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Abstract

A convenient method for defining a quasi-ordering, such as those used for proving
termination of rewriting, is to choose the minimum of a set of quasi-orderings satis-
fying some desired traits. Unfortunately, a minimum in terms of set inclusion can be
non-existent even when an intuitive “minimum” exists. We suggest an alternative
to set inclusion, called “leanness”, show that leanness is a partial order on quasi-
orderings, and provide sufficient conditions for the existence of a “leanest” member
of a set of total well-founded quasi-orderings.
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In my poor, lean lank face
nobody has ever seen

that any cabbages were sprouting.

—Abraham Lincoln

1 Introduction

Well-founded partial orders (admitting no infinite strictly decreasing se-
quences) are the standard tool for proving algorithm termination. States of
the program are assigned values in the underlying set, such that program
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steps always result in a decrease in the ordering, thereby establishing termina-
tion. Quasi-orderings (reflexive-transitive binary relations, also called “quasi-
orders” or “pre-orders”) are often more convenient for this purpose than par-
tial or total orders: the ordering on states induced by a partial order of values
is in fact a quasi-ordering. In this paper, the unqualified term “ordering” will
always refer to a quasi-ordering.

A non-empty set of quasi-orderings can be defined by a set of conditions
(such as weak-monotonicity and weak-subterm for quasi-simplification order-
ings [?]); then we can identify a particular, ideal ordering by choosing the
minimum ordering in the set. Unfortunately, at times, a set of orderings will
have no minimum in the usual set-theoretic sense of minimum. (One example
where there is a meaningful such minimum may be found in [?].) Accordingly,
this paper suggests a more general definition of “minimum” that leads more
often to a unique ordering, which is intuitively the desired minimum ordering.

The notion of “leanness” defined here embodies a preference for thinness of
quasi-orderings near their bottom. By “thinness” we mean that equivalence
classes are smaller. Our definition is especially useful when defining orderings
by incrementally adding constraints, since one wants to commit as late as
possible. Investigations of alternate choices of partial orders for rewriting,
specifically regarding multiset orderings, include [4,6,7]. A classification of
some string orderings appears in [8].

We begin with a motivating example. Then, in Sections 3 and 4, we define
initial segments for quasi-orderings and approach them from the standpoint
of a binary relation on quasi-orderings. With these building blocks in place,
Section 5 defines the leanness relation. This is followed by a section devoted
to conditions guaranteeing the existence of a leanest quasi-ordering. Section 7
illustrates the ideas with an example of a leanest tree ordering. We show that a
natural set of desiderata for a lexicographically biased simplification ordering
on binary trees does not lead to a unique minimal tree ordering satisfying
those conditions, but that the leanest ordering satisfying them is precisely the
well-known lexicographic path ordering. We conclude with a brief discussion.

2 A String Example

As usual, a quasi-ordering A may be viewed as a set of ordered pairs, where
each ordered pair is a comparison. We use x �A y to denote (x, y) ∈ A, a
comparison according to ordering A. As usual, x ≺A y will denote x �A y but
not y �A x.

Example 1 Consider a simple example of a set of conditions defining a set of
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quasi-orderings. Let Q denote the set of all quasi-orderings A of strings over
Σ = {a,b, c} that satisfy all three of the following conditions:

(1) ε �A a �A b �A c;
(2) if v �A w and x �A y, then vx �A wy;
(3) if v ≺A w, then vx �A wy,

for all strings v, w ∈ Σ∗ and symbols x, y ∈ Σ.

Intuitively it might seem that there should be a minimum ordering that satis-
fies these conditions. In it, the empty string ε would be the smallest element,
followed by a, b and c in strictly increasing order. Following this pattern we
can enumerate a total “length-first lexicographic” ordering in the following
fashion:

ε ≺ a ≺ b ≺ c ≺ aa ≺ ab ≺ ac ≺ ba ≺ · · · .

Example 2 Let F be the above quasi-ordering, which may be defined as fol-
lows:

v �F w := f(v) ≤ f(w),

where f is the homomorphism:

f(ε) = 1 ,

f(wa) = f(w)3 ,

f(wb) = f(w)3 + 1 ,

f(wc) = f(w)3 + 2 ,

for any string w. �

A natural definition for the minimum (or, “least defined”) ordering is the
minimum in terms of the subset relation: the ordering that, as a set of com-
parisons, is a subset of all other orderings in Q. Surprisingly, perhaps, F is
not a minimum of Q in this sense. Furthermore, no such minimum in terms
of subset exists.

To see this, consider another ordering that intuitively is greater than F , but
is not a super-set of F .

Example 3 We make an intuitively less minimal ordering G by forcing a and
b to be equivalent. Like F , let ε be strictly less than a and c be strictly greater
than b. The next equivalence classes in G are

{aa, ab,ba,bb} ,
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followed (strictly) by

{ac,bc} .

Like F , we define the entirety of G with a mapping:

v �G w := g(v) ≤ g(w),

where g is the string-homomorphism:

g(ε) = 1 ,

g(wa) = g(w)2 ,

g(wb) = g(w)2 ,

g(wc) = g(w)2 + 1 ,

for any string w.

This ordering G also satisfies all the conditions for bona fide membership in
Q. �

With a and b equivalent in G but strictly increasing in F , a more striking
difference between G and F is made possible. In G the string ac is strictly
greater than ba, since g(ac) = 5 and g(ba) = 4. However, in F , ac is strictly
less than ba, since f(ac) = 11 and f(ba) = 12.

The following diagram displays comparisons for F , G, and any relation S that
is a subset of both F and G:

F G S

a � b
√ √ √

or ×

b � a × √ ×

ac � ba
√ × ×

We see that ac �S ba must not hold even when a ≺S b does. This means
that any ordering that is a subset of both F and G cannot satisfy the third
condition for membership in Q. Thus, Q cannot have an ordering that is the
minimum in terms of the subset relation, or “subset minimum”.

Nevertheless, intuitively, F is “more minimal” than G, since it omits the in-
equality b � a. So, instead of comparing quasi-orderings in terms of the subset
relation, we propose an alternative relation: “leanness” of orderings. In this
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alternative relation of quasi-orderings, F is in fact the “leaner” of the two.
Both F and G “start off” the same, with ε ≺ a, but then diverge with the
comparison of a and b. Whereas G has an equivalence class of a � b, F has
only a. This is why F is to be preferred.

In the next section, we formalize a construct that captures how orders “start
off”. This construct will be a building block for a general definition of a “lean-
ness” relation on quasi-orderings.

