposed transformation ‘“ nrirs become~ max” would
clearly not work.

Thus, forsomet ransformations, correctnessmust beverihed. In
order to prove the correctness of a prograln, invariant assetfio,ns
are commonly Lltlllzed. AJ$erthzs are colmmenu which express
relationships between the different variables manipulated by the
program; they relate to specific points in the program, and are
meant tO hold fot the cur]ent values of the variables whenever
control passes tllrough the corresponding poirnt. When an
asset tion has been prcwe[i to be consistent with the cocle – i,e., the
assertion holds for the current values of the variables each time
control passes through the point to which the assertion is affixed

then it M sad to be intrczriarrf. [All assertions annotating our
example programs are indeed invariant.] In particular, the output
a-iscrfiorz, associated with the point of termination, IS invariant lf
tlle final values of the variables satisfy the assetwon; a loop
asser~ion, attactled to the beglnnlng of an Iterative loop, M
invariant if it I1oIc1s when the loop N first entered, and remains
true eacll subsequent tlnle control passes the beginning of the
Ioopbody, The assettion is termed an output lnvarian/ in the
former case, and a 100) invariant in the latter. A program, then,
may be considered correct if the output invariant implles that the
output spec]hcation IS true.

The above mirr program, with its loop assertion appended, is:

(z, y) +- (A[o], 0)
loop assert z = mirr(ll[O:y])

until y = n
y . y+]
z - mirr(z, /t[y])
repeat

assert z = mfrr(/l[O:n]) .

Recently, invariant generation techniques have been developed
and implemented (see, e.{., German and Wegbreit [1975] and
Katz and Manna [1976]), They allow for the automatic
discovery of invarlants which may then be used to prove the
correctness or incorrectness of the program. Our system
incorporates many of those generation techniques, as well as
several ncw ones. lnvaliant assertions are essential in our
aiJprOach to debugging too, as it is necessary to have an idea of
what the progralm actually does before it can be corrected.

Global transformations are applied to all assertions, as well as
to the cocle. Using these transformed assertions, verification
conditions for the new ptogram may be obtained; if they hold,
then the new progl-am IS correct. Sometimes, a verification
condition that turns out not to hold may, nevertheless, suggest
additional tlansforrnations which do succeed. Alternauvely, a
plogratm segment can be synthesized that WIII establish the
verlficat}cm condition; for example, the Jnltlallzatlon of a loop
might bc synthesized If the condltlon for the current mitlailzatlon
]s false.

Returning to our example, after appllcatjon of the
tran SfOlmatlon S “ nrin 6fcomcs max” and “ O becorne$ 1 “ to
the ak>ove program, we obtain:

(z, y) ~ (A[l], 1)
loop assert z = max(ll[l:yl)

until y = n
y ~ y+l
z ~- mdx(z, /l[y])
repeat

assert z = max(ll[l:n]) ,

Using the new assettlons;the correctness of this max program
may straightforwardly be shown,

4. A?z Applicctio?u /rlstarrtiotion oj~rogram Sch&rrlota

One important application of our program modification
techniques is ttle instantidion of pro~ram sctlemata to obtain
conctcte ptogtams. A progralm schtrna M agenerailzed version of
some programming strategy and contains abstract predicate,
function and constant symbols, in terms of which its input-output
relation IS speclhed. This abstract specification may then be
matched wjth a given concrete specification and an instantiation
founcl that, when applked to the schema, yjelds the desired
concrete progra171.

In instantiating a prograln schema, the schema is transformed
into a concret? program after an analogy between the abstract
specifications of the sctlerna and the given concrete specifications is
constructed. Not all instantiation yield correct ptograms;
therefore, a schema is accompanied by a set of prccorzditiorrs –
derived from theschema’s verification conditions- which must be
fulfilled before the schema may be employed. When satisfied,
these condttlons wIII guarantee the correctness of the new
program.

As an illustration, cons]det ttlefollowing program schema:

(z, y) + (k, j)
loop assert P([j:y],z), y c I

until y = n
y + y+]
if -P(y,z) then z + f(y,z) fi
repeat

assert P([,j:n],z) .

Here P([u:rl],lv) means (Vi c I)(u< 7S v)(P(i,W))
and 1 is the set of Integers. Thn schema will achieve the
relation P(i, z) for each integer i from j to n.

For this schema to be apphcable, the following three
precollclltlons must be satisfied by the predicate P, function f
and constants j , k and n:

P(j,k) Aj(r
P([j:y],Z) A Y (~ A Y # /7 A -p(y+~,Z)

* P([j:y+l], f(y+l, z))
j<n A n< I .

_f’he first conrlltlon ensores t}lat the loop invariant N initialized
f510perly; the second]s suticient to guarantee that lf the
invariant hclcl befot-e execution of the Ioolj-body, then they hold
after; and the last condition secures term] natiom

F’ro[:tams fur frttdlng the position or value of the
n)i!lt!~l~l l?l/il~ax[ll)tlll] of an array (or of ot}]er functions w]th
lnte~;er domain, for that matter) are valld instant jat]ons of this
sche171a. F-o! example, say we w]sh to achieve the output
spec}ficatlon /l[O:n] < x, In order to find the maximum x of
the rim-empty array AI O:n]. Applylng our modification
tectlnique, we compare ,4[O:n] s x with the schema’s
specification P([j:rr], z) Thlssuggests lett[ng j be O, z be
x and P(u, v) be /t[u] s v The transformed preconditions,

then, are:

AIO]$ k n O < I
AIO:y] $ X A Y(lfiY#nAX</l[Y+l]

=) AIO:Y+l] s f(y+l,x)
r7<n A n< I .

The first maylJeachleveci by letting k be /l[O]; the secondby
Iettlng f(u, v) be /l[u], since AI O:Y] < x < A[y+l] and
A[y+.f] < A[y+l]; the last is true by virtue of ,4[o:rr] being
notl-enlpt y.

