B

THE EVOLUTION OF PROGRAMS:
A SYSTEM FOR AUTOMATIC PROGRAM MODIFICATION

Nachum Dershowitz and Zohar Manna

Stanford Artificial Intelligence Laboratory, Stanford University, Stanford, California

and

Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, lsrael

ABSTRACT

A programmer spends more time modifying already existing
programs than constructing original ones. An attempt 1s made to
farmulate techiiques of program modification, whereby a program
that achreves one result can be transformed mto a new program
that uses the same principles to achieve a different goal. For
example, a program that uses the binary search paradigm to
divide two numbers may be modified to calculate the square-root
of a number tn a similar manner.

debugging is considered as a spectal case of
modification: if a program computes wrong results, it must be
modified to achieve the intended tesults The application of
abstract program schemata to concrete problems is also viewed
from the perspective of modification techniques.

Program

We, have embedded this approach in a
implementation; our methods are illustrated with
examples that have been performed by it.

running
several

I. INTRODUCTION

Typically, a pirogrammer directs more of his effort at the
modhfication of programs that have already been written than at
the development of new programs. Even when nominally
engaged 1n the constraction of a new program, he is constantly
recyching “used” programs and adapting basic programming
ptinciples that have already been incorporated into other
programs.

Much automatic programming research has focused on the
otigmation of programs, but very httle of this work shows how to
profit from past experience when approaching a new problem. In
this papet, we wish to emulate this latter aspect of programming
in the context of an automatic program development system. The
essence of arn approach lies 1 the ability to fotmulate an analogy
between two sets of specifications, those of a program that has
abieady bieon constructed and those of the program that we desire
to construct. This analogy s then used as the basis for
transforming the existing program to meet the new specifications.

As a programmer 1s by nature error prone, his mistakes must
be corrected. This debugging process 1s an important special case
of program modification. In our approach, the properties of an
icorrect program are compated with the specifications, and a
modification (correction) sought that transforms the incorrect
program Into a correct one.

The human programmer does have the ability to learn from

144

Abstract program schemata are often a convenient
form for incorporating programming knowledge; they may
embody basic techniques and strategies such as the
generate-and-test paradigm or the binary search technique. The
apphication of these schemata to programming tasks may be
considered within the framework of modification. A schema
which achieves some abstract goal is modified (instantiated) to
achieve a concrete goal on the basis of a comparison of the
abstract © specifications of the schema with ~the concrete
specifications of the desired program.

p?lSt successes

The use of analogy in problem solving in general, and theorem
proving in particular, is discussed by Klng [1971] The
modification of an already existing program to solve a somewhat
cifferent tash was suggested as a powerful approach by Manna
and Waldinger [1975] Also," the STRIPS (Fikes, Hart and
Nilsson [1972]) and HACKER (Sussman [1973]) systems were
to some extent capable of generalizing and reusing the robot plans
they generated. The compilation of a handbook of program
schemata has 1ecently been advocated by Gerhart [1975}; their
use in the context of program synthesis has been discussed by
Dershowitz and Manna [19751

The next section elucidates the basic aspects of our approach to
program modification with the aid of several relatively
straightforward examples. More subtle facets of the techniques
are llustrated 1 the third section. The methods described are
arnenable to automation, and have been implemented in QLISP
(Wilber [19767). All examples of modifications that we present
ran successfully on our system; a sample run may be found (n the
Appendix.

. OVERVIEW

Typically, program specifications are expressed in a high-level
assertion language n terms of an output specification — detarling
the desited relationship between the program variables upon
termnation, and an input specification - defining the set of "legal”
inputs for which the program s expected to work. For program
modification, one is given a known correct program with its
input-output specification and the specification for a new program.
Comparison of the two specifications suggesis a transformation
that is then applied to the given program. Even if the
transformed program does not exactly fulfill the specifications, it
can serve as the basis for constructing the desired new program.

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1977 ACM 0-12345-678-9…$5.00

1. Basic Technique: Global Transformation

In the approach to program modification presented in this
paper, we stress transformations in which al/ occurrences of a
particular symbol throughout a program are affected. Such
transformations are termed “global®, in contrast with "ocal”
transformations which are applied only to a particular seginent of
a program.

As a sumple example, consider the following program
(annotated with its output specification):

yen

loop until y = 0
Afy-1] « if A[2y-1] < A[2y] then A[2y-1]

else A{2y] fi

y <yl
repeat

assert A[0] = min(A[n:2n])

Given an array A[n:2n], which 1s non-empty {(ie, n is
non-negative), when this program terminates, A[0] will contain
the mimnimum of the values of the n+l1 array elements A[n]},
A[n+1], ..., A{2n]. This output specification is formally
expressed in the final statement:

assert A[0] = min(A[n:2n])

To modify this program to compute the maximum of the array,
rather than the minimum, we compare this specification with the
desired:

assert A[0] = max(A[n:2n])
and note that since max(A) = -min(-A) (where -A 1s equal
to the array A with each element negated), this 1s equivalent to:
assert -A[0] = min(-A[n:2n])
Thus, the transformation " A becomes
specification into the desired.

-A " transforms the given

Applying this transformation to the program affects only the
conditional assignment:
Aly-1] « if A[2y-1] < A[2y] then A[2y-1]
else Af2y] fi ,
which becomes:
-Aly-17 « if ~A[2y-1] < -A[2y] then -A[2y-1]
else -A[2y] fi
It is "illegal” for the array -A to appear on the left-hand side of
an assignment; therefore, both sides of the assignment are
multiplied by -1. And since the test -A[2y-1] < ~A[2y] is
equivalent to A[2y] < A[2y-1], we obtain the statement:
Aly-1] « if A[2y] s A[2y-1] then A[2y-1]}
else A[2y] fi ,
yielding a program that computes the maximum. Note that the
array -A no longer appears in the program; only the original
A is actually used.

2. Special Case: Program Debugging

Program debugging may be considered as a special case of
modification: a program which computes wrong results must be
modified to compute the desired (correct) results. If we know
what the "bad” program actually does, then we may compare that
with the specifications of what it should do, and modify (debug)
the incorrect program accordingly.