3 Initial Segments

The comparisons of a, b, ac and ba in Examples 2 and 3 proved problematic
because viewing comparisons outside the context of the comparisons around
them results in a “subset tie”. By taking into account what happens lower
down in an ordering, such ties can be avoided. The rationale is that the con-
straints that characterize the family of orderings in question are typically
inductive, for which reason the ordering imposed on smaller elements ought
to be more significant.

Instead of looking at comparisons by themselves, we want to work with a
construct that takes into account the position of the comparisons. For that
purpose, we extend the standard notion of initial segment for well-orders to
also cover quasi-orderings.

Definition 4 (Initial segment) For any quasi-ordering A and set S, the
initial segment of A below S is the set of all ordered pairs in A restricted to
the down-set of S. In symbols:

A � S := {(x, y) ∈ A : y �A z, z ∈ S} .

When S is a singleton {z}, we write simply A � z.

Example 5 Let N be the natural ≤ order of the natural numbers. Then

N � 3 = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} . �

This quasi-ordered set (or “qoset”) ({1, 2, 3},≤) can be presented as

{1 ≤ 2 ≤ 3} ,

with reflexivity and transitivity understood.
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The above example involves a total order, where the definition of initial seg-
ment does not differ much from that of a well-order.

Example 6 Let D be the order relation “x divides y” on the natural numbers.

D � 3 = {(1, 1), (1, 3), (3, 3)} ,

D � 4 = {(1, 1), (1, 2), (1, 4), (2, 2), (2, 4), (4, 4)} . �

The desirable property of closure of initial segments under arbitrary union
follows easily from the definition. For example,

(D � 3) ∪ (D � 4) = D � {3, 4} .

Proposition 7 For any quasi-ordering A and set of sets S,

⋃
S∈S

(A � S)= A �
( ⋃

S∈S
S

)
.

Other useful results follow easily from the definition.

Proposition 8 For any quasi-ordering A and set S,

A � S ⊆A .

Proposition 9 For any quasi-ordering A and sets S and T ,

S ⊆ T implies A � S ⊆ A � T .

Proposition 10 For any quasi-orderings A and B and set S,

A ⊆ B implies A � S ⊆ B � S .

The closure of initial segments under intersection is not as direct a result as
for union.

6



Note that an initial segment A � z is not usually a quasi-ordering of the whole
of A. In the example above, since (4, 4) is not in N � 3, the relation is not
reflexive (and thus not a quasi-ordering) on all the natural numbers. However,
N � 3 is a quasi-ordering on the set {1, 2, 3}. Such sets can be determined by
looking at the “domain” of a binary relation (set of ordered pairs).

Definition 11 (Domain) The domain of a binary relation is the set of all
elements found as a first component. In symbols:

dom A := {x : ∃y. x ≤A y} .

If a set of ordered pairs is a quasi-ordering, then it is a reflexive binary relation,
which implies that any element that shows up as a first component must also
show up as a second component, and vice-versa.

Proposition 12 For any quasi-ordering A,

dom A = {y : ∃x. x ≤A y} .

So any element that is comparable to anything is in the domain of the quasi-
ordering.

Theorem 13 For any quasi-ordering A and set S, A � S is a quasi-ordering
on dom (A � S).

Proof. For any x ≤A�S y, both x and y must be in dom (A � S); thus, A � S ⊆
(dom (A � S))2, making A � S a binary relation on dom (A � S).

For every x ∈ dom (A � S), there exists some y ∈ dom (A � S) and z ∈ S such
that x ≤A y ≤A z. Since x ≤A x ≤A z must hold, so does x ≤A�S x; thus
reflexivity holds for A � S.

Transitivity of A � S follows easily from transitivity of A. �

Proposition 14 For any quasi-orderings A and B,

A ⊆ B implies dom A ⊆ dom B .
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Definition 15 (Initial segment)

(1) A quasi-ordering B is an initial segment of a quasi-ordering A if there
exists some set S such that B = A � S.

(2) For any quasi-ordering A, I (A) denotes the set of all initial segments of
A.

(3) For any set Q of quasi-orderings, I (Q) denotes the set of all initial seg-
ments of members of Q.

Example 16 If D is the partial order “x divides y” on natural numbers, then
I (D � {3, 4}) is

{ ∅,

{(1, 1)},

{(1, 1), (1, 2), (2, 2)},

{(1, 1), (1, 3), (3, 3)},

{(1, 1), (1, 2), (1, 4), (2, 2), (2, 4), (4, 4)},

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} } �

Any set of initial segments I (A) has the empty set ∅ as a member since
∅ = A � ∅. At the other extreme, A itself is also a member of I (A) as the next
theorem will show.

Lemma 17 For any quasi-orderings A and B,

B ⊆ A implies B ⊆ A � dom B .

Proof. Assume B ⊆ A. If x ≤B y, then y ∈ dom B and x ≤A y ≤A y. Thus,
x ≤A�dom B y. �

By Lemma 17, A ⊆ A � dom A. Actually, they are equal:

Theorem 18 Any quasi-ordering is an initial segment of itself. Specifically,
A = A � dom A.
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Proof. Clearly, A � dom A ⊆ A. With Lemma 17, the result follows. �

Theorem 19 For any quasi-orderings A and B,

B ∈ I (A) implies B = A � dom B .

Proof. Assume B = A � S, for some S. For any x ≤A�dom B y, then x ≤A y ≤A

z, for some z ∈ dom B. Since z ≤B z, there exists w ∈ S such that z ≤A w,
and thus y ≤A w, which implies x ≤A�S y and thus x ≤B y. Therefore,
A � dom B ⊆ B. With Lemma 17, equality is proven. �

Theorem 19 shows that if a quasi-ordering B is an initial segment of quasi-
ordering A, there is a “standard” and predictable set S for which B is an initial
segment below S, namely the domain of B. This makes it easy to work with
initial segments as quasi-orderings and only resort to the A � S form when
needed, deducing a suitable S by choosing the domain of the initial segment
in question.

With initial segment domains developed, we return to intersections of initial
segments.

Theorem 20 (Initial segment intersection) For any quasi-ordering A
and subset J of its initial segments I (A),

⋂
B∈J

B = A �
( ⋂

B∈J
dom B

)
.

Proof. Let D =
⋂

B∈J dom B.

Consider any x ≤∩B y. For all B ∈ J ⊆ I (A), x ≤B y and so x ≤A y. By
Theorem 13, B is reflexive, so y ≤B y, and thus y ∈ dom B. Therefore, y ∈ D
and thus x ≤A�D y.