Applying tllesetransforn~ ations, uiz
j 1w[o171cJ O ,
k lwomfs AI O],
7 1,1’i@?IlfJ X,

f(u,u) bfcomfs A[u]

146

and P(o, v) IW(O?U<’J A[lJ] 5 V,
we c) btain tt)e :,tiat anted correct pro:ram

(x, y) ~- (/l[o], 0)
loop assert AI O:y] s x, y c I

until y = n
y + y+]
if x < /l[y] then x + A[y] fi
repeat

assert AI O:n] s x .

5. Using Ex(or~hl

sometimes, transformltlg a program or lnstantlatlnq a schema
only achieves some of the conjuncts of the output specification. In
such a case, it is possible that the program can be extmded to
achlcve all the desired conjuncts by achieving the missing
conjuilcts at the onset and maintaining them mvat’lant until the
encl. Altetnatlvely, code that will achieve the additional conjuncts
— w\ttlout “clobbet Ing” what has already been actlieved by the
ploglam – could be synttlesiz.ed and appendecl at the end.

As all cxampk of the need for extension, consider the case
wllete It IS desired that the pto~ram above also find the position
z , in the att’ay, of the ntaxilmum x We can extend the above

program to achieve x = /l[z] by maintaining that relation as
an invartant t}llou~hotst the executmn of the program. Initially
we want x = AIO] = /l[z], so we set z e O. When the then
path is executed, we want x c A[y] = A[Z] and assign
z + ~, whetl that path IS not taken, x is unchanged and the

relation remains true. Thus, when the program terminates, the
desired relation x = /l[z] WIII hold.

The extended program M:

(x, y, z) + (AI O], O, O)
loop assert AI O:y] s x, y K 1, x = il[z]

until y = n
y * y+]
if x < /l[y] then (x, z) + (/l[y], y) fi
repeat

assert ll[O:n] : x, x = A[z] .

Ill. E_xA~PLE&_

In this section we demonstrate val-ious stages in the evolution of
one pl o~ralm, We lJe#In with a program containing a logical error
and then find and apply alternative corrections. An abstract
version, which represents an Important search method embedded
in the proyam, M then applied and adapted to two other
problems Each, in turn, is modified to apply to a new task,

The examples are olltlined in Figure 1. They owe their
motivation to Wensley [1!)59] and Dijkstra [1’276]. Our
modification system has successfully performed the modification
steps, includlng debugging and instantiation, in these examples
(sometimes resorting to the user’s expertise in theorem proving),
An annotated trace of the first example may be found m the
Appendix.

&(1) annotation
dcbugg i ng

Good Real Division

(2) abstraction

B I NARY SEARCH SCHEMA

&a’ion‘n’t”
&((,) nloc{if icat ion n]odif ication (6)

extension

Rea I Harcliiare Integer
Division Division

Figure 1. The evolution of a divlslon pl-ogram,
(Outllne of examples 1 through 6,)

Example 1: Bad Real Diuision to Good Real lJivision

C.otnslcier the problem of computmg the quotient z of two real
numbcts a and b , where O s a < b , within a specified
tolerance c , 0 < e In other words, the]nput specification is:

Osa<bf10 <c,
and the output SpeClfiCatlOll is:

z s C?//) A a/b < z+e ,
or equlvalcnt]y:

1).2 s a A a < b.(z+e).
ln order fot- the problem to be non.trivial, we must assume that
no general real division operator is avaliabie (though division by
two M permissible). The given program IS:

BAD REAL DIVISION PROGRAM

assert Osa<b, O<e
(z, y) - (o, 1)
loop until y s e

if /). (z+y) < a then z - z+y fi
y + y/2
repeat .

The tnltlal asset tion contains the input speclficat!on wh!ch the
input variablm a , b and e are assumed to satisfy. But, for
example, a=], b = 3, and e = 1/3 , which satisfy the
input spccjficatlon, yield z = O which does not satisfy the

147

second conjunct of the output specification, The bug IS caused by
the Intetchangmg of the two statements within the loop.

Before we can cicbug this program, we must know something
about what it actually does, For this purpose, we annotate the
ptogt am with loop and output mvariants Recall that for a
relatlon to be a loop Invariant, it mist be true upon mitlal entry
into the loop, and must remain true after each execution of the
loopbod y,

We begin with the then path of the condiuonal statement and
note that th]s path M taken when b“(z+y) < a; thus, after
resetting z to z+y we have b.z s a. Since b.z S a is
true Initially, when z = O and O s a , and n unatiected when
the conditional test M false (the value of z is not changed), it
rema]ns Invariant throughout loop execution. We have derived
then the loop Invar’lant:
(1) b.zsa.
The then path is not taken when a < b. (z+Y) In that case
y IS divided in half and z is ieft unchanged, yielding

a < b. (z+2Y) at the end of the current iteration. It turns out
that the ihcn path preserves this rela(ion, and that it holds upon
initlnllzatlon (since a < 2/1 K implled by O < a < b). Thus
we have the additional invariant:
(2) a < b.(z+2y).

These two loop invariant along w][h the exit relation Y s e
imply that upon termination of the program the followlng output
invatiants hold:

b.zsa A a < [J. (z+2e)
Note that the desired relatlon a < b. (z+e) is not implied.