As an example, consider a program intended to compute the
integer square-root z of the non-negative number ¢, that is, ¢
should lie between the squares of the integers z and 2z+1:

assert 22 < ¢ < (241)%, z ¢ N,
where N is the set of natural numbers. The given program is:

145

t) « (1, 0, 3)

until ¢ < s

(z, s, t) « (z+1, s+t, t+2)
repeat

(z, s,
loop

assert (2—1)2 < ¢+l < 22, z ¢ Nt

But rather than computing the integer square-root of ¢, this

program achieves the relation: :
assert (7-1)° < ¢+1 < 2%, z ¢ N,

whete N* 15 the set of positive integers. [This follows from the
2

fact that t = 2z+1 and s = z°-1 throughout.] The cause of
the bug was the inadvertent exchange of the initial values of =z
and s

Comparmy the desired assertton with the actual assertion, we
note that the former may be obtained from the latter by replacing
z with z+1 and c¢ with c¢-1. Applying the transformation
"¢ becomes c-1" to the program statements affects only the exit
test ¢ < s, which becomes c¢~1 < s, or equivalently ¢ < s.
The transformation " z becomes z+1" affects two other
statements: the imitiahzation z. « I becomes z+1 « I and the
loop-body assignment 2z « z+1 becomes z+1 « z+2. These
resultant assignments, however, are “illegal”, inasmuch as an
expresston may not appear on the left hand side of an assignment.
Instead, the expression z+1 is given the intial value 1 by
assigning z « 0, and the value of the expression 2z+1 is
incremented to z+2 by the "legal” assignment z « z+1.

We have thus obtained the corrected program:
L) « (0, 0, 3)

untit ¢ < s

(7, s, t) « (z+1, s+t, t+2)
repeat

(z, s,
loop

assert z° < ¢ < (z+¢1)%, z ¢ N

Note that though this program 1s not exactly what the
programmer intended — we ciaimed that he reversed the initial
values of z and s — 1t 15 nevertheless correct.

3. Convectness Considerations

In the previous examples only mput and/or output variables
were transformed. It can be shown that such global
transformations — where an input variable is systematically
replaced by a function of input variables, or an output variable
by a function of output variables — always preserve the
correctness of a program with respect to its specifications.
However, it is often desirable to transform a function, predicate or
constant, in which case the transformation is no longer guaranteed
to result 1n a cortect program.

For example, we may wish to construct a program to find the
maximum of a non-empty array — the output specification 1s
z = max(A[1:n]) - given the program:

(z, y) « (AL0], 0)
loop untily = n
y « y+l
7z « min(z,A[y})
repeat
assert z = min(A{0:n])

for finding the mintmum. The transformations " min becomes
max " and " 0 becomes 1" suggest themselves. Though in this
case applying these transformations yields a correct program, such
transformations of a function symbol or constant do not
necessartly preserve correctness. Were the function min not
explicitly used in the program, e.g, if the conditional statement:

it Aly] < z then z « Aly] fi
were substituted for the assignment:

z « min(z,Aly])

" "

then the proposed transformation " min becomes max " would

clearly not work.

Thus, for some transformations, correctness must be verified. In
order to prove the correctness of a program, invariant assertions
are commonly utilized. Assertions are comments which express
relationships between the different variables manipulated by the
program; they relate to specific points in the program, and are
meant to hold for the curient values of the variables whenever
control passes through the corresponding point. When an
assertion has been proved to be consistent with the code — i.e, the
assertion holds for the current values of the variables each time
control passes through the point to which the assertion is affixed
— then it is said to be invariant. [Al assertions annotating our
example programs are indeed invariant.] In particular, the output
assertion, associated with the point of termination, is invariant 1f
the final values of the variables satisfy the assertion; a loop
assertion, attached to the beginning of an iterative loop, is
invariant if it holds when the loop 15 first entered, and remains
true each subsequent time control passes the beginning of the
loop-body. The assertion is termed an output invariant in the
former case, and a loop invariant in the latter. A program, then,
may be considered correct if the output invariant implies that the
output specification is true.

The above min program, with its loop assertion appended, is:
(z, y) « (AL0], 0)
loop assert z = min(A[0:y])
until y = n
Y « y+1
z « min(z,Aly])
repeat
assert z = min(A[LG:n])

Recently, invariant generation techniques have been developed
and implemented (see, e.g., German and Wegbreit [1975] and
Katz and Manna [1976]). They allow for the automatic
discovery of invariants which may then be used to prove the
correctness or incorrectness of the program. Our system
incorporates many of those generation techniques, as well as
several new ones. Invariant assertions are essential in our
approach to debugging too, as it is necessary to have an idea of
what the program actually does before it can be corrected.

Global transformations are applied to all assertions, as well as
to the code. Using these transformed assertions, verification
conditions for the new program may be obtained; if they hold,
then the new program s correct. Sometimes, a verification
condition that turns out not to hold may, nevertheless, suggest
additional transformations which do succeed. Alternatively, a
program segment can be synthesjzed that will establish the
verification condition; for example, the nitialization of a loop
might be synthesized of the condition for the current initialization
is false.

the
1" to

Returning to our
transformations " min becomes
the above program, we obtain:
(z, y) « (AL1], 1)
loop assert z = max(A[1:y1)
until y = n
y <« y+l
z « max(z,ALy])
repeat

assert z = max(A[1:n])

Using the new assertions, the correctness of this
may straightforwardly be shown.

example, after application of
max " and " 0 becomes

max program

146

4. An Application: Instantiation of Program Schemata

One important application of our program modification
techniques 1s the instantiation of program schemata to obtain
concrete programs. A program schema is a generalized version of
some programming strategy and contains abstract predicate,
function and constant symbols, in terms of which its input-output
relation 1s specthied. This abstract specification may then be
matched with a given concrete specification and an instantiation
found that, when applied to the schema, yields the desired
concrete program.

In mstantiating a program schema, the schema is transformed
into a concrete program after an analogy between the abstract
specifications of the schema and the given concrete specifications is
constructed. Not all instantiations yield correct programs;
therefore, a schema is accompanied by a set of preconditions —
derived from the schema’s verification conditions — which must be
fulfilled before the schema may be employed. When satisfied,
these conditions will guarantee the correctness of the new
program.