Consider any x ≤A�D y. For some z ∈ D and for all B ∈ J , z ∈ dom B and
x ≤A y ≤A z. Thus, for all B ∈ J , x ≤A�(dom B) y, and, by Theorem 19,
x ≤B y. Therefore, x ≤∩B y. �
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4 Initial Segment Order

An initial segment is a quasi-ordering with a specific relation to another quasi-
ordering. It will prove convenient to define a binary relation between quasi-
orderings and their initial segments.

Definition 21 (Initial segment relation) Let A 
 B be the relation A ∈
I (B). An initial segment of B is a strict initial segment, denoted A � B, if
it is not equal to B. If A 
 B, then B is a super-segment of A; it is a strict
super-segment if A �= B.

Theorem 22 The initial segment relation 
 is a partial order on quasi-
orderings.

Proof. By Theorem 18, 
 is a reflexive relation on quasi-orderings.

Consider any quasi-orderings A and B with A 
 B and B 
 A. From the
definition of � , we know that A ⊆ B ⊆ A, and thus A = B. Thus, 
 is
antisymmetric.

Consider any quasi-orderings A, B and C with A 
 B 
 C. From Theorem 19,
A = B � dom A and B = C � dom B. Since A ⊆ B ⊆ C, we conclude that
A ⊆ C � dom A, by Lemma 17. If x ≤C�dom A y, then, for some z ∈ dom A ⊆
dom B, we have x ≤C y ≤C z; thus, x ≤C�dom B y and x ≤B y. Furthermore,
y ≤C z ≤C z; so y ≤B z, which implies that x ≤B�dom A y and x ≤A y. Thus,
A = C � dom A and thus A 
 C. Therefore, 
 is transitive. �

Theorem 23 (Isomorphic posets) For any quasi-ordering A, the three
partially-ordered sets (posets),

(I (A) ,
) ,

(I (A) , ⊆ ) ,

( {dom B : B ∈ I (A)} , ⊆ ) ,

are all isomorphic to each other.

In particular, A 
 B implies A ⊆ B, since both A and B are initial segments
of B.

Proof. Consider any B and C in I (A). It follows easily from the definition
of � that B 
 C implies B ⊆ C. And it follows easily from the definition of
dom that B ⊆ C implies dom B ⊆ domC.
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Suppose B ⊆ C. By Theorem 18, B = B � dom B ⊆ C � dom B. By
Theorem 19, C � domB ⊆ A � dom B = B. Thus, B = C � dom B. We
conclude that B ⊆ C implies B 
 C. Finally, dom B ⊆ dom C implies
A � dom B ⊆ A � dom C, which implies B ⊆ C, by Theorem 19. �

The equivalence of 
 and ⊆ does not extend to quasi-orderings in general:
quasi-ordering A being a subset of quasi-ordering B certainly does not neces-
sarily make A its initial segment. Compare Proposition 14.

The close tie between partial orders ⊆ and 
 suggests the usefulness of a
(semi-) lattice structure, with least upper bounds and greatest lower bounds
for initial segments.

Definition 24 (Least common super-segment) For any set of quasi-
orderings Q, C is its least common super-segment, symbolized C =

⊔
A∈Q A, if

C is a super-segment of all members of Q and C is an initial segment of every
super-segment of members of Q. The least common super-segment of just two
quasi-orderings A and B is denoted A � B.

A common super-segment does not necessarily exist, unless all the segments
are initial segments of some ordering:

Theorem 25 (Least common super-segment existence) Every set of
initial segments J ⊆ I (A), for any quasi-ordering A, has a least common
super-segment

⊔
B∈J

B =
⋃

B∈J
B ,

with

dom
( ⊔

B∈J
B

)
=

⋃
B∈J

dom B .

Proof. The set �B∈J B is the least upper bound of J under poset (I (A),
);
∪B∈J B, of J under (I (A),⊆); ∪B∈J domB, of {dom B : B ∈ J } under
({dom B : B ∈ I (A)},⊆). By Theorem 23, the natural isomorphisms between
the posets map the least upper bounds to each other. �

Definition 26 (Greatest common initial segment) For any set of
quasi-orderings Q, C is its greatest common initial segment, symbolized
C =

�
A∈Q A, if C is an initial segment of all members of Q and C is a
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super-segment of every initial segment of members of Q. The greatest com-
mon initial segment of just two quasi-orderings A and B is denoted A  B.

Theorem 27 (Greatest common initial segment existence) Every set
of initial segments J ⊆ I (A), for any quasi-ordering A, has a greatest com-
mon initial segment

�
B∈J

B =
⋂

B∈J
B ,

with

dom
( �

B∈J
B

)
=

⋂
B∈J

dom B .

The proof is analogous to the previous.

Unlike the case for least common super-segments, a greatest common initial
segment always exists. This asymmetry is related to the fact that ∅ is an
initial segment of all quasi-ordering, but there is no single super-segment of
all quasi-orderings.

Theorem 28 (Greatest common initial segment general existence)
For any set of quasi-orderings Q, its greatest common initial segment is

�
B∈Q

B =
⋃ ( ⋂

B∈Q
I (B)

)
.

Proof. For any C ∈ Q, I (C) is closed under union and ∩B∈Q I (B) ⊆ I (C);
thus B∈QB 
 C. For any C ∈ ⋂

B∈Q I (B), C ⊆
�

B∈Q B. Thus, by Theo-
rem 23, C 
 B∈QB. �

Although posets (I (A),
) and (domA,≤A) are not isomorphic, many of the
fundamental ordering traits of A are preserved in poset (I (A),
). The next
theorem shows that totality is preserved.

Lemma 29 For any quasi-ordering A and x and y in the domain of A,

A � x 
 A � y if and only if x ≤A y .
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Proof. Since x ∈ dom A, we must have x ≤A�x x. From A � x 
 A � y, we
deduce that x ≤A�y x, which implies that x ≤A y.

For the other direction, note that A � x ⊆ A � y if x ≤A y, and apply Theo-
rem 23. �

Theorem 30 (Totality preservation) A quasi-ordering A is total if and
only if the poset (I (A),
) is total.

Proof. Suppose A is not total and x, y are incomparable in A. By Lemma 29,
A � x and A � y must be incomparable in poset (I (A),
).