The annotated program – with mvariants that correctly express
what the IJrograrn does do – IS:

ANNOTATED BAD REAL DIVISION PROGRAM

asset tOsa<b, O<e
(z, y) + (o, 1)
loop assert b.z s a, a < b.(z+2y)

until y s e
if b. (.?+y) s a then z - z+y fi
y . y/2
repeat

assert b.z $ a, a < b. (“z+2e)

We now have the task of finding a transformation (correction)
tliat transforms the actual output invariant into the desired out[]ut
SIJeClfiCatlOll:

lJ. z< aA a < b.(z+e) ,
and then a}>plylng it to the whole annotated program (statements
and trlvarlatlt assertions). Accord jng]y, we would Iilie to modify
the pto~ram In such a manner as to transform the Insufficiently
strong a < b. (z+2e) into the desired specification
a < b.(zfc):

a < b. (zf2e) bccomej a < b.(z+e),
At the same time, we must preserve the correctness of the other
COll JUllCt Of [he spccif)catlon:

/J. Z < a unchanged,

T’he most obvious correction i5 to replace all occurrences of e
In the program (there n only one affected statement - the ex]t test
y < e) with e/2 :

Correction 1

Rc/Jocc tibeexit tfst y < e by y S e/2 .

Addltlonal debugging modifications are possible: we may
replace b with b/2 and z with 22 ; alternatively, we might
replace a with 2a and z with 22. Doubling z and
either halving b or doubhng a , yields a conditional test

equivalent to 6. (z+Y/2) s a Transforrntng z into 22
af[ects two acfclltlonal statements: the initialization 2+0
becomes the “illegal” assignment 2Z + O , but the equivalent
original assignment z + O may be substituted; the assignment
z (- Z+y of the then branch becomes 2Z + 2z+y , or
z - z+y/2 No other statements are affected by either of the

two rnodlfications; thus they both yield:

Correction 2

RPploct lh conditional xtotcment with
if b. (z+y/2) s a then z + z+y/2 fi .

Each of these possible transformal]ons involved one of the
input variables e , a and b C)ne must, however, be careful
when transforming input variables, since the transformation
should be applied to the input assertion as well, possibly changing
the range of legal inputs thereby. In this case, the transformations
we have pe]formed are all permissible: The specification O < e
is equivalent to O < e/2 and therefore halving e has no effect
on the]nput range. Since in fact the condition a < 2b , rather
than a<b, is strong enough to imply the loop invariants,
replac!ng b by b/2 (or a by 2a) still yields a program
correct for inputs satisfying a < b , as is desired.

Our progiam after correction 2, annotated with appropriately
modlfwd Invariant assertions is (all b have been replaced by
/J/2 and all z by 22 and the resultant expressions have been
simpllfted):

assert OSa<b, O<e
(z, y) , (o, 1)
loop assert b.z $ a, a < b.(z+y)

until y < e
if b.(z+y/2) -S a then z e z+y/2 fi
y * y/2
repeat

assert b.z s a, a < b.(’z+e) .

This pro~ram may be sli~htly optimized, by evalu.atlng the
subexpr&si&l Y/2 before theco~-ldi~ional statelnent, toobta~n:

GOOD REAL DIVISION PROGRAM

assert OSa<b, O<e
(z, Y) - (0, 1)
loop assert b-z $ a, a < b.(z+y)

until y s e
y + y/2
if b. (z+Y) s ,a then z + z+y fi
repeat

assert b.z s a, a < b.(z+e)

Note that this ptogram IS the same as the otiginal bad program,
witl) the two Iool]-body statements commuted,

148

C.onsiclct an abstt-act version of the correct real clIv Is Ion
p!oSran~ wh!ch has just been obtained:

BINARY SEARCH SCHEMA

(7, Y) c (j, k)
loop assert P(z), O(z+y)

IIlltil R(y)
y . y/2
if P(z+y) then z - Z+Y fi
repeat

assert P(7), C2(z+e) I
This schema 1s an attempt to capture the technique of binary

search otldetlylng the lreal division program. It is obtained from
that l,tu~,tam by abstracting predicates that appear In the
plogtam tckt ancllol assertions:

/).0 < a h3i0111t3J P(u) ,
<? < b.1{ l,fcolllcs 0((/)

and (/<c [>f[O)nfJ R(IJ)
The]n!tl~l valuesof ttlevallablesa realsoabstracted:

o lCi@?71C8 J
and 1 lICCCWIFJ k

The followlnK four preconditionsun the predicates P, Q and
R and constants j and k aresufhcient to guarantee correctness
(they correspond to the vertficatlon conditions of (1) the
Initialization path, (2) ttle loop-body path and (3) the loop-exit
path, ancf (4) tel-minatlo n):

PRECONDITIONS for BINARY SEARCH SCHEMA

(1) P(J) A O(j+k)
(2) -P(z+y/2) * Q(z+y/2)
(3) Q(z+Y) A R(y) * Q(z+e)

(4) (3rr)(R(k/2n)) .
L-..—-—— I

What we have, thrln, IS a gcnetal pro~ram schema for a binary
seatch wlthln a tolerance with an output specification:

P(Z) A Q(Z+C).

Clearly, the p]ecilcares P and R which appear In the schema
must be pllmltlve (that IS, available In the target language),
othet”wlse they must be replaced by equivalent predicates for the
sctlenla to ymlci an executable program. Similarly, the constants j
and k must be given, or their’ values set, prior to their
assignment to the variables z and y,

Excrrnplt 3: Bi71ary Search Scllcvla (o Real Square-rooi

As indicated earner, oneof the applicationsof our modification

system IS the instantiation and adaptation of program schen~ata to
specific problems, To Illustrate how the binary search schema that
we have just seen may be used, we consider the computation of
squat e-roots.