Ass an illustration, consider the following program schema:
(z, y) « (k, J)

loop assert P([j:yl,z), y e I
untit y = n
Yy « y+l
if =P(y,z) then z « f(y,z) fi
repeat
assert P([Jj:n},2)
Here P([u:v],w) means (Y7 ¢ I){u £ 7 < v){P(i,w))
and I is the set of integers. This schema will achieve the
relation P(i,z) for each integer 7 from Jj to n.
For this schema to be applicable, the following three

preconditions must be satisfied by the predicate P, function £

and constants Jj, kK and »n:
P(J,k) A Jecl
P{LJ:y},z2) A~ yoI AN y=n n =P(y+tl,z)
> P([J:y+1],f(y+l1,2))
J<n n ncl

The first condition ensures that the loop invariant s initialized
properly; the second 1s sufficient to guarantee that if the
invariants held before execution of the loop-body, then they hold

after; and the last condition secures termination.
Progtams for finding the position or value of the
minimum/maximmum of an array (or of other functions with

integer domain, for that matter) are valid instantiations of this
schema. For example, say we wish to achieve the output
specification A[0:n] < x, in order to find the maximum x of

the non-empty array A[0:n]. Applying our modification
technique, we compare A[0:n] < x with the schema's
specification P([j:n],z). This suggests leting Jj be 0, z be

x and P(u,v) be A[u] < v The transformed preconditions,
then, are:
Al0] < k A 0
S

¢ I
Al0:y] X Ay ¢

I A y=n n x< Aly+l]

5 AlO0:y+1] < F(y+1,x)
nclI
The first may be achieved by letting k be A[07]; the second by
letung f(u,v) be Alul, since A[0:y] s x < Aly+I1] and
Aly+1] < A[y+1]; the last is true by virtue of A[0:n] being
non-empty.

0 <n A

Applying these transformations, viz.

J becomes 0,
k becomes Af07,
z becomes X,

F(u,v) becomes Alul

and P(u,v) becomes Alu) < v,
we abtain the guatanteed correct program:

(x, y) « (A[0], 0)

loop assert A[0:y] < x, y ¢ T
untit y = n
y « ytl
if x < ALly] then x « A[y] fi
repeat

assert A[0:n] < x

5. Using Extension

Sometimes, transforming a program or Instantiating a schema
only achicves some of the conjuncts of the output specification. In
such a case, it is possible that the program can be extended to
achieve all the desired conjuncts by achieving the missing
conjuhcts at the onset and mamtaining them invartant untl the
end. Alternatively, code that will achieve the additional con juncts
— without “clobbering™ what has already been achieved by the
program — could be synthesized and appended at the end.

As an example of the need for extension, consider the case
where 1t i3 desired that the program above also find the position
2z, the array, of the maximum x. We can extend the above
program to achieve x = A[z] by maintaining that relation as
an invariant throughout the execution of the program. Initially
we want x = A[0] = A[z],soweset z « 0. When the then
path is executed, we want x = Aly] = A[z] and assign
Zz « y, when that path 15 not taken, x is unchanged and the
relation remains true. Thus, when the program terminates, the
desired relation x = A[z] will hold.

The extended program is:
(x, y, z) « (A[0], 0, 0)

loop assert A[0:y} s x, y ¢ I, x = A[2]
until y = n
y e ytl
if x < A[y] then (x, z) « (Alyl, y) fi
repeat .

assert A[0:n] < x, x = A[z]

. EXAMPLES

In this section we demonstrate various stages in the evolution of
one program. We begin with a program containing a logical error
and then find and apply alternative corrections. An abstract
version, which represents an important search method embedded
in the program, 1s then applied and adapted to two other
problems. Each, in turn, is modified to apply to a new task.

The examples are outlined in Figure 1. They owe therr
motivation to Wensley [1959] and Dijkstra [1976]. Our
modification system has successfully performed the modification
steps, including debugging and instantiation, in these examples
(sometimes resorting to the user's expertise in theorem proving).
An annotated trace of the first example may be found in the
Appendix.

147

Bad Real Division

(1)} annotation
debugging
Good Real Division
(2}] abstraction

BINARY SEARCH SCHEMA

(3} | instantiation instantiation |(5)
synthesis
Real Integer

Square-root Square-root

(4) 1 modification modification | (B)
extension
Real Harduware Integer
Division Division

Figure 1. The evolution of a division program.
(Outline of examples 1 through 6.)

Example 1: Bad Real Division to Good Real Division

Consider the problem of computing the quotient z of two real
numbers @ and b, where 0 < a < b, within a specified
tolerance ¢, 0 < e. In other words, the input specification is:

0<a<h A 0c<e,
and the output specification is:

z s a’b n a’b < zie,
or equivalently:

hez <a n ac< b (z+e).
In order for the problem to be non-trivial, we must assume that
no general real division operator is available (though division by
two 1s permissible). The given program is:

BAD REAL DIVISION PROGRAM

assert 0 < a<b, 0 <e

(z, y) « (0, 1)

loop until y < e
if b-(z+y) < a then z « z+y fi
y « y/2
repeat

The wntial assertion contains the input specification which the
input variables a, b and e are assumed to satisfy. But, for
example, a =1, b =3, and e = 1/3, which satisfy the
input specification, yield 2z = ¢ which does not satisfy the

second con junct of the output specification. The bug 13 caused by
the interchangimng of the two statements within the loop.

Before we can debug this program, we must know something
about what it actually does. For this purpose, we anrnotate the
progtam with loop and output invariants. Recall that for a
relation to be a loop invariant, it must be true upon initial entry
into the loop, and must remain true after each execution of the
loop-body.

We begin with the then path of the conditional statement and
note that this path 1s taken when b.(z+y) < a; thus, after
resetting z to z+y we have b.z < a. Since b.z < a is
true initially, when z = 0 and 0 < a, and is unaffected when
the conditional test is false (the value of 2z is not changed), it
remains invariant throughout loop execution. We have derived
then the loop invariant:

(1) b.z < a.

The then path is not taken when a < b.(z+y)}. In that case
y is divided in half and z is left unchanged, yielding
a < b.(z+2y) at the end of the current iteration. It turns out
that the then path preserves this relation, and that it holds upon
initiatization (stnce a < 2b is imphed by 0 < a < b). Thus
we have the additional invariant:

(2) a < b.-(z+2y).

These two loop invariants along with the exit relation y < e
imply that upon termination of the program the following output
invariants hold:

b2 s a ~n a< h(z+2e).
Note that the desired relation a < b.(z2+e) is not implied.