Suppose poset (I (A),
) is not total and B, C ∈ I (A) are incomparable under

. By Theorem 23, neither dom B nor dom C can be a subset of the other.
Let x ∈ domB \ dom C and y ∈ dom C \ dom B. Thus A � x ∈ I (B) \ I (C)
and A � y ∈ I (C) \ I (B) showing that A � x and A � y are incomparable. So
by By Lemma 29, x and y must be incomparable in A and thus A must not
be total. �

5 Leanness

We return to the string example of Section 2 to prepare a definition of “lean-
ness”. In the case of Examples 2 and 3, the first non-trivial initial segments
differ: F has an initial segment ε ≺F a, whereas G has an initial segment
ε ≺G a �G b. That F ’s initial segment is a subset of G’s initial segment is the
first indication that F is leaner than G.

In the general case of arbitrary quasi-orderings A and B, there may be no
single “next” initial segment that marks the divergence between orderings A
and B. The key property, however, is that of initial segments that are found
in one ordering but not the other.

We now have the building blocks necessary to define a general “leaner” relation
for quasi-orderings. In the simple case of Examples 2 and 3, there was one
initial segment from F that was a subset of one initial segment from G. In the
general case, all initial segments of G will be considered, as long as they are
not initial segments of F . Similarly, more than just one initial segment from F
can be a subset of initial segments from G, just as long as the initial segment
from F is not an initial segment of G.

Definition 31 (Leanness) Quasi-ordering A is leaner than quasi-ordering
B, symbolized A � B, iff for every initial segment B0 of B and not of A there
is an initial segment A0 of A and not of B that is a subset of B0:

∀B0 ∈ I (B) \ I (A). ∃A0 ∈ I (A) \ I (B). (A0 ⊆ B0) .
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Leanness is a partial order, as we will see below. For Examples 2 and 3, we do
have F � G. It is also the case that F is the leanest ordering in the set Q of
Example 1.

Remark 32 The definition of leanness resembles a Smyth powerdomain con-
struction [10] on initial segments (but removes common elements from compar-
ison) and the multiset extension [2] of proper superset (but applies to infinite
sets).

Leanness can still can compare any two quasi-orderings with equal domains
that are comparable by subset.

Theorem 33 For any two quasi-orderings A and B with dom A = dom B,

A ⊆ B impliesA � B .

Proof. For any B0 ∈ I (B) \ I (A) choose A0 = A � domB0. Since dom A =
dom B and A ⊆ B it must hold that dom A0 = dom B0. Since B0 �∈ I (A),
B0 �= A � dom B0 = A0. Since A0 �= B0 = B � dom B0 = B � domA0, A0 can
not be in I (B), thus A0 ∈ I (A) \ I (B). Lastly, we have A0 ⊆ B � dom B0 =
B0. �

The initial segment relation, 
, and the leanness relation, �, play comple-
mentary roles. For any two distinct quasi-orderings with the same domains, 

will always leave the two orderings incomparable, whereas � may make them
comparable. When quasi-orderings are partial orders (that is, they are anti-
symmetric) the leanness relation does not compare any two distinct orderings
with equal domains.

Possibly counter-intuitive at first is the following result.

Theorem 34 (Initial segment leanness duality) For any two quasi-
orderings A and B,

A 
 B impliesB � A .

In words, super-segments are leaner, but, then again, leanness is designed for
comparing orderings with the same domain.
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Proof. For any two quasi-orderings A and B with A 
 B, we have
I (A) \ I (B) = ∅, so the definition of B � A is vacuously true. �

The reverse direction is not generally true for quasi-orderings, but is true for
(antisymmetric) well-orders.

Theorem 35 For any two well-orders A and B,

A � B impliesB 
 A .

Proof. Suppose B �
 A. Then B �= A  B and thus dom B\dom (A  B) �= ∅.
Since B is well-ordered (and antisymmetric), domB \dom (A  B) must have
a minimum element x. Let D = {x}∪dom (A  B) and B0 = B � D. We must
have B0 ∈ I (B) \ I (A) and dom B0 = D.

For any A0 ∈ I (A) \ I (B), it can not be the case that domA0 ⊆ dom B0.
Thus no A0 ∈ I (A) \ I (B) can be a subset of B0. Thus A �� B. �

In general, leanness is always a partial order (on quasi-orderings). The proof
proceeds as follows:

Lemma 36 For any quasi-orderings A, A0 and B,

A0 
 A and A0 ⊆ B ⊆ A imply A0 
 B .

Proof. If A0 
 A and A0 ⊆ B ⊆ A, then, by Lemma 17, Proposition 10 and
Theorem 19,

A0 ⊆ B � domA0 ⊆ A � dom A0 = A0 .

Thus A0 
 B. �

Theorem 37 Leanness is a partial order on quasi-orderings.

Proof. For any quasi-ordering A, A � A is trivially true since I (A)\I (A) =
∅. Thus leanness is reflexive.

Consider any quasi-orderings A and B, with A � B � A. Suppose there exist
A1 ∈ I (A)\I (B), B0 ∈ I (B)\I (A) with B0 ⊆ A1 and A0 ∈ I (A)\I (B) with
A0 ⊆ B0. By Lemma 36, A0 ∈ I (B), a contradiction. Thus, I (A)\I (B) = ∅;
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likewise I (B) \ I (A) = ∅. Thus, I (A) = I (B), and hence A = B, giving
anti-symmetry.

For transitivity, suppose A � B � C. Consider any C0 ∈ I (C) \ I (A). We
show there is an A0 ∈ I (A) \ I (C) such that A0 ⊆ C0.

Case 1: C0 
 B. Since A � B, there is an A0 ∈ I (A) \ I (B) such that
A0 ⊆ C0. Were A0 ∈ I (C), then, by Theorem 23, A0 
 C0 and then
A0 
 B. But A0 �
 B, so we must have A0 /∈ I (C). Thus, A0 ∈ I (A)\I (C)
with A0 ⊆ C0.

Case 2: C0 �
 B. Since B � C, there must exist B0 ∈ I (B)\I (C) such that
B0 ⊆ C0.
Case 2a: B0 ∈ I (A). Let A0 = B0 ∈ I (A) \ I (C) with A0 = B0 ⊆ C0.
Case 2b: B0 /∈ I (A). Since A � B, there must exist A0 ∈ I (A) \ I (B)

such that A0 ⊆ B0. By Lemma 36 and A0 ⊆ B0 ⊆ C, if A0 
 C,
then A0 
 B0 
 B; thus A0 �
 C, since A0 �
 B. Thus, we have A0 ∈
I (A) \ I (C) with A0 ⊆ B0 ⊆ C0.