StIppose that we are g;iven the task of constructing a program
that fujcls the square-root z of the real number c , 1 < c ,
Wlttlln rhc toh!rance d, O<d <l. Then the input
specthcatlon is:

O < d< 1 < C,
and the output specification ix

In order to match this output specification with that of our
schema

P(z) A Q(z+e),
we let the constant e be the constant expression -d (vlewlng
z-d as z+ (-d)) and obtain the transformations:

P(O) l,c<ornfs 4E <U,
Q(U) (1<.C@VltJ “<@

and c 1,<’iO??l~S -d

Condition (2) lssatlsfied:

(2) -(JE 5 z+y/2) * z+y/2 s JE,
b~lt we must still satisfy conditions (l), (3) and (4). TosatLsfy
concliticm (1), we need j and k such that:

([) ~ESj A j+ksJ6.
v~e notethat s]nce 1 < C , ./E s c and c+(I-c) . 1 s <~,
Thus bothcotljuncts hold when we let:

J [v c
and k [w l-c.
[An altclnatlvc would have been to take -c for k, since
C+(-c) = o s ./F.]

For coll~itlon (1) to be satisfied, we need a predicate R such
ttlat:
(3) z+y s <z A R(Y) * z-d s -/Z.
By transltlvlty It follows that R should imply z-d < Z+Y and
we let:

R(y) 1,? -d <y.
This also satlshes:

(4) (3rr)(-ds (1-c)/2~),
since both -d and l-c are negative.

The Instantiated schema is

assert O < d < 1 < c
(z, y) + (c, l-c)
loop assert J? s z, z+y ~ JZ

until -d s y
y + y/2
if JF s z+y then z + z+y fi
repeat

assert -/c 5 z, z-d s Jc

Howevet, s[nce P Involves the square-root function itself, the
conditional test IS not primitive and must be replaced. 1(can be
teplacecl by c < (Z+Y)2 provided that z+Y IS non-negative,
The relation o < Z+y IS In fact an Invariant: initially
z+y = c+(I-c) = 1 ; for the then path, Y IS first halved and
then aclclcci to z ,so the valueof z+y is unchanged; and if the
then path is not taken, Y is increased by halving it, since Yis
alwayk negative (by virtue of the loop assertion
z+y s J5 s z), Ttluswe have

REAL SQUARE-ROOT PROGRAM

assert O < d < 1 < c
(z, y) - (c, l-c)
loop assert J? s z, z+y s JF, O s z+y

until -d s y
y + y/2
if c s (z+y)2 then z ● z+y fi
repeat

assert d~ s z, z-d s 42 .

149

Exantp[c4: tlt,71Sqiiare-root to Reo[Llioislon

In this example, we shall clelmonstrate how the above real
square-toot plcyram may be modified to construct a program that
approximates ttle quotient z of two real numbers a and b ,
where O s a < b , wjthin a tolerance e , 0 < e < 1

We begin by comparing the output speclficat]oos of the two
plogtatns.’ We watlt:

z-e 5 a/b A a/b<z;
wh}le for the square-root program we had:

z-d < dc A ./z <z.
Thlssug~ests Ehetratlsforma[ions:

d bccon[es e
and 4F twor?lf s a/b
Toot.,taln the latter, we can use:

bf(LV?l<J (a/b)2 ,
(slncecfl < a/b),

Applyil)g tl]cse tratnsformations, the exit test -d s Y becomes
-e<y and the ccmdltional test c s (Z+Y)2, becomes

(a/b)z s (z+Y)2,0t’equivalently a s IJ. (z+Y) (since a, b
and z+y are non-negative). Thus, we have the transformed
program:

(Z, Y) + ((a/b)2, l-(a/b)2)
loop assert a/b s 2, z+y < a/b, O < z+y

until -e s y
y ~ y/2
if a $ /J. (z+y) then z +. z+y fi
repeat

assert a/b s z, z-e s a/b ,

It 1s, tlowever, cleat-ly tlnsatisfactory, slllce expressions involving
divislotl appear In the mittallzation. The loop invariatlt,though,
can be lnltlallzecl In another manner. Since a/b < 1 , we can
actlieve the relation a/b s z by initializing z to 1 ; since
O 5 a/b, we acllleve O ~ z+y ~ a/b by inwmg that
z+y = I+y = () , for which we initialize y to -1

We havcrhe program:

REAL DIVISION PROGRAM

assert Osa<b, O<e<l
(z, y) +- (1, -1)
loop assert a/b i z, z+y < a/b, O 5 z+y

ui}til -esy
y ~ y/2
if a < b.(z+y) then z _ z+y fi
repeat

assert a/b < z, z-e s a/b .

Exmnfi{t 5: Birlc7ry Search Schcntato lnleger Square-root

For ~hls exampie we return toourblnary search schema:

Preconditions:
(1) P(j) A Q(.j+k)
(2) -P(z+Y/2) * Q(z+y/2)
(3) Q(Z+Y) A ~(y) + (?(Z+e)

(4) (3n)(R(k/2n))

s c /Jem :
(z, y) + (j, k)
loop assert P(z), Q(z+y)

until R(y)
y . y/2
if P(z+y) then z + z+y fi
repeat

assert P(z), t2(z+e) ,

and Illmwlate how it may be applled to the computation of integer
square-roots. This WIII Ilecessitate extension aod the synthesis of
an initlallzatlon IOOP (which have not been completely
inl[Jienlelttecl In our system). Consequently, this example is more
compirx than the previous one.

We would Ilke to construct a program that finds the integer
squal e-root z of a non-negative integer c III ottler words. z. ..
should be the largest iotege}- whose square is not greater than c.
Thus, the input specification is:

c<N,
and the OLltpLlt SpeClhCatlOn IS:

27s c A c< (2+1)2 n z<N.

specification with that of ourC.omparisoo of this output
schema:

P(z) A Q(z+e),
suggests lettiog:

P(u) be U2<C,

Q(U) 6C C<u z

and e l~e 1.
In atldltion, we WII1 have toensoret hat the fitlal valueof z isa
notwtle~ative lnte~er.