The annotated program — with invariants that correctly express
what the program does do — 1s:

ANNOTATED BAD REAL DIVISION PROGRAM

assert 0 < a <b, 0<e
(z, y) « (0, 1)
loop assert bz <
until y < e
if b (z+4y) <
y « y/2
repeat
asscrt bz <

a, a < b.(z+2y)

a then z « z+y fi

a, a < b-(z+2e)

We now have the task of finding a transformation (correction)
that transforms the actual output invariant into the desired output
specification:

b-z < a n a< b-(z4e),
and then applying it to the whole annotated program {statements
and nvariant assertions). Accordingly, we would like to modify
the program in such a manner as to transform the insufficiently

strong a < b-(z+2e) into the desired specshication
a < b-(z+e):
a < h-(z+2e) becomes a < b-(z+e).

At the same time, we must preserve the correctness of the other
con junct of the specification:
bz < a unchanged.

The most obvious correction is to replace all occurrences of e
m the program (there 1s only one affected statement - the exit test
y < e) with e/2:

148

Correction 1

Replace the exit test y < e by y < /2

Additional debugging modifications are possible: we may
replace h with b/2 and 2z with 2z; alternatively, we might
replace a with 2a and =z with 2z. Doubling z and
either halving b or doubling a, yields a conditional test
equivalent to b:(z+y/2) < a. Transforming 2z into 2z
affects two adcitional statements: the initialization =z « 0
becomes the "illegal” assignment 2z « 0, but the equivalent
original assignment 2z « 0 may be substituted; the assignment
z « z+y of the then branch becomes 2z « 2z+y, or
z « z+y/2 . No other statements are affected by either of the
two modifications; thus they both yield:

Correction 2

Replace the conditional statement with
it be(z+y/2) < a then z « z+y/2 fi

Each of these possible transformations involved one of the
input variables e, a and b. One must, however, be careful
when transforming input variables, since the transformation
should be applied to the input assertion as well, possibly changing
the range of legal imputs thereby. In this case, the transformations
we have performed are all permissible: The specification ¢ < e
is equivalent to 0 < e/2 and therefore halving e has no effect
on the input range. Since in fact the condition a < 2b, rather
than a < b, is strong enough to imply the loop invariants,
replacing b by b/2 (or a by 2a) still yields a program
correct for inputs satisfying a < b, as is desired.

Qur program after correction 2, annotated with appropriately
modified nvariant assertions is (all b have been replaced by
bs/2 and al z by 2z and the resultant expressions have been
simplified):

assert 0 < a<b, 0 <e

(z, y} « (0, I}

loop assert b.z s
untit y < e
if b-(2+y/2) < a then z « z2+y/2 fi
Yy e y/2
repeat

assert b.z < a, a < b+ (z+e)

a, a < b-(z+ty)

This program may be slightly optimized, by evaluating the
subexpression y/2 before the conditional statement, to obtain:

GOOD REAL DiVISION PROGRAM

-
assert 0 < a<b, 0 <e
(z, y) « (0, 1)

loop assert b-2 < a, a < b-{z+y)
until y < ¢
y « y/2
if b (z+y) < @ then z « z+y fi
repeat

assert b.-z < a, a < b.(z+e)

L

Note that this program is the same as the original bad program,
with the two loop-body statements commuted.

Example 2+ Good Real Diwision to Binary Search Schema

Consider an abstract version of the correct real division

program which has just been obtamned:

BINARY SEARCH SCHEMA

(7, ¥) « (J, k)
loop assert P(z), Q(z+y)
until R(y)
y « y/2
if P(z+y) then z « z+y fi
repeat
assert P(z), Q(z+e)

This schema 15 an attempt to capture the technique of binary
search undetlying the real division program. It is obtained from

that ptogram by abstracing predicates that appear in the
program text and/or assertions:
by < a becomes P(u),
a < bou becomes Q(u)
and u© < e becomies R{u) .
The nit1al values of the variables are also abstracted:
0 becomes J
and I

becomes k.

The following four preconditions on the predicates P, Qand
R and constants j and k are suflicient to guarantee correctness
(they correspond to the verification conditions of (1) the
mittalization path, (2) the loop-body path and (3) the loop-exit
path, and (4) termination):

PRECONDITIONS for BINARY SEARCH SCHEMA

(1) P(J) n~ Q(J+k)

(2) ~P(2+y/2) = Q(z+y/2)
(3) Q(z+y) n R(y) = Q(z+e)
(4) (3n)(R(k/27))

What we have, then, 1s a genetal program schema for a binary

search within a tolerance with an output specification:
P(z) A~ Q(z+e).

Clearly, the predicates P and R which appear in the schema
must be prinutive (that is, available in the target language),
otherwise they must be replaced by equivalent predicates for the
schema to yield an executable program. Similarly, the constants j
and k must be given, or .their values set, prior to their
assignment to the variables z and y.

Example 3: Binary Search Schema to Real Square-root

As indicated earlier, one of the applications of our modification
system 1s the instantiation and adaptation of program schemata to
specific problems. To illustrate how the binary search schema that
we have just seen may be used, we consider the computation of
squam-roots,

Suppose that we are given the task of constructing a program
that finds the square-root 2z of the real number ¢, 1 < ¢,
within the tolerance d, 0 < d< 1. Then the mput
specthcation is: .

0 <d<1<c,
and the output specification is:

149

vt £z n z-d < Jc.

In order to match this output specifications with that of our
schema:

P(z) ~ Q(z+e),.
we let the constant e be the constant expression -d (viewing
z-d as z+(-d)) and obtain the transformations:

P{u) becomes ve s u,

Q(u) becomes u < VT
and e becomes -d.

Condition (2) 1s satished:
(2) —(VC < z+y/2) = z+y/2 < V¢,
but we must still satisfy conditions (1), (3) and (4). To satisfy
condition (1), we need J and k such that:
(1) VvYe<Jd A jtk s VE.
We note that since 1 < ¢, V¢ £ ¢ and c¢+{(l-¢c) = 1 < V&C.
Thus both conjuncts hold when we let:

J be c
and k be I1-c.
[An alteinative would have been to take -c for Kk, since

c+(-¢c) = 0 < V¢ .]

For condition (3) to be satisfied, we need a predicate R such
that:

(3) z+y < ¥Y¢ ~ R{y) = z-d £ V©.
By transttivity it follows that R should imply z-d < z+y and
we let:

R(y) be -d <y.

This also satisfies:

(4) (3n)(-d < (1-c)/2"),
since both -d and I-c are negative.