Thus A � C. �

The next theorem will present an alternative definition of leanness that, at
times, is more convenient to use than the original.

Lemma 38 For any quasi-ordering A and set S,

(dom A) ∩ S ⊆ dom (A � S) .

Proof. Consider any x ∈ (dom A)∩S. With x ≤A x ≤A x and x ∈ S, it must
hold that x ≤A�S x and thus x ∈ dom (A � S). �

Theorem 39 (Alternate leanness definition) For any quasi-orderings A
and B, A � B iff for every strict super-segment B0 of A  B in B there exists
a strict super-segment A0 of A  B in A such that A0 ⊆ B0. In symbols: A � B
iff

∀B0. (A  B � B0 
 B ⇒ ∃A0. (A  B � A0 
 A ∧ A0 ⊆ B0)) .

Proof. Assume A � B, and consider any B0 such that A  B � B0 
 B.
Since B0 ∈ I (B) \ I (A), there exists A1 ∈ I (A) \ I (B) such that A1 ⊆ B0.
Let A0 = A1 � (A  B). By the fact that A  B 
 B0 and Theorem 25, we
have

A0 = A1 � (A  B) = A1 ∪ (A  B) ⊆ B0 .
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For the other direction, assume the condition of the theorem, and consider
any B1 ∈ I (B) \ I (A). Let B0 = B1 � (A  B). Since A  B � B0 
 B,
we are assuming there exists A0 with A  B � A0 
 A and A0 ⊆ B0. By
Theorems 23 and 25,

dom (A  B) � dom A0 ⊆ dom B0 ⊆ dom B1 ∪ dom (A  B) ,

from which (by set theory) it follows that dom A0 ∩ dom B1 �⊆ dom (A  B).
By Lemma 38,

dom A0 ∩ dom B1 ⊆ dom (A0 � dom B1) .

Let A1 = A0 � dom B1; thus, dom A1 �⊆ dom (A  B), which, by Theorem 23,
implies A1 �
 A  B, A1 �
 B and, finally, A1 ∈ I (A)\I (B). By Proposition 10
and Theorem 19, A1 = A0 � dom B1 ⊆ B0 � domB1 = B1. �

Corollary 40 For any quasi-orderings A and B with A �
 B, if A ⊆ B0 for
every B0 with A  B � B0 
 B, then A � B.

Proof. For every B0 with A  B � B0 
 B, we have A  B � A 
 A and
A ⊆ B0. �

Lemma 41 For any quasi-orderings A and B, if A is total and leaner than
B, then every initial segment of A and not of B is leaner than B.

Proof. Assume A � B and total. Consider any C ∈ I (A) \ I (B). For any
B0 ∈ I (B) \ I (A), there exists A0 ∈ I (A) \ I (B) such that A0 ⊆ B0. By
Theorem 30, either A0 
 C or C 
 A0 Thus, A0  C equals A0 or equals C,
whichever is the smaller segment. Thus, there exists A0  C ∈ I (C) \ I (B)
with A0  C ⊆ B0. Thus C � B. �

6 Leanest

In this section, we will identify two properties that guarantee the existence
of a leanest member in a given set of quasi-orderings. The structure these
properties depend on is not that of the elements ordered, or from the way the
set of orderings is defined, but rather from the set of all initial segments of
a collection of quasi-orderings. We will denote by I (O) the set of all initial
segments of members of O.
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The set Q from Example 1 provided a good instance of a set with a leanest
ordering, but no subset-minimum.

Example 42 Some sets of quasi-orderings, such as {a ≺ b, b ≺ a}, have no
leanest member. Its initial segments are: {∅, a,b, a ≺ b,b ≺ a}. The empty
set ∅ is the only common initial segment, and there is no super-segment of ∅
that is any “better” than any other. �

Example 43 In contrast, the initial segment of a (by itself) is the “best”
super-segment of ∅ in the following set of quasi-orderings:

I ({a ≺ b, a � b}) = {∅, a, a ≺ b, a � b} . �

Such “tie breaking” super-segments are formalized as “successor segments”.

Definition 44 (Successor segment) A strict super-segment of a quasi-
ordering A in a set of quasi-orderings O is a successor segment of A (in
O) if it is a subset of all strict super-segments of A in O.

This gives us the first property for the existence of a leanest member of any
set of quasi-orderings O: any initial segment with super-segments, that is, any
non-maximal member of poset (I (O),
), must have a successor segment.

Example 45 Let S be the set of quasi-orderings

{ 1 � 2 � 3 � 4 � . . . ,

1 ≺ 2 � 3 � 4 � . . . ,

1 ≺ 2 ≺ 3 � 4 � . . . ,

1 ≺ 2 ≺ 3 ≺ 4 � . . . ,

. . . } .

Since for every member of S there is another strictly leaner member, it can be
concluded that S has no leanest member. Were S to include the natural order-
ing of the natural numbers, however, then S would have a leanest member. �

Note that I (S), which equals

S ∪ { ∅, 1, 1 ≺ 2, 1 ≺ 2 ≺ 3, 1 ≺ 2 ≺ 3 ≺ 4, . . . } ,

contains no upper bound in terms of 
. This suggests the second property for
the existence of a leanest member: any ascending sequence of initial segments
must have an upper bound.

Together the two properties form the following existence theorem.
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Theorem 46 (Leanest existence) A set of total well-founded quasi-
orderings O contains a unique leanest member if poset (I (O),
) contains

(1) a successor segment for every non-maximal member; and
(2) an upper bound for every ascending sequence.

The restriction that members of set O be total and well-founded is redundant,
since condition (1) implies that all members of O must be total and well-
founded, as shown by the following two propositions:

Proposition 47 A set of quasi-orderings O contains only total well-founded
members if poset (I (O),
) contains a successor segment for every non-
maximal member.

Proof. Assume (I (O),
) contains a successor segment for every non-
maximal member.

Suppose O contains a non-total ordering C with incomparable x and y. By
Lemma 29, neither C � x nor C � y is an initial segment of the other. Thus
(C � x)  (C � y) is distinct from both C � x and C � y and thus non-maximal
in poset (I (O),
).

Consider any A ∈ I (O) that is a strict super-segment of (C � x)  (C � y).
By Theorem 23, dom A � dom ((C � x)  (C � y)). By Theorem 27,

dom (C � x) ∩ dom (C � y) = dom ((C � x)  (C � y)) .

