

Language Classification and Segmentation of
Noisy Documents in Hebrew Scripts

Nachum Dershowitz Alex Zhicharevich
School of Computer Science School of Computer Science

Tel Aviv University Tel Aviv University
Ramat Aviv, Israel Ramat Aviv, Israel

nachumd@tau.ac.il alex.zhicharevich@gmail.com

Abstract

Language classification is a preliminary step
for most natural-language related processes.
The significant quantity of multilingual doc-
uments poses a problem for traditional lan-
guage-classification schemes and requires
segmentation of the document to monolingual
sections. This phenomenon is characteristic
of classical and medieval Jewish literature,
which frequently mixes Hebrew, Aramaic,
Judeo-Arabic and other Hebrew-script lan-
guages. We propose a method for classifica-
tion and segmentation of multi-lingual texts
in the Hebrew character set, using bigram sta-
tistics. For texts, such as the manuscripts
found in the Cairo Genizah, we are also
forced to deal with a significant level of noise
in OCR-processed text.

1. Introduction

The identification of the language in which a
given test is written is a basic problem in natural-
language processing and one of the more studied
ones. For some tasks, such as automatic cata-
loguing, it may be used stand-alone, but, more
often than not, it is just a preprocessing step for
some other language-related task. In some cases,
even English and French, the identification of the
language is trivial, due to non-identical character
sets. But this is not always the case. When look-
ing at Jewish religious documents, we often find
a mixture of several languages, all with the same
Hebrew character set. Besides Hebrew, these
include Aramaic, which was once the lingua
franca in the Middle East, and Judeo-Arabic,
which was used by Jews living all over the Arab
world in medieval times.
 Language classification has well-established
methods with high success rates. In particular,
character n-grams, which we dub n-chars, work

well. However, when we looked at recently
digitized documents from the Cairo Genizah, we
found that a large fraction contains segments in
different languages, so a single language class is
rather useless. Instead, we need to identify mono-
lingual segments and classify them. Moreover,
all that is available is the output of mediocre
OCR of handwritten manuscripts that are them-
selves of poor quality and often seriously de-
graded. This raises the additional challenge of
dealing with significant noise in the text to be
segmented and classified.
 We describe a method for segmenting docu-
ments into monolingual sections using statistical
analysis of the distribution of n-grams for each
language. In particular, we use cosine distance
between character unigram and bigram distribu-
tions to classify each section and perform
smoothing operations to increase accuracy.
 The algorithms were tested on artificially
produced multilingual documents. We also
artificially introduced noise to simulate mistakes
made in OCR. These test documents are similar
in length and language shifts to real Genizah
texts, so similar results are expected for actual
manuscripts.

2 Related Work

Language classification is well-studied, and is
usually approached by character-distribution
methods (Hakkinen and Tian, 2001) or diction-
ary-based ones. Due to the lack of appropriate
dictionaries for the languages in question and
their complex morphology, the dictionary-based
approach is not feasible. The poor quality of the
results of OCR also precludes using word lists.
 Most work on text segmentation is in the area
of topic segmentation, which involves semantic
features of the text. The problem is a simple case
of structured prediction (Bakir, 2007). Text tiling
(Hearst, 1993) uses a sliding-window approach.

Similarities between adjacent blocks within the
text are computed using vocabularies, counting
new words introduced in each segment. These
are smoothed and used to identify topic bounda-
ries via a cutoff function. This method is not
suitable for language segmentation, since each
topic is assumed to appear once, while languages
in documents tend to switch repeatedly. Choi
(2000) uses clustering methods for boundary
identification.

3. Language Classification

Obviously, different languages, even when
sharing the same character set, have different
distribution of character occurrences. Therefore,
gathering statistics on the typical distribution of
letters may enable us to uncover the language of
a manuscript by comparing its distribution to the
known ones. A simple distribution of letters may
not suffice, so it is common to employ n-chars
(Hakkinen and Tian, 2001).
 Classification entails the following steps: (1)
Collect n-char statistics for relevant languages.
(2) Determine n-char distribution for the input
manuscript. (3) Compute the distance between
the manuscript and each language using some
distance measure. (4) Classify the manuscript as
being in the language with the minimal distance.
 The characters we work with all belong to the
Hebrew alphabet, including its final variants (at
the end of words). The only punctuation we take
into account is inter-word space, because differ-
ent languages can have different average word
lengths (shorter words mean more frequent
spaces), and different languages tend to have
different letters at the beginnings and ends of
words. For instance, a human might look for a
prevalence of words ending in alef to determine
that the language is Aramaic. After testing,
bigrams were found to be significantly superior
to unigrams and usually superior to trigrams, so
bigrams were used throughout the classification
process. Moreover, in the segmentation phase,
we deal with very short texts on which trigram
probabilities will be too sparse.
 We represent the distribution function as a
vector of probabilities. The language with small-
est cosine distance between vectors is chosen, as
this measure works well in practice.