The instantiated schema is:

assert 0 < d <1< ¢
(z, y) « (c, 1I-c)
loop assert V¢ < 2z, z+4y < V¢
until -d < y
y « y/2
if VT < z+y then 2z « z+y fi
repeat
assert vc < z, z-d £ V¢
However, simnce P involves the square-root function itself, the
conditional test 1s not primitive and must be replaced. It can be
teplaced by ¢ < (z+y)? provided that 2z+y is non-negative.
The relation 0 < z+y s in fact an invariant: initially
z+y = c+#(l-¢) = 1; for the then path, y 1s first halved and
then added to z, so the value of z+y is unchanged; and if the
then path is not taken, y is increased by halving it, since y is
always negative (by virtue of the loop assertion
z+y < V¢ £ z). Thus we have:

REAL SQUARE-ROOT PROGRAM

assert 0 < d <1 < ¢

(z, y) « (¢, 1-c)-

loop assert vC < z, z+ty < vC, 0 < z+y
until -d < y
y « y/2
if ¢ < (z+y)° then 2z « z+y fi
repeat

Je .

assert V¢ = 2z, z-d =

Example 4. Real Square-root to Real Division

In this example, we shall demonstrate how the above real
square-root program may be modified to construct a program that
approximates the quotient 2z of two real numbers & and b,
where 0 < a < b, within a tolerance e, 0 < e < 1.

We begin by comparing the output specifications of the two

programs. We want:
z-e < a/b n a/b < z;
while for the square-root program we had:
z-d < vYE A JYCc < z.
This suggests the transformations:
d becomes e
and Vc becomes a’/b .
To obtain the latter, we can use:
c becomes (a/h)?,

(sihce 0 < a/b).

Applying these transformations, the exit test -d < y becomes
-e <y and test ¢ < (z+y)?, becomes
(a/b)z < (z+y)?, or equivalently a < b.(z+y) (since a, b
and z+y are non-negative). Thus, we have the transformed
prograny:

(z, y) « ((a/b)?, 1-(a/b)?)

the conditional

loop assert a/b < z, z+y < a/b, 0 < z+y
until -e s y
y « y/2
if a < b-(z+y) then z « z+y fi
repeat

assert a/b < z, z-e < a/b

It 15, however, clearly unsatisfactory, since expressions invelving
division appear in the initialization. The loop invariant, though,
can be imitialized in another manner. Since a/b < 1, we can
achieve the relation a/b < z by initializing 2z to 1; since
0 < a/b, we achieve 0 < z+y < a/b by insisting that
z+y = 1+y = 0, for which we initialize y to -1.

We have the program:

REAL DIVISION PROGRAM

assert 0 < a< b, 0 <e <1
(z, y) « (1, -1)

loop assert a/b < z, z+y < a/b, 0 £ z+y
until -e < y
y « y/2
if @ € b-(z+y) then z « z+y fi
repeat

assert a/b < z, z-e < a/b

Example 5. Binary Search Schema to Integer Square-root

For this example we return to our binary search schema:

150

Preconditions:

(1) P(3) ~ Q(j+k)
(2) ~P(z+y/2) = Q{z+y/2)
(3) Q{z+y) n R{y) = Q(z+te)
(4) (3n)(R(k/2"™))
Schema:

(z, y) « (4, k)
loop assert P(z), Q(z+y)
until R(y)
y « y/2
if P(z+y) then z « z+y fi
repeat
assert P(z), Q(z+e) ,

and ilustrate how it may be applied to the computation of integer
square-roots. This will necessitate extension and the synthesis of
an inittahzaton loop (which have not been completely
implemented 11 our system). Consequently, this example is more
complex than the previous one.

We would like to construct a program that finds the integer
square-root z of a non-negative integer ¢ . In other words, z
should be the largest integer whose square is not greater than c.
Thus, the input specification is:

c <N,
and the output specification 1s:

Z2<sc A c<{z+¢)2 A z ¢ N.

Comparison of this output specification with that of our
schema:

P(z) A Qz+e),
suggests letting:

P(u) be u? < c,

Q{u) be ¢ < u?
and e be 1.

In addition, we will have to ensure that the final value of z isa
non-negative 1teger.

Clearly, condition (2) s satisfied:

(2) -{(z+y/2)2 < ¢) = ¢ < (z+y/2)%.
To satisfy:
(3) ¢ < (z#y)? A R(y) = ¢ < (2+1)?,
we let:

R(y) be (z+y)? < (2+1)2.

We are left with the tnitialization and termination conditions:
(1) 32 <sc n c< (§+k)2
(1) (3n)((z+k/2")% < (2+1)%).

In order to satisfy the initialization condition we form the goal:

achieve j° < ¢, ¢ < (j+k)?
This con junctive goal may be split into two consecutive ones:
achieve j2 < c
achieve ¢ < (jfk)z
Swce ¢ is specified to be non-negative, we can solve the first by
letting:
J bhe 0.
ie, z 1s mittalized to 0. For the second we need now achieve

c < k2.

Qur partially written program is:

assert ¢ « N

z < 0

achieve ¢ < k%

y € k

loop assert 2% < c, €< (z+y)2
until (z+y)2 < (z+1)2
y « y/2
if (2+y)2 < ¢ then z « z+y fi
repeat

assert z° < ¢, € < (z+1)2

achieve z ¢ N

el
assert z7 < ¢, € < (2*1)2, zZ N

At thic point we have a choice in order to achieve z ¢ N,

etther we fust execute the Joop and then adjust z to sausfy the

additional goal z < N while preserving the 1elationships 2Zse¢
and ¢ < (74_)/)2,01 we achieve z < N first and then preserve

it throughout the loop computation.

The extension technmique suggests preserving 2 ¢ N
throughout loop computation. [This 1s, in fact, the more efficient
of the two choices.] Imtally z = j = 0 ¢ N, but since 2z 1s
sometimes nctemented by y, the latter should also be a
non-negative mteger. Assurmng that z and y are
non-negative, the exit test (z+y)2 < (z+1)2 can be replaced by

y < 1. Furthermore, y 15 non-zero {(since injtially
0 5 ¥vT < k =y and the only operator appled to y 18
halving), so, under the assumption that 'y is an integer, we need
only test for y = 1.

Finally, in order for y toremain in N while it is repeatedly
halved until 1t equals I, we must have y ¢ 2" So intially,
y = k, we insist that k¢ ZN, and accordingly add the
conjunct k ¢ 2V to the istialization subgoal ¢ < k?. Note

when

that now, with k « 2y , the termination condition:

(4) (An)((z+k/2")2 < (2+41)%)
cleariy holds.