By Theorem 23, neither dom (C � x) nor dom (C � y) is a subset of the other.
Thus, dom A cannot be a subset of both dom (C � x) and dom (C � y). From
the definition of dom, A can not be a subset of both C � x and of C � y; thus,
A can not be a successor segment of (C � x)  (C � y). So, O contains only
total orderings.

Consider any total ordering M ∈ O and non-empty set S ⊆ dom M . Let T =
{x : ∀y ∈ S.x <M y}. Since M � T is non-maximal, there must be a successor
segment A of M � T in I (O). By Theorem 23, dom (M � T ) � dom A. Since
T = dom M � T , there must be some z ∈ domA \ T .

For any y ∈ S, M � y � M � T and thus A ⊆ M � y, which implies z ≤M y.
Since z /∈ T , z must be in S and thus is a minimum of S under M . �

Next, we introduce a construct that is used to find the leanest member of a
set of quasi-orderings.

Definition 48 (Dual-chain) For any ordinal-indexed sequence Q = {Qµ}µ
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of quasi-orderings, let the dual-chain of Q be the sequence

Q∆
µ :=

�
β≥µ

Qβ

of common initial segments. Let the dual-chain limit be their union:

lim∆
µ Qµ :=

⋃
α

Q∆
α .

Lemma 49 The dual-chain of a sequence of quasi-orderings from O is
a descending sequence in poset (I (O), �) and an ascending sequence in
(I (O),
).

Proof. By Theorem 28, each member of a dual-chain exists as a greatest
common initial segment, so by construction, a dual-chain must be ascending
under 
. By Theorem 34, a dual-chain ascending under 
 is descending under
�. �

Lemma 50 Let C be a descending sequence C0 � C1 � C2 � . . . of total
quasi-orderings. If lim∆

µ Cµ �∈ I (C), then lim∆
µ Cµ is leaner than all members

of C.

Proof. Assume lim∆
µ Cµ �∈ I (C) and consider any Cα. Since lim∆

µ Cµ �
 Cα

and I (Cα) is closed under union, C∆
β �
 Cα for some β > α. By Cβ � Cα

and Lemma 41, C∆
β � Cα. With C∆

β 
 lim∆
µ Cµ and Theorem 34, we have

lim∆
µ Cµ � C∆

β . Thus, lim∆
µ Cµ � Cα. �

Lemma 51 For any descending sequence C0 � C1 � C2 � . . . over a set of
quasi-orderings O, if lim∆

µ Cµ 
 Cα, for some α, then lim∆
µ Cµ 
 Cβ for all

β > α.

Proof. Assume lim∆
µ Cµ 
 Cα. Suppose there is some β > α such that

lim∆
µ Cµ �
 Cβ. Since I (Cβ) is closed under union, there must be some γ > β

such that C∆
γ �
 Cβ. Since C∆

γ 
 Cα and Cβ � Cα, there must exist some
B0 ∈ I (Cβ) \ I (Cα) such that B0 ⊆ C∆

γ . We have B0 �
 Cγ, because The-
orem 23 and B0 
 Cγ imply B0 
 C∆

γ , which implies B0 
 Cα. Thus,
B0 ∈ I (Cβ)\I (Cγ). Since Cγ � Cβ, there must exist some A0 ∈ I (Cγ)\I (Cβ)
such that A0 ⊆ B0 ⊆ C∆

γ . By Theorem 23, A0 
 C∆
γ , and by Lemma 36,

A0 
 B0. However, A0 /∈ I (Cβ), a contradiction. Thus, lim∆
µ Cµ 
 Cβ for all

β > α. �

Lemma 52 Let C be any descending sequence C0 � C1 � C2 � . . . over a
set of quasi-orderings O. Then I (C) cannot include a successor segment from
I (O) of the dual-chain limit of C.
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Proof. Let S ∈ I (O) be a successor segment of lim∆
µ Cµ, and suppose there

did exist α such that S 
 Cα. Since C∆
α 
 lim∆

µ Cµ � S, there must be
some β > α such that S �
 Cβ. Since Cβ � Cα, there must exist some B0 ∈
I (Cβ) \ I (Cα) such that B0 ⊆ S. By Lemma 51, lim∆

µ Cµ 
 Cβ, and by

Theorem 25, B0 � lim∆
µ Cµ exists and, with lim∆

µ Cµ ⊆ S,

B0 � lim∆
µ Cµ = B0 ∪ lim∆

µ Cµ ⊆ S .

However, since B0 � lim∆
µ Cµ � lim∆

µ Cµ, we have S ⊆ B0 � lim∆
µ Cµ, implying

equality and thus S 
 Cβ, a contradiction. �

Lemma 53 For any set of quasi-orderings O and member A ∈ O, a successor
segment of A in O is leaner than or an initial segment of all super-segments
in I (O) of A.

Proof. Consider a super-segment B of A in O and a successor segment C
of A in O. If B 
 C, then by Theorem 34, C � B. Otherwise, consider
any initial segment B0 in I (B) \ I (C). By Theorem 23, B0 � A exists and
B0 � A �∈ I (C), and by the definition of successor segment, C ⊆ B0 � A. By
the definition of dom and Theorems 23 and 25, we have domA � dom C ⊆
dom B0 ∪ dom A. Thus, dom A � dom B0. By Theorem 23, A � B0, and thus
C ⊆ B0. If C �
 B, then C � B. �

Lemma 54 For any set of quasi-orderings O, if every non-maximal member
of (I (O),
) has a successor segment in I (O), then (O, �) is down-directed
(that is, for all A, B ∈ O there is a C ∈ O such that C � A, B).

Proof. For A, B ∈ O, if either is an initial segment of the other, then, by
Theorem 34, the claim is trivially true.

So, assume neither A nor B is an initial segment of the other. Thus A  B �
A, B. If every non-maximal member of (I (O),
) has a successor segment in
I (O), then A  B has a successor segment S in I (O), where S ⊆ A0 and
S ⊆ B0, whenever (A  B) � A0 
 A and (A  B) � B0 
 B.

If S 
 A, then S is not an initial segment of B and A  B = S  B and thus
A � S � B by Theorem 34 and Corollary 40. Similarly, if S 
 B, then B � A.