Clearly, cotlcfition (2) Issitisfied:

(2) -((z+y/2)2 s c) * c < (z+y/2)2.
To satisfy:

(~) C < (Z+Y)2 A R(y) + c < (Z+l)2,
we let:

R(y) he (Z+Y)2 < (Z+l)z.
We are left with thetoitializatioo and termlllatlon col~dlt~ons:

(1) j2sc A c< (j+k)z

(4) (3n)((z+k/2n)2s (Z+~)2).

In order to satisfy the lnltlalization condit]on we form the goal:

achieve j2 s c, c < (j+k)2 .
T-his conjonctlve goal may bespllt mtotwo consecutive ones:

achieve jz s c

achieve c < (j+k)2 ,
Since c]s sl]eclfied to be nonnegative, we can solve the fil-st by
Iettlng:

J [~F O
if., z IS Inltlallzccl to O For the second we need now achieve

‘2c<k

Oor partlaily written program is:

150

assert c { N
2.0

achieve c < kz
y.k

loop assert Z2 s c, c < (z+y) 2

until (Z+Y)2 .s (Z+I)2
y - y/2
if (z+y)2 s c then z + z+y fi
repeat

assert zz S c, c < (241)2
achieve z c N

assert 27 s c, c < (Z+l)z, z < N .

At thl~ p,int wc have a cllolce 10 orclct to achwve z c N ,
either w’e fitst execute the loop arid then adjust z to satisfy the

addltlnllal ~,ual z c N wblle preserving the iela~mt]shlps Z2 s c

and c < (7+y)2, m wc aclllcve z (N first and then preserve

lt ttlt ou?, hout the loop computatloo.

T’tle ex!enslclll technique su~gests preserving ZCN

rht ou[gtlcwt 101111 computation. [This Is, in fact, the o~ore etlicient

of thp twc, cboiccs.] Inltfaliy z=j=O(N, butsJnce ZIS
somctt!7~r\ IItci cmrnted by y , the latter should also be a
nomne?,atlve Inte$er, Assuming that z and y are

nomnep,attve, ttle exit test (Z+Y)z s (Z+I)2 catn be replaced by
y<l. Furtlletnlore, y 1s nomzero (since fniually

o<~~<k.y and the only operator apphed to y Is
halving), so, under the assumption that Y IS an integer, we need
only test for y = 1

Fjnally, it) order for y to remain in N while it M repeatedly

halved until It equals 1, we must have y (2~ So lnltlally,
will-n yrk , w insist that k c 2N , and accordingly add the

COll JUIICt kcp~ to ttle Inltlallzatlon sub$oal c < k2 Note

that IIO!V, with k c 2N , the termination condmon:

(4) (~rr)((z+k/2n)2 S (Z+~)2)
clearly holds.

Thus far, we have the partially written prog)-am

assert c (N
Z+o
achieve c < kz, k c 2N
y+k

loop assert z 2 SC, c < (Z+Y)2, z c N, y c 2N
until y = 1
y .- y/2

if (z+y)2 s c then z e Z+Y fi
repeat

assert Z2 5 c, c < (2+1)2, z r N ,

The uoachlevecf subgoal:
achieve c K kz, k c 2N

must now be synthesized. We would first attempt to achieve this
&oai oiic cm, junct at a time. Tlle first might easily be achieved by
Iettinp: k = c+] , whtle the second could easily be achleveci by
Icttlng k = 1. Hc,wevet’, though each corljunct IS achievable by
itself, achmvtng both together M more dlflicult, since these two
sol LIt Ions In generai conflict wllh eaCh other,

So,’we ttansform this cotljunctive goal, choosing first to achteve

k c 2N by icttmg k = 2° = 1, and then to keep it true while

executing a loop until the rernain]n~ conjunct, c < k2, IS also
satisfied. Doubilng k with each Iteration will preserve the

invariant k < 2N while making ptogress towards the exit test

c < kz [l-he reasoning is as follows We know that k should

bc inctcasln~,. since Initially k = 1 and ultimately Me want

O s w’c < k Slilce we wish k = 2“ for some natural number
n to Iclllaln 111Vatiallt K’hl\e k Iticreases, It follows that the

expollcnt n also increases. IJoubllng k lnctements the
espotlrnt by 1 .]

Wc Ilave c,bta{llrd the followlng m[tlaliza[lon:

assert c < N
(Z, k) . (O, 1)

loop assert k < 2N

until c < k2
k.2k
repeat

y~k
NotIs tl]at tllc last a$~ignnvmt y - k Is supel[luous; Itmay be
ellinitlatrd II file t-cl}l~ce all occoirciices of k irl the cocie with Y
Wjth th!s chan~,c, ~e have the Integer squaie-)oor progjam:

INTEGER SQUARE-ROOT PROGRAM

asset-t c (N
(z, y) + (o, 1)
loop assert y c 2N

until c < yz
y.7y
repeat

loop 2assert z s C, c < (Z+Y)2, z (N, y [‘2N
until y = 1
y ~ y/2
if (Z+Y)z s c then z + z+y fi
repeat

assert Z2 s c, c< (z+l)2, z c N ,

Ewrnp]c 6: lnfr~c! Sqli(7rt-roo(to Hardware !nlt’gt’r Division

We wisl} to construct a proKranl to compute the quotient q
and remainder r of two Integers a and b The pro~ram
must satisfy the output specification:

o<r Ar<b A q<NA a=h. q+r,
or- equivalently:

(:)) q~ajb A d/b<q+l A qcN A r=a-b. q,
given the Inl,ut specification:

a[NAb [N+

(N+ IS the set of positive integers). We could develop this
program from our binary search sclle,nla in the same manner as
we constructed the Integer square-root program. Instead, however,
we will demonstrate how to transform the just constructed integer
square-root program directly into the tfesired integer division
pl-ogram.