Thus far, we have the partially written program:

assert ¢ ¢ N

7z« 0
achieve ¢ < k2, k 2V
y « k
foop assert 22 < ¢, ¢ < (z+4y)%, z ¢ N, y ¢ 2V
untii y = 1
y « y/2
if (z+y)2 < ¢ then z « z+y fi
repeat
assert z° < ¢, ¢ < (z+1)2, 2 ¢ N

The unachieved subgoal:
achieve ¢ <« k2, k¢ 2V
must now be synthesized. We would first attempt to achieve this
goal one coujunct at a time. The first might easily be achieved by
letting k = c+1, while the second could easily be achieved by
letting k= 1. However, though each conjunct is achievable by
ttself, achieving both together is more difficult, since these two
solutions in general conflict with each other.

So, we transform this con junctive goal, choosing first to achieve
k ¢ 2¥ by letting k = 2° - 1, and then to keep it true while

executing a loop until the remaining conjunct, ¢ < k2, 15 also
satisfied. Doubimg k with .each iteration will preserve the

invariant k ¢ 2V while making progress towards the exit test
c < k2. [The reasoning is as follows: We know that k should

151

k=1
0 < V€ < k. Smce we wish k = 2" for sume natural number
n o to reman mvariant while k increases, 1t follows that the
exponent n also increases. Doubling k increments the
exponent by 1.}

be incaeasing, since pmtially and ulumately we want

We have obtamned the following inttialization:
assert ¢ « N

(z, k) « (0, 1}

loop assert k ¢ 2N
until ¢ < k%
k « 2k
repeat

y « k
Note that the last asagnment y « k 1s supeifluous; it may be
ehiminated 1f we replace all occutrences of & in the code with y
With this change, we have the integer square-100t program:

INTEGER SQUARE~ROOT PROGRAM

assert ¢ ¢ N
(z, y) « (0, 1)
loop assert y ¢ 2N
until ¢ < y2
y < 2y
repeat
loop assert 2% < c, ¢ < (z+y)2, zZ N, yc¢ ‘oM
until y = 1
y « y/2
if (z4y)2 < ¢ then z « z+y fi
repeat
assert 27 < ¢, ¢ < (2+1)°, z ¢ N

Example 6: Integer Square-root to Hardware Integer Division

We wish to construct a program to compute the quotient ¢
and remawmder r of two mtegers a and b. The program
must satisfy the output specification:

0<r A r<b A qgqclN A a=bg+r,
ot equivalently:
() g<a/b n a/b<qgtl A~ ge N A r=a-b-q,
given the input specification:
achN a bonN
{ N* 15 the set of positive integers). We could develop this

program from our binary search schema in the same manner as
we constructed the integer square-root program. Instead, however,
we will demonstrate how to transform the just constructed integer
square-root program directly into the desired integer division
program.

As for the real division example, we compare the desired
specifications (:) with those of the square-root program:

22 < ¢ A ¢c< (z¢1)2 A z ¢ N,
or:

2 < Ve A JE<ztl A Z N,
and obtain the transformations:

z becomes q
and ¢ becomes (a/b)z. '

In addition we will have to achieve r = a-b-q.

Applying these transformations, the exit test of the first loop,

c < yz, becomes (a/b)2 < yz. Since both a/b and y are

a/b <y or
¢ becomes (q+y)2 < (a/b)z, or

positive, this is the same as

the conditional test (z+y)2 <
equivalently b-(g+y) < a.

a < b.y. Similarly

Thus, we have the program:

(q, y) « (0, 1)

loop assert y ¢ 2N
until @ < by
y « 2y
repeat

assert g < a/b, a/b < q+y, g ¢ N, ¥y ¢ 2N
until y = 1

Yy « y/2

it be(q+y) < a then g « g+y fi

repeat
assert g < a/b, a/b < g+l, ¢ ¢ N

loop

Special attention must be paid to the input specification: By

applying the transformation " ¢ becomes {(a/b)?" to the input
assertion of the integer square-root program, the input condition
for this program 1s obtamned. We note, however, that the only fact
needed for the construction of the square-root program was
0 < c¢; its input specification ¢ ¢ N was unnecessarily
restrictive. Applying the transformation to 0 < ¢ yields
0 < (a/b)2. Now, since this is implied by the input specification

a ¢ N ~ b c N, the above program is correct for any legal
valuesof a and b.

To achteve the additional output specification r = a-b.q, we
extend the above program to keep that relation invariantly true.
So whenever ¢ is updated, it 15 necessary to update r
accordingly: when g is imtialized to 0, r = a-~b.0 = g
when q is incremented to qty, r becomes

a-b.(q+y) = r-b.y.

So far we have:

assert a ¢ N, b ¢ N?
(QI Y, f‘) « (0; 1, a)

loop assert y ¢ ZN, r = a-bq
until a < b.y
Yy« 2y
repeat
loop assert g < a/b, a/b < q+ty, q ¢ N, ¥ ¢ 2N,
r = a-b.g
until y = 1
y « y/2
if b.(g+y) < a then (q, r) « (qty, r-b.y) fi
repeat

assert ¢ < a/b, a/b < q+l1, q ¢ N, r = a-b.q

Note that the conditional test b.(gty) < a is equivalent to
b-y < a-b.q or b.-y < r. The expression by involves
multiplication and appears three times, so a new variable v is
introduced to always equal b.y. Substituting v for all
occurrences of h-y and updating o whenever the value of y
is changed, we obtain:

152

HARDWARE INTEGER DIVISION

assert a ¢ N, b ¢ N*
(g, vy, r, u) « (0, 1, a, b)
loop assert y ¢ 2N, r = a-b.q, u= by
untit a < u
(y, u) « (2y, 2u)
repeat
loop assert g < a/b, a/b < gty, g ¢ N, y ¢ 2V,
r=a-b.g, us= by
until y = 1
(y, u) « (y/2, v/2)
if u < r then (g, r) « (g+ty, r-u) fi
repeat
assert g.< a/b, a/b < q+1, g ¢ N, r = a-b-q

This then 1s the desired hardware integer division program. Its
only operations are addition, subtraction, comparison and shifting,
all of which ale hardware instructions on binary computers.

Note the similaiity between the extension and optimization
steps in this example. In both cases a relation was added and kept
mvariantly true at all points of the program. As a final note, we
wish to point out that most of the previous examples would have
profited from similar optimizations.

ACKNOWLEDGEMENT

We thank Richard Waldinger for many fruitful discussions and
constructive comments.