If S is not an initial segment of either A or B, then A  B = S  A = S  B,
and, by Corollary 40, S � A, B. Since S 
 O, there exists some C ∈ O with
S 
 C. By Theorem 34, C � A, B. �

We now have the necessary ingredients for a proof of leanest-ordering existence
(Theorem 46).
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Proof of Leanest Existence Theorem. Let C be any descending sequence
C0 � C1 � C2 � . . . over O. Its dual-chain is an ascending sequence in poset
(I (O),
) by Lemma 49. By the second condition, the dual-chain must have
an upper bound U in I (O). Since I (U) is closed under union, the dual-chain
limit lim∆

µ Cµ must be in I (U) ⊆ I (O). First, we seek L ∈ I (O) leaner than
every member of sequence C.

Case 1: L = lim∆
µ Cµ /∈ I (C). By Lemma 50, L is leaner than all members

of C.
Case 2: L = lim∆

µ Cµ is in I (C) and is maximal in (I (O),
).
For some α, L 
 Cα. By Lemma 51, for all β > α, L 
 Cβ. Since L is
maximal, L = Cβ for all β > α. Since Cα � Cγ for γ < α, L is leaner than
all members of C.

Case 3: lim∆
µ Cµ is in I (C) and is non-maximal in (I (O),
).

Let L be the successor segment in I (O) of lim∆
µ Cµ. For some α, lim∆

µ Cµ 

Cα. By Lemma 51, Cβ is also a super-segment of lim∆

µ Cµ for all β > α. By
Lemma 52, L �
 Cβ. Thus, by Lemma 53, L must be leaner than all Cβ and,
hence, of all members of C.

In all three cases, we have L ∈ I (O) leaner than every member of C. There
must exist some M ∈ O such that L 
 M . By Theorem 34, M � L, thus M
is a lower bound to C in poset (O, �).

Let Ai be an enumeration of O and define Bi such that

B0 = A0

Bi+1 =




Ai+1 if Ai+1 � Bi

Bi otherwise
.

Since {Bi}i is a descending sequence in poset (O, �), there exists a lower
bound in O, namely some Ak. For any Aj � Ak, we must have Bj = Aj and
thus Aj = Ak. Thus Ak must be minimal in poset (O, �).

By Lemma 54, O is directed, so O has a unique leanest member. �

7 Application to Binary Trees

Earlier, we described a very simple leanest string ordering. With the Existence
Theorem, leanest orderings of greater complexity can be found. In the example
to follow, binary trees serve as elements rather than strings. Binary trees
exemplify more complexity than strings, but less complexity than terms. In
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fact, binary trees are a special case of terms, with only one constant and only
one function.

The most basic and trivial tree is the empty tree denoted �. This tree has no
nodes or branches. From the empty tree �, more interesting trees can be built
using the operation of (x � y), which places tree x to the left of a root node
and tree y to the right. For instance,

(� � �) = �

(� � (� � �)) = �

�

((� � �) � �) = �

�

((� � �) � (� � �)) = �

� �

We set out to design, from intuitive principles, a rewrite-ordering for the sim-
plified example of binary trees. One approach is to construct an explicit defini-
tion of a rewrite-ordering relation and then prove the defined relation satisfies
various desired properties such as transitivity. The alternative approach pre-
sented below, is to define a set of quasi-orderings which automatically satisfy
all desired conditions with the exception of antisymmetry.

Definition 55 Let T be the set of all quasi-orderings A of finite binary trees
that satisfy the following three tree-ordering conditions:

• Growth: x, y �A (x � y);
• Monotonicity: if y �A z, then (x � y) �A (x � z) and (y � x) �A (z � x);
• Lexicography: if x1 ≺A y1 and x0 ≺A (y1 � y0), then (x1 � x0) �A

(y1 � y0).

The Growth and Monotonicity conditions are chosen because they give us a
quasi-simplification order, which suffices for well-founded termination proofs
[1]. Growth and Monotonicity alone give no preference for rightness or leftness.
The x1 ≺A y1 condition in Lexicography gives more significance to the left and
retains the x0 ≺A (y1 � y0) condition so as not to work against Growth.

Intuitively, the minimum quasi-ordering satisfying the above conditions should
be antisymmetric, lacking superfluous equivalence classes. As will be seen later
in this section, there is no subset-minimum ordering. However, using the Ex-
istence Theorem, we can establish a leanest ordering. We first establish that
the second condition of the Existence Theorem holds for T .

Lemma 56 Every chain in (I (T ),
) has an upper bound.
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Proof. Consider any chain C in poset (I (T ),
). Let L = ∪A∈CA and D be
the (possibly empty) set of all trees that are not ordered by L (the complement
of dom L). Define:

x �K y :=




x �L y, or

x ∈ dom L and y ∈ D, or

x, y ∈ D .

The ordering K places D as an equivalence class ordered strictly above dom L.

Consider any two binary trees x and y. If (x � y) is not in dom L, then it is in
D and thus (x � y) �K x, y. Otherwise, (x � y) is in dom L and there is some
A ∈ C such that (x � y) ∈ domA. Since A satisfies the Growth condition, it
results that (x � y) �K x, y. Therefore K satisfies the Growth condition.

Consider any three binary trees x, y and z with y �K z. If (x � z) is not in
dom L, then it is in D and thus (x � y) �K (x � z). Otherwise, (x � z) is in
dom L and there is some A ∈ C such that (x � z) ∈ dom A. Since A must be
an initial segment of an ordering that satisfies Growth, z ∈ dom A. Since y
can not be in D, for some B ∈ C we have y �B z. Since B is either an initial
segment or a super-segment of A, it follows from both cases that y �A z. By
Monotonicity, (x � y) �A (x � z) and thus (x � y) �K (x � z). By symmetry,
(y � x) �K (z � x). Therefore K satisfies the Monotonicity condition.

Consider any four binary trees x0, y0, x1 and y1 with x0 ≺K x1 and y0 ≺K

(x1 � y1). If (x1 � y1) is not in dom L, then it is in D, and thus (x0 � y0) �K

(x1 � y1). If not, (x1 � y1) is in dom L and there is some A ∈ C such that
(x1 � y1) ∈ domA. Since A is an initial segment of an ordering that satisfies
Growth, x1 ∈ dom A. Since x0 and y0 can not be in D, for some B ∈ C we have
x0 ≺B x1 and y0 ≺B (x1 � y1), and thus also x0 ≺A x1 and y0 ≺A (x1 � y1),
since B is either an initial segment or super-segment of A. By Lexicography,
(x0 � y0) �B (x1 � y1) and thus (x0 � y0) �K (x1 � y1). Therefore K satisfies
the Lexicography condition.

Since K ∈ T , L is in I (T ) and is an upper bound of C. �

Next we establish that condition (1) of the Existence Theorem holds for T .