As for the teal division example, we compare the desired
spec(f]cations (::) with those of the square-root program:

z’ <CA C< (2+1)2 A ZCN,
or:

z<d~~ 4F<z+1Azc N,
and obtain the transformations:

z br(onws q

and c fworrws (a/b)2 ,

In addition we will have to achieve r = a-b. q

Applying these transformations, the exit test of the first loop,

c < Y2 , becomes (a/b)2 < y2 . Since both a/b and y are

151

positive, this M the same as a/b < y or a < b.y Similarly

the conditional test (Z+Y)z s c becomes (q+Y)2 s (a/b)2, or
equivalently b.(q+y) s a.

Thus, we have the program:

(f?, Y) + (0, ~)
loop assert y c 2N

until a < b.y
y.2y
repeat

loop assert q s a/b, a/b < q+y, q c N, y c 2N
until y = 1
y + y/2
if b. (q+y) s a then q e q+y fi
repeat

assert q s a/b, a/b < q+l, q c N .

Spectal attention must be paid to the input specification: By

apillyln?; the transformation “ c fXCOmCJ(a/b)z” to the input
assettton of the Integer square-root program, the input contfltion
for this program Isobtalned. Wenote, however, that the only fact
needed for the construction of the square-root program was
O<c; its input specification c<N was unnecessarily

restrictive. A pplylng the transformation to O s c yields
(z < (a/b)2. Now, since this is implied by the input spectficatlon

a c N A bc N+, the above program is correct for any legal
values of a and b.

To achieve the addltlonal output specification r = .s-b. q, we
extend the above program to keep that relation invariantly true.
So whenever q is updated, it M necessary to update r
accordingly: when q is initialized to O, r = a-b. O = a;
when q is incremented to q+y, r becomes
a-b. (q+y) = r-by.

Sofarwe have:

assert a < N, b c N+
(q, y, r) + (0, 1, a)
loop assert y { 2N, r = a-b.q

until a < b.y
y.2y

repeat

loop assert q < a/b, a/b < q+y, q c N, Y c 2N,
r = a-b.q

until y = 1
y + y/2
if b.(q+y) s a then (q, r) + (q+y, r-by) fi
repeat

assert q s a/b, a/h < q+], q c N, r = a-b.q .

Note that the conditional test b,(q+y) ~ a IS equivalent to
b.y s a-/J. q or b.y s r. The expression b.y involves
multiplication atnd appears tht-ee times, so a new variable u is
introduced to always equal by. Substituting u for all
occurrences of b.y and updating u whenever the value of Y

is changed, we obtain:

HARDWARE INTEGER DIVISION

assert a < N, b c N+
(q, y, r, (J) + (0, 1, a, b)
loop assert y c 2N) r = a-b.q, u = b.y

until a < u
(y, u) + (2y, 2U)
repeat

loop assert q < a/b, a/b < q+y, q c N, y c 2N,
r = a-b.q, u = b.y

until y = 1
(y, u) - (y/2, lJ/2)
if u s r then (q, r) + (q+y, r-u) fi
repeat

assert q,< a/b, a/b < q+l, q c N, r = a-b. q ,

This then M the desired hardware integer djvmon program. Its
only operations are addition, Subtraction, comparison and shlfhng,
all of which ale ha!dware lnstructionson binary computers.

NotQ the slmllatity between the extension and optimization
steps it) [his example. In both cases a relation was added and kept
ltlvatlantly tiue at all points of the program, As a final note, we
wish to IJolnt out that most of the previous examples would have
profited from simllaro ptimlzations.

ACKNOW~GEMENT—.———

We thank Richard Waid]nger forma nyfruitful discussions and
constructive comments,

l’tlis research was supported in part by the Advanced Research
Projects A~,ency of the Department of Defense under Contract
hiL)A 90?-76-C.-O2O6, by the C}tlce of Scientific Research of the
United States Air Force under C1-ant AFOSR-7&2909A, and bya
grant from the United States - Israel Binational Science
Founclation. Computer time was provided by the Artificial
lntclllgcncc CcntcI’of Stanford Research Insti[ute.

REFERE_N~

Dershowitz, N. and Z, Manna [July 1975], On automating
sttuc[urd ,bIogromming, Proc. Symp on Proving and
lnll]l"ovl!lg Pt`oSran}s, Arc-et-Setlatls, France, pp. 167-193.

Dijkstra, tl.W. [1976], A di5ciplirre of ,@I’o$Iat71ming, Prentice
EIall, Erl~,lewood Cliffs, N.J.

Fikes R. E., P.E, Hart and N.J. Nilsson [Winter 1972],
Lmr)rri7?g crrd fxccuting gcnerdizt?d robot plans, Aruhclal
lntellip,ence, V. 3, No.4, pp. z51-2S8.

Gerhart, S,L. [Apr. 1975], Krroru!edge ahout ,brog?ams: a model
and ca$e jft~dy, Proc. Intl. Conf, on Rellable Software, Los
A ngelcs, Ca., pp. 88-95.

German, S,M. and B. Wegbreit [Mar, 1975], A s~rrtllesizero~
indur[ioc a55c]fion~, IEEE Trans, on Software Engineering, V,
SE- I, NO. l,pp .68-75.

Katz, S,M. and Z. Manna [Apr. 1976], Logical anal~i of
firogtam$,CACM, V. 19, No4,pp.188-206,

152

Manna, Z. ancf R.J. Waldinger [Summer 1975], Knowltd:t
and ?t.asoning i7z proglam synthesis, Artificial lntelhsence, V,
6, No. 2, pp. 175-208.

Sussman, G.J. [Aug. 1973], A cotn~utationa! wdel oj skill

(7((~ul.c(tion, Ph.D. thesis, fJI-f_, Cambridge, Mass.; also
I)tlhllsllcci as A iom~rffcr rno[/c-/ of Jkili acquisition, American
Llsevler, New }’otk, N.}’. (1975).