This research was supported m part by the Advanced Research
Projects Agency of the Department of Defense under Contract
MDA 903.76-C-0206, by the Office of Scientific Research of the
United States Air Force under Grant AFOSR-76-2909A, and by a
grant from the United States - Israel Binational Science
Foundation. Computer time was provided by the Artificial
Intelligence Center of Stanford Research Institute.

REFERENCES

Dershowitz, N. and Z, Manna [July 1975], On automating
sbructuwred programming, Proc. Symp. on Proving and
Improving Programs, Arc-et-Senans, France, pp. 167-193.

Dijkstra, E.W. [1876], A4 discipline of programming, Prentice
Hall, Englewood Cliffs, N.J.

Fikes R.E., P.E. Hart and N.J. Nilsson [Winter 1972],
Learning and executing generalized robot plans, Aruficial
Intelitpence, V. 3, No. 4, pp. 251-288. .

Gerhart, S.L. [Apr. 1975, Knowledge about programs: a model
and case study, Proc. Intl. Conf. on Reliable Software, Los
Angeles, Ca,, pp. 88-95.

German, S.M, and B. Wegbreit [Mar, 19761, A synthesizer of
inductive asscrtions, IEEE Trans. on Software Engineering, V.
SE-1, No. 1, pp. 68-75.

Katz, S.M. and Z. Manna [Apr. 1976], Logical analysis of
programs, CACM, V. 19, No. 4, pp. 188-206.

Kiing, R.E. [Aug. 19711, Reasoning by analogy with applications
to hewristic problem solving: a case study, PhD. thesis,
Stanford U., Stanford, Ca.

Manna, Z. and R.J. Waldinger [Summer 18751, Knowledge
and reasoning in program synthesis, Artifiaial Intelligence, V.
6, No. 2, pp. 175-208.

Sussman, G.J. [Aug. 1973], 4 computational model of skill
acquisition, PhD. thesis, MIT, Cambridge, Mass; also
published as A computer model of skill acquisition, American
Elsevier, New York, N.Y. (1975).

Wensley, J.H, [Jan. 18591, A class of non-analytical iterative
processes, Comnputer], V. 1, No. 4, pp. 163-167.

Wilber, B.M. [Mar, 19761, A QLISP reference manual, Tech.
note 118, Arufictal Intelligence Center, Stanford Research
Institute, Menlo Park, Ca.

APPENDE

The following 1s a QLISP trace of Example 1 (the debugging
of the real division program), as executed by our modification
systern. The steps and expressions differ somewhat from the
example as presented in the previous section. The trace has been
edited and annotated to enhance its understandability. False leads
that the system followed are also included.

The procedure MODIFY modifies a program to achieve a
goal. Here it 1s used to debug & real division program:

new

MODIIFY:
This 1is the annotated bad given program:

((ASSERT (AND (LTQ 0 A) (LT A (TIMES 2 B)) (LT 0 E)))
(SETQ Z 0) (SETQ Y 1)
(LOOP (ASSERT (AND (LTQ (TIMES B Z) A)
(LT A (TIMES B (ADD Z (TIMES 2 Y)))))
(UNTIL {LTQ Y E))
(IF (LTQ (TIMES B (ADD Z Y)) A)
THEN (SETQ Z (ADD Z Y)) FI)

(SETQ Y (DIV2 Y))

REPEAT)
(ASSERT (AND (LTQ Z (DIV A B))

(LT (DIV A (TIMES 2 B)) (ADD (DIV Z 2) E)))))
prefaced by an 1nput assertion, containing the conditions
under which the invariants hold, and followed by output
invariants. We desire that the program achieve the output

specification:
{ASSERT (AND (LTQ Z (DIV A B)) (LT (DIV A B) (ADD Z E))))

with the legal inputs defined by the following input
specification:

(ASSERT (AND (LTQ 0 A) (LT A B) (LT 0 E)))

Note that this specification differs from the nput assertion
of the program.

The system begins by applying the function MATCH to compare
the output invariant with the desired output specification:

MATCH:
(AND (LTQ Z (DIV A B))
(LT (DIV A (TIMES 2 B)) (ADD (DIV Z 2) E)))
(AND (LTQ Z (DIV A B))
£)))

(LT (DIV A B) (ADD Z

153

The farst conjuncts of bolh are the same, and the system
compares the second conjuncts. It notices that 1f the
expression (TIMCS 2 B) could be transformed wnto B and (DIV 7
2) into Z, lhen the whole conjunct would transform a&s
desired. So 1t calls the function INVERT, which suggests the
transformation "B becomes (DIV B 2)" for {TIMES 2 B)

INVERT: (TRANSFORM (TIMES 2 B) B)
result= {TRANSFORM B (DIV B 2))

and similarly for (hlv 72)

INVERT: (TRANSFORM (DIV Z 2) 7)

result= (TRANSFORM 7 (TIMES 2 7))

Thus, we have found transformation 1:
((TRANSFORM B {DIV B 2)) (TRANSFORM Z (TIMES 2 2)))

But first, the system must apply this transformation to the

farst congunct:

TRANSFORM-EXPRS: (LTQ Z (DIV A B))
result= (LTQ (TIMES 2 7) (UIV A (DIV B 2)))

and prove that the congunct remains true, 1.e.,

(IMPLIES (LTO (TIMES 2 Z) (DIV A (DIV B 2)))
(LTQ Z (DIV A B)))

Before proceeding. the system 1looks for additional possible
transformations. Since ADD 1s commutative, an attempt s
also made to malch (ARD (DIV 2 2) E) wath (ADDE Z). Thas,
together wilh {TRANSFORM B (DIV B 2)), yields 1iransformation

2:
((TRANSFORM B (DIV B 2)) (TRANSFORM E Z)
(TRANSFORM Z (TIMES 2 E)))
However, this set of transformations 1s disquaiified, since

there 1s no way to transform the variable Z into the constant
expression (TIMES 2 E).