Lemma 57 For every non-maximal A in poset (I (T ),
), the set of strict
super-segments of A has a subset-minimum.

Proof. Consider the non-empty set S of strict super-segments in I (T ) of
non-maximal A. Because T consists of total well-founded quasi-orderings (see
[3]), every super-segment in S must have an equivalence class ordered as less
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than all other elements outside of A. Let T be the set of all these equivalence
classes and let B be the intersection of all these equivalence classes.

No two members of T can be disjoint, since otherwise one could construct an
ordering of trees that satisfies the conditions of membership in T , but the
ordering would not be total—a contradiction.

Furthermore, there can be no subset descending sequence of members of T , for
otherwise one could construct an ordering of trees that satisfies the conditions
of membership in T . But again the ordering would not be well-founded, which
is a contradiction.

Were B empty, then either two members of T would be disjoint or there would
be a subset descending sequence of members of T . Since neither can be the
case, B must be non-empty.

Let C be the ordering of A, with B placed as an equivalence class strictly above
A. Let D be the ordering of C, with an equivalence class strictly greater than
C consisting of all binary trees not in C. If D /∈ T , then one of the members
of S cannot be the initial segment of a member of T ; one of the conditions for
membership in T must be violated.

Thus, C is the subset-minimum of all strict super-segment in I (T ) of A. �

It follows from Theorem 46 that T has a leanest ordering.

Theorem 58 The lexicographic path ordering for binary trees is the leanest
ordering in T .

Binary trees are terms with only one constant, namely �, and only one (bi-
nary) function ( � ). Under this special case, the lexicographic path ordering
(LPO) [5,1] acts as follows:

x ≺lpo y iff

(1) x = � and y �= �, or
(2) x = (x1 � x0), y = (y1 � y0), and

(a) x �lpo y1,
(b) x �lpo y0,
(c) x1 ≺lpo y1 and x0 ≺lpo y, or
(d) x1 = y1 and x0 ≺lpo y0.

Proof. LPO must satisfy the Growth condition due to cases (1,2a,2b) in the
definition of ≺lpo. The Monotonicity condition holds with ≺lpo due to (2c,2d).
Similarly, Lexicography holds due to (2c).
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By Lemma 57 and Proposition 47, all orderings in T are total and well-founded
(well-orders). Thus, by Theorem 35, the only ordering that could be leaner
than LPO must be a super-segment. Since LPO orders all binary trees, there
can be no leaner ordering, thus LPO is the leanest ordering in T . �

Here we see the leanness relation isolate a strict ordering of interest out of all
the quasi-orderings that satisfy the tree-ordering conditions. Next, we will see
why this isolation cannot be done by simply taking the minimum ordering in
the usual set-theoretic sense of minimum.

As for Q from Example 1, a minimum ordering of T can not be found by
taking the intersection of all member orderings. The member ordering of T
analogous to ordering F in Example 2 is the following quasi-ordering from [3],
which makes use of transfinite ordinal arithmetic.

Example 59 ([3]) Let U be the quasi-ordering on binary trees defined as
follows:

x �U y := u(x) ≤ u(y),

where u is the homomorphism:

u(�) = 0 ,

u(x � y) = ωu(x) + u(y)

for any binary trees x and y. �

It follows easily by ordinal arithmetic that U ∈ T .

The following quasi-ordering on binary trees is analogous to the ordering G
from Example 3:

Example 60 Let V be the quasi-ordering on binary trees defined as

x �V y := v(x) ≤ v(y),

where v is the homomorphism:

v(�) = 1 ,

v(x � y) =




v(y) if 2v(x) < v(y) ,

v(y) + 1 if 2v(x) = v(y) ,

2v(x) if 2v(x) > v(y)
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Binary Tree u(·) v(·)

� ω0 + 0 = 1 2 × 1 = 2

�

�

ω0 + 1 = 2 2 + 1 = 3

�

�

�

ω0 + 2 = 3 3

�

�

�

ω2 2 × 3 = 6

�

�

�

�

�

�

ω2 + ω2 6 + 1 = 7

�

�

�

�

ω3 2 × 3 = 6

Fig. 1. Tree orderings U and V .

for any binary trees x and y.

This V is a member of T . It is easy to see that it satisfies Growth. Monotonicity
can be seen by observing that v(x � y) either increases or remains the same
as either v(x) or v(y) is incremented. For Lexicography, consider any x0, y0,
x1 and y1 such that x0 ≺V x1 and y0 �V (x1 � y1). If 2v(x0) < v(y0), then
v(x0 � y0) = v(y0) ≤ v(x1 � y1). Otherwise, 2v(x0) ≥ v(y0), in which case
v(x0 � y0) ≤ 2v(x0) + 1 < 2v(x1) ≤ v(x1 � y1). �

Similar to F and G from Q in Examples 2 and 3, there is no ordering in T that
is a subset of both U and V . To see this, consider how U and V order the trees
in Fig. 1. Both U and V have a strict comparison between the penultimate
and last trees, but in opposite directions. Because of this, any ordering W
that is a subset of both U and V must leave the last and penultimate trees
incomparable. By Proposition 47 and Lemma 57, any member of T must be
total, thus W cannot be a member of T .

8 Conclusion

In contrast to “explicit” definitions of simplification orders like the lexico-
graphic path order, this paper illustrates an alternative approach to defining
a simplification order: A set of quasi-orderings provides an “implicit” defini-
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tion through the existence of a leanest member order. Simple and intuitive
conditions can define a set of quasi-orderings, as in the binary-tree example.
The existence of quasi-orderings in such a set is a trivial result, however; it
is the “minimum” ordering that is of interest. As we have seen, this defini-
tion technique comes with a possible snag: there may be no subset-minimum.
In particular, conditions that involve a strict comparison can preclude the
existence of a subset-minimum.

To compensate for this problem, we described an alternative to a subset-
minimum ordering, namely, the “leanest ordering”, building on fundamental
notions for quasi-orderings. By establishing two properties on a set of quasi-
orderings, a leanest ordering is guaranteed to exist. These properties are de-
fined independent of what kind of elements are ordered and what conditions
define a set of quasi-orderings. In this paper, the lexicographic path order for
binary trees is defined “implicitly”, by showing the existence of a leanest or-
dering within a set of quasi-orderings satisfying intuitive conditions. Of more
interest, however, would be more advanced simplification orders, which can
be similarly implicitly defined via conditions, but whose explicit definitions
would be excessively complicated.
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