Wensley, J.tl, [Jan, 1959], A class oj non-ana/yticc/ iteratiue

~)oi<~~t$s, C:olrlpu[er J., V. 1, No. 4, pp, 163-167.

Wilber, B.M. [Mar. 1976], A ~LISP rtfcrtncc manual, Tech,
note I 18, A rtlficlal intelligence Center, Stanford Research
institute, Menlo Park, Ca.

A.P~PEN_tyx

The following IS a QL15P trace of Example 1 (the debugging
of the real CIIVISIOI1 program), as executed by out’ modification
system. I’IIc steps and expressions differ somewhat from the
example as pt-esentecl in the previous section. The trace has been
edited and annotated to enhance Its understandablhty, False leads
that the system followed are also included.

The procedure MODIFY modlfles a program to achieve a new
gDal. Here it 1s used to debug 6 real dlvlslon progrhm:

MOOIFY:

This IS the annotated bad given proqram:

((ASSERT (AND (LTQ O A) (LT A (TIMES 2 B)) (LT O E)))
(SETQ Z O) (SETQ Y 1)
(LOOP (ASSERT (ANO (LTQ (TIMES B z) A)

(LT A (TIMES B (AOO Z (TIMES 2 Y))))))
(UNTIL (LTt2 Y E))
(IF (LTQ (TIMES B (AIJEI Z Y)) A)

THEN (SETQ Z (ACID Z Y)) FI)
(SETO y (DIV2 Y))
REPEAT)

(ASSERT (ANII (LTQ Z ([IIV A B))
(LT (D]v A (TIMES 2 B)) (ADD (nIv z 2) E)))))

prefaced by an Input assertion, containing the conditions
under which the invarlants hold, and fol lowed by output
invariant We desire that the program achieve the ouJJuJ
specification:

(ASSERT (AN[l (LTQ Z (DIV A B)) (LT (fI1V A B) (AEIU Z E))))

wltl, the leqal inputs defined by the followlng J!DLLt
speclflcatlon:

(ASSERT (AND (LTQ O A) (LT A B) (LT O E)))

Note that this specification differs from the Input assertion
of the program.

The system bet)lns by applylng the function MATCH to compare
the output invariant with the desired output specification:

MATCH:
(AND (LTQ z (DIV A B))

(LT (EItv A (TIMES 2 t3)) (ADD (Dlv z 2) E)))
(AND (LTQ z (DIV A B))

(LT (nIv A B) (AEIO Z E)))

The first CCIl)JUllCtS Of both are the Same, ~nd the sYstem
compares tile second CO!lJUnCtS. It notices that If the
e>:presslon (TIMES 2 B) could be transformed Into B and (OIV Z
2) Into z, then the whole conJunct would transform as
deslrerl So It calls the function INVERT, which su!jqests the
transformation “B becomes (DIV B 2)” for (TIMES 2 B):

lNVFRT: (TRANSFORM (TIMES 2 B) B)
rescllt. (TRANSFORM B (DIV B 2))

and slm]larly for ~[llV Z 2):

INVFRT (TRANSFORM (OIV z 2) z)
result: (T ItANSFORMZ (TIMES 2 Z))

Thus , we have found triinsformatlon 1:

((TRANSFORM B (OIV B 2)) (TRANSFORMZ (TIMES 2 Z)))

But first, tl, e system must ~PPIY this trtinsformatlon to the
first CO13JU11Ct:

TKANSFOR!I-EXPRS: (LTQ Z ([IIV A B))
result. (LTQ (TIMES 2 Z) ([IIV A ([IIV B 2)))

and prove that the con Junct remains true, 1.e. ,

(IMPLIES (LTQ (TIMES 2 Z) (EIIV A (OIV B 2)))
(LTQ Z (OIV A B)))

Be forP Iproceedlnq. the system looks for additional possible
trsnsformstlons. Since AIKI IS commutative, an attempt 1s
also made to malcl, (A[l[l ([IIV Z 2) E) with (A[l[I E Z), This,
tocjether with (TRANSFORM B (DIV B 2)), yields trinsformatlon
~.:

((TRANSFORM B (CIIV B 2)) (TRANSFORME Z)
(l KANSf ORN Z (TIMES 2 E)))

However, this set of transformations 1s dlsqual)fled, since
there 1s no way to transform the variable Z Into the constant
expression (TIMES 2 E).

Contlnulnc) In Its search for alternative transformations, the
system ‘also finds equivalent formulations of the
speciflcatlons+ e. q.:

(AN[l (LTQ (TIMES B Z) A)
(LT A (ADD (TIMES B Z) (TIMES 2 B E))))

(AND (LTQ (TIMES B Z) A)
(LT A (AII@ (TIMES B Z) (TIMES B E))))

Comparlnr! them” yields Lransformatlon ?:

((TRANSFORM E (OIV E 2)))

The system now cdl 1s the function TRANSFORM-PROGRAMfor each
of the two ellqlble transformations (1 and 3) In tllrn:

TRANSFORt+PROGRAM:
((ASSERT (ANII (L.TQO A) (LT A (TIMES 2 B)) (LT o E)))
“(SETQ z O) (SETQ Y 1)
(LOOP (A5sERT (AND (LTQ (TIMEs B z) A)

(LT A (TIMES B (AIIEI Z (TIMES 2 y))))))
(UNTIL (LT6 y E))
(1F (LTQ (TIMES B (AOO Z Y)) A)

THEN (SETQ Z (ADD Z Y)) Fl)
(SETQ Y (DIV2 Y))
REPEAT)

(ASSERT (ANII (LTQ z (oIv A B))
(LT (DIV A (TIMES 2 B)) (ACID (OIV Z 2) E)))))