Continuing n 1ts search for alternative transformations, the
system also finds equivalent formulations of the
specifications, e.q.:

(AND (LTQ (TIMES B Z) A)

(LT A (ADD (TIMES B Z) (TIMES 2 8 E))))
(AND (LTQ (TIMES B Z) A)

(LT A (ADD (TIMES B Z) (TIMES B E))))

Comparing them yields transformation 3:

((TRANSFORM £ (DIV E 2)))

The system now calls the function TRANSFORM-PROGRAM for each

of the two eligible transformations (1 and 3) n turn:

TRANSF ORM-PROGRAM:
((ASSERT (AND (LTQ 0 A) (LT A (TIMES 2 B)) (LT 0 E)))
(SETQ Z 0) (SETQ Y 1)
(LOOP (ASSERT (AND (LTQ (TIMES B Z) A)
(LT A (TIMES B (ADD Z (TIMES 2 Y))))))
(UNTIL (LTQ Y E))
(1F (LTQ (TIMES B (ADD Z Y)) A)
THEN (SETQ Z (ADD Z Y)) FI)
(SETQ Y (DIV2 Y))
REPEAT)
(ASSERT (AND (LTQ Z (DIV A B))
(LT (DIV A (TIMES 2 B)) (ADD (DIV 7 2) E}})))
{ (TRANSFORM B (DIV B 2)) (TRANSFORM Z (TIMES 2 Z)))
constants, is now

TRANSFORM-CONST-EXPR, which transforms

called, and B 1s replaced by (D1V B 2) throughout:

TRANSFORM-CONST-EXPR: (TRANSFORM 8 (DIV B 2)})

TRANSFORM-VAR-EXPR transforms &
variable 7 becomes (TIMES 2 2)

variable, 1n this case the

TRANSF ORM-VAR-EXPR: (TRANSFORM 2 (TIMES 2 7))

This may entail elwminating expressions from the ‘tYeft-hand
.side of asgignments. The function TRANSFORM-SETQ s used to
apply (TRANSFORM 7 (TIMES 2 7)) to all assignments to Z:

(SETQ 7 0)
result= (SETQ Z (DIV 0 2))

and:

(SETQ Z (ADD Z Y))
results (SETQ Z (DIV (ADD (TIMES 2 Z) Y) 2))

The transformed program is:

((ASSERT (AND (LTQ 0 A)
(LT A (TIMES 2 (DIV 8 2))) (LT 0 E)))
(SETQ Z (DIV 0 2)) (SETQ Y 1)
(LOOP (ASSERT
(AND (LTQ (TIMES (DIV B 2) (TIMES 2 Z)) A)
(LT A (TIMES (DIV B 2)
(ADD (TIMES 2 2) (TIMES 2 Y))))))
(UNTIL (LTQ Y E))
(1F (LTQ (TIMES (DiV B 2)
(ADD (TIMES 2 Z) Y)) A)
THEN
(SETQ Z (DIV (ADD (TIMES 2 Z) Y) 2)) FI)
(SETQ Y (DIV2 Y))
REPEAT)
(ASSERT (ANO (LTQ (TIMES 2 2) (DIV A (DIV B 2)))
(LT (DIV A (TIMES 2 (DIV B 2)))
(ADD (DIV (TIMES 2 7) 2) X))

Non-executable statements {1nvolving DIV) are now replaced by

executable ones ([11V2) as part of a swmplification step. The
simpliified evpressions have been underscored; they 1nclude
replacing TIMES by TIMESZ2, where possible. Thus the system
obtains 1ts farst corrected program:
((ASSERT (AND (LTQ 0 A)
(LT A (TIMES 2 (DIV B 2))) (LT 0 £)))
(SETQ 'Z 0) (SETQ Y 1)
{LOOP (ASSERT (AND
(LTQ (TIMES (DIV 8 2) (TIMES 2 Z)) A)
(LT A (TIMES (DIV B 2)
(ADD (TIMES 2 Z) (TIMES 2 Y)N))))
(UNTIL (LTQ Y E))
(JF (LTQ (TIMES (B)
(AUU (TIMES2 Z) Y)) A)
THEN
(SETQ Z (DIV2 (ADD (TIMES2 Z) Y))) FI)
(SETQ Y (DIV2 Y))
REPEAT)
(ASSERT (AND (LTQ (TIMES 2 Z) (DIV A (DIV B 2)))
(LT (DIV A (TIMES 2 (DIV B 2)))
(ADD (DIV (TIMES 2 Z) 2) E)))))
Lastly, 1t must be proved that the transformed input

assertion 1s mplied by the given nput specification, i.e.:

(IMPLIES (AND (LTQ 0 A) (LT A B) (LT 0 E))
(AND (LTQ 0 A) (LT A (TIMES 2 (DIV B 2)))
(LT'0 E)))

and 1t does, since {(TIMES 2 (DIV B 2)) 1s equal to B.

The second possiblie transformation, transformation 3, is now

154

applied:

TRANSF ORM- PROGRAM :
((ASSERT (AND (LTQ 0 A) (LT A (TIMES 2 B)) (LT G £)))
(SETQ Z 0) (SETQ Y 1)
(LOOP (ASSERT (AND (LTQ (TIMES B Z) A)
(LT A (TIMES B (ADD Z (TIMES 2 Y))))))
(UNTIL (LTQ Y E))
(1F (LTQ (TIMES B (ADD Z Y)) A)
THEN (SETQ 7 (ADD Z Y)) FI)
(SETQ Y (Uive v))
REPEAT)
(ASSERT (AND (LTQ Z (DIV A B))
(LT {01V A (TIMES 2 B)) (ADD (DIV Z 2)
((TRANSFORM E {DIV E 2)))

E)N)

obtatning (after samplafication) & second corrected program:

((ASSERT (AND (LTQ 0 A) (LT A (TIMES 2 8))
(LT 0 (DIV E 2))))
(SETQ Z 0) (SETQ Y 1)
(‘LOOP (ASSERT (AND (LTQ (TIMES B Z) A)
(LT A (TIMECS B (ADD Z (71
(UNTIL (LTQ Y (DIVZ2 E)))
(1F (LTQ (TIMES B (ADD Z Y}) A)
THEN (SETQ Z (ADD Z Y)) FI)
(SETQ Y (DIV2 Y))
REPEAT)
(ASSERT (AND (LTQ Z (DIV A B))
(LT (DIV A {TIMES 2 B))
(ADD (DIV Z 2) (DIVE 20N

1S 2 Y))N))

Again 1t must be shown that the transformed nput
is amplied by the nput specification:

assertion

(IMPLIES (AND (LTQ 0 A) (L AB) (LT 0 E))
(AND (LTQ 0 A) (LT A (TIMES 2 B))
(LT 0 (D1V E 230

which 1s indeed true,
1s equivalent to O<E.

since AC2B is mplied by A<CB and 0<E/2