4. Language Segmentation

For the splitting task, we use only n-char statis-
tics, not presuming the availability of useful
wordlists. We want the algorithm to work even if

the languages shift frequently, so we do not
assume anything about the minimal or maximal
length of segments. We do not, of course, con-
sider a few words in another language to consti-
tute a language shift. The algorithm comprises
four major steps: (1) Split text into arbitrary
segments. (2) Calculate characteristics of each
segment. (3) Classify each. (4) Refine classifica-
tions and output final results.

4.1 Splitting the Text

Documents are not always punctuated into sen-
tences or paragraphs. So, splitting is done in the
naïve way of breaking the text into fixed-size
segments. As language does not shift mid-word
(except for certain prefixes), we break the text
between words. If sentences are delineated and
one ignores possible transitions mid-sentence,
then the breaks should be between sentences.

The selection of segment size should depend
on the language shift frequency. Nonetheless,
each segment is classified using statistical prop-
erties, so it has to be long enough to have some
statistical significance. But if it is too long, the
language transitions will be less accurate, and if a
segment contains two shifts, it will miss the inner
one. Because the post-processing phase is com-
putationally more expensive, and grows propor-
tionally with segment length, we opt for relative-
ly short initial segments.

4.2 Feature Extraction

The core of the algorithm is the initial classifica-
tion of segments. Textual classification is usually
reduced to vector classification, so there each
segment is represented as a vector of features.
Naturally, the selection of features is critical for
successful classification, regardless of classifica-
tion algorithm. Several other features were tried
such as hierarchical clustering of segments and
classification of the clusters (Choi, 2000) but did
not yield significant improvement.

N-char distance – The first and most obvious
feature is the classification of the segment using
the methods described in Section 3. However,
the segments are significantly smaller than the
usual documents, so we expect lower accuracy
than usual for language classification. The fea-
tures are the cosine distance from each language
model. This is rather natural, since we want to
preserve the distances from each language model
in order to combine it with other features later
on. For each segment f and language l, we com-

pute 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒! = 𝐷𝑖𝑠𝑡 𝑙, 𝑓 , the cosine distance of
their bigram distributions.

Neighboring segments language – We expect
that languages in a document do not shift too
frequently, since paragraphs tend to be monolin-
gual and at least several sentences in a row will
be in the same language to convey some idea.
Therefore, if we are sure about one segment,
there is a high chance that the next segment will
be in the same language. One way to express
such dependency is by post-processing the re-
sults to reduce noise. Another way is by combin-
ing the classification results of neighboring
segments as features in the classification of the
segment. Of course, not only neighboring seg-
ments can be considered, but all segments within
some distance can help. Some parameter should
be estimated to be the threshold for the distance
between segments under which they will be
considered neighbors. We denote by (negative or
positive) Neighbor(f,i) the i-th segment be-
fore/after f. If i=0, Neighbor(f,i) = f. For each
segment f and language l, we compute
𝑁𝐷𝑖𝑠𝑡!,! 𝑖 = 𝐷𝑖𝑠𝑡 𝑙,𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑓, 𝑖 .

Whole document language - Another feature
is the cosine distance of the whole document
from each language model. This tends to smooth
and reduce noise from classification, especially
when the proportion of languages is uneven. For
a monolingual document, the algorithm is ex-
pected to output the whole document as one
correctly-classified segment.

4.3 Post-processing

We refine the segmentation procedure as fol-
lows: We look at the results of the splitting
procedure and recognize all language shifts. For
each shift, we try to find the place where the shift
takes place (at word granularity). We unify the
two segments and then try to split the segment at
N different points. For every point, we look at
the cosine distance of the text before the point
from the class of the first segment, and at the
distance of the text after the point to the language
of the second segment. For example, suppose a
segment A1…An was classified as Hebrew and
segment B1…Bm, which appeared immediately
after was classified Aramaic. We try to split
A1…An,B1…Bm at any of N points, N=2, say.
First, we try F1=A1…A(n+m)/3 and
F2=A(n+m)/3+1…Bm (supposing (n+m)/3<n). We
look at cosine distance of F1 to Hebrew and of F2
to Aramaic. Then, we look at F1 = A1…A2(n+m)/3
and F2 = A2(n+m)/3+1…Bm. We choose the split

with the best product of the two cosine distances.
The value of N is a tradeoff between accuracy
and efficiency. When N is larger, we check more
transition points, but for large segments it can be
computationally expensive.

4.4 Noise Reduction

OCR-processed documents display a significant
error rate and classification precision should be
expected to drop. Relying only on n-char statis-
tics, we propose probabilistic approaches to the
reduction of noise. Several methods (Kukich,
1992) have been proposed for error correction
using n-chars, using letter-transition probabili-
ties. Here, we are not interested in error correc-
tion, but rather in adjusting the segmentation to
handle noisy texts.