((TRANSFORM B (OIV B 2)) (TRANSFORMZ (TIMES 2 z)))

TRANSFORM-CONST-EXPR, which transforms constants, is now

153

called. and B 1s replaced by ([IIV B 2) throu!jhout:

TRANSFORFI-CONST-EXPR: (TRANSFORMB ([l]v B 2))

TRANSFORFI-VAR-EXPR transforms a variable, In this case the
variable Z becomes (TIMES 2 z):

1RANSFOR14-VAR-EXPR, (TRANSFORMZ (TIMES 2 Z))

This may entell el]mlnatlnq expressions from the
,slde of asslcjnmcnts The functlor TKANSFORP-SETQ
dI~PIY (lp~+li SFOR14Z (TIMES 2 Z)) to all asslqnments

(SETQ z o)
result= (SETQ Z ([l I’d O 2))

and:

(SETQ Z (AII[l Z Y))
res~llt= (SETQ z (OIV (ADO (TIMES 2 Z) Y) 2))

The transformed program 1s:

((ASSLRT (AND (LTQ o A)
(LT A (TIMES 2 (oiv B 2))) (LT

(SETQ z (DIV o 2)) (sE10 y 1)
(Loop (ASSERT

left-hand
IS used tO
to z:

O E)))

(AND (LTQ (TIMES (iIIv .9 2) (TIMES 2 z)) A)
(LT A (TIMES ([IIV B 2)

(AIIII (TIMES 2 Z) (TIMES 2 Y))))))
(UNTIL (LTQ Y E))
(IF (LTO (TIMES (Dl!f B 2)

(AIIE (T I14[s 2 z) Y)) A)
THEN
(StTQ Z (DIV (AIID (TIMES 2 Z) Y) 2)) FI)

(SETQ Y ([IIV2 Y))
REPFAT)

(ASSERT (ANO (LTQ (TIMES 2 Z) (OIV A ([IIV B 2)))
(LT (EIIV A (T IP4ES 2 (OIV B 2)))

(ADD ([IIV (TIMES 2 Z) 2) E)))))

No!?-executable statements (Involvlnq [l IV) are now replaced by
executable ones (01V2) as part of a slmplqflcatlon step. The
slmpll fled e.:presslons have been underscored; they Include
replaclnq 1 lMFS by TI11ES2. where possible. Thus the system
obtains Its first corrected proqrtim:

((ASSERT (ANEI (LTQ o A)
(LT A (TIMES 2 ([IIV B 2))) (LT O E)))

(SETQ Z(I) (SETQ Y 1)
(LOOP (ASSERT (ANO

(LTQ (TIMES (OIV B 2) (TIMES 2 Z)) A)
(LT A (TIMES (DIV B 2)

(AOD (TIMES 2 Z) (TIMES 2 Y))))))
(UNTIL (LTQ Y E))
(IF (LTQ (TIMES (W B)

(A[l[l (T~2 Z) Y)) A)
THFN
(S~TQ z (u2 (Aoo (M2 z) y))) FI)

(SETQ Y ([11V2 Y))
REPEAT)

(ASSERT (AND (LTQ (TIMEs 2 z) (oIv A (@iv B 2)))
(LT (EIIV A (TIMES 2 (OIV B 2)))

(AEID (oIv (TIMES 2 z) 2) E)))))

Laztly, lt must be proved that the transformed input
assertion 1s lmpl led by the cjlven input speclflcatlon, I.e. :

(IMPLIES (ANII (LTQ o A) (LT A 6) (L7 o E))
(ANII (LTQ O A) (LT A (TIMES 2 (EIIV B 2)))

(LT O E)))

appl led:

TRANSFORM-PROGRAM:
((ASSERT (ANII (LTQ o A) (LT A (TIMES 2 B)) (LT o E)))
(SETQ Z O) (SETQ Y 1)
(Loop (ASSERT (AND (LTQ (TIHES B z) A)

(LT A (TIMES B (AIID Z (TIMES 2 Y))))))
(UNTIL (LTQ Y E))
(]F (LTQ (TINES 0 (AIIII z Y)) A)

TH[N (S[[Q Z (AOO Z Y)) FI)
(SETQ Y ([IIV2 Y))
REPEAT)

(ASSERI (ANO (LTQ z ([IIv A B)) -
(LT (DIV A (TIMES 2 B)) (ADD (OIV Z 2) E)))))

((TRANSFORFfE (DIV E 2)))

obtalnlnr] (after slmpllflcatlon) a second corrected proqram:

((ASSERT (Ahi[] (LTQ O A) (LT A (TIMES 2 B))
(LT O ([IIVE 2))))

(SETQ Z O) (SETQ Y 1)
(LOOp (ASSERT (AND (LTQ (TIMES B Z) A)

(LT A (TIMIS B (ADD z (TIMES 2 Y))))))
(UNTIL (LTQ y (oIv2 E)))
(If (LTQ (TIMEs B (AOO z Y

THEN (SETQ Z (ADO Z Y)
(SETQ Y (D1v2 Y))
REPEAT)

(ASSERI (ANII (LTQ z (oIv A B))
(LT (oIv A (TIMES 2

(ADO ([IIV Z 2) (DIV E 2))))))

) A)
Fl)

1))

A~jaln lt [must be shown that the transformed Jnput zssertlon
7S lmpl led by tl, c Input speclflcatl on:

(I MPLIFS (ANII (LTQ o A) (LT A B) (LT o E))
(ANO (LTQ O A) (LT A (TIMES 2 B))

(LT O ([IIV E 2))))

which 1s Indeed true, since A(2B lS lmpl]ed by A(B and O<E/2
IS ecl~llvalent to O<E.

and It does, since (TIMES 2 (DIV B 2)) IS equal to B,

The second possible transformation, trtinsformatlon 3, is now

154