To account for noise, we introduce a $ sign,
meaning “unknown” character, imagining a
conservative OCR system that only outputs
characters with high probability. There is also no
guarantee that word boundaries will not be
missed, so $ can occur instead of a space.

Ignoring unrecognized n-chars – We simply
ignore n-chars containing $ in the similarity
measures. We assume there are enough bigrams
left in each segment to successfully identify its
language.

Error correction – Given an unknown char-
acter, we could try correcting it using trigrams,
looking for the most common trigram of the form
a$b. This seems reasonable and enhances the
statistical power of the n-char distribution, but
does not scale well for high noise levels, since
there is no solution for consecutive unknowns.

Averaging n-char probabilities – When en-
countering the $, we can use averaging to esti-
mate the probability of the n-char containing it.
For instance, the probability of the bigram $x
will be the average probability of all bigrams
starting with x in a certain language. This can of
course scale to longer n-chars and integrates the
noisy into the computation.

Top n-chars – When looking at noisy text, we
can place more weight on corpus statistics, since
they are error free. Therefore, we can look only
at the N most common n-chars in the corpus for
edit distance computing.

Higher n-char space – So far we used bi-
grams, which showed superior performance. But
when the error rate rises, trigrams may show a
higher success rate.

5. Experimental Results

We want to test the algorithm with well-defined
parameters and evaluation factors. So, we created
artificially mixed documents, containing seg-
ments from pairs of different languages (He-
brew/Aramaic, which is hard, Hebrew/Judeo-
Arabic, where classification is easy and segmen-
tation is the main challenge, or a mix of all
three). The segments are produced using two
parameters: The desired document length d and
the average monolingual segment length k.
Obviously, 𝑘 < 𝑑. We iteratively take a random
number in the range [k–20:k+20] and take a
substring of that length from a corpus, rounded to
whole words. We cycle through the languages
until the text is of size d. The smaller k, the
harder to segment.

5.2 Evaluation Measures

Obviously splitting will not be perfect and we
cannot expect to precisely split a document.
Given that, we want to establish some measures
for the quality of the splitting result. We would
like the measure to produce some kind of score
to the algorithm output, using which we can
indicate whether a certain feature or parameter in
the algorithm improves it or not. However, the
result quality is not well defined since it is not
clear what is more important: detecting the
segment's boundaries accurately, classifying each
segment correctly or even split the document to
the exact number of segments. For example,
given a long document in Hebrew with a small
segment in Aramaic, is it better to return that it
actually is a long document in Hebrew with
Aramaic segment but misidentify the segment's
location or rather recognize the Aramaic segment
perfectly but classify it as Judeo-Arabic. There
are several measures for evaluating text segmen-
tation (Lamprier et al., 2007).

Correct word percentage – The most intui-
tive measure is simply measuring the percentage
of the words classified correctly. Since the
“atomic” block of the text is words (or sentences
in some cases described further), which are
certainly monolingual, this measure will resem-
ble the algorithm accuracy pretty good for most
cases. It is however not enough, since in some
cases it does not reflect the quality of the split-
ting. Assume a long Hebrew document with
several short sentences in Aramaic. If the He-
brew is 95% of the text, a result that classifies the
whole text as Hebrew will get 95% but is pretty

useless and we may prefer a result that identifies
the Aramaic segments but errs on more words.

Segmentation error (SE) estimates the algo-
rithm’s sensitivity to language shifts. It is the
difference between the correct number and that
returned by the algorithm, divided by correct
number. Obviously, SE is in the range [–1:1]. It
will indeed resemble the problem previously
described, since, if the entire document is classi-
fied as Hebrew, the SE score will be very low, as
the actual number is much greater than 1.

5.3 Experiments

Neighboring segments – The first thing we
tested is the way a segment’s classification is
affected by neighboring segments. We begin by
checking if adding the distance of the closest
segments enhances performance. Define
 𝑆𝑐𝑜𝑟𝑒!,! = 𝐷𝑖𝑠𝑡 𝑙, 𝑓 + 𝑎 𝑁𝐷𝑖𝑠𝑡!,! 1 + 𝑁𝐷𝑖𝑠𝑡!,! −1 . For
the test we set a=0.4.
 From Figures 1 and 2, one can see that neigh-
boring segments improve classification of short
segments, while on shorter ones classification
without the neighbors was superior. It is not
surprising that when using neighbors the splitting
procedure tends to split the text to longer seg-
ments, which has good effect only if segments
actually are longer. We can also see from Figure
3 that the SE measure is now positive with
k=100, which means the algorithm underesti-
mates the number of segments even when each
segment is 100 characters long. By further exper-
iments, we can see that the a parameter is insig-
nificant, and fix it at 0.3.

As expected, looking at neighboring segments
can often improve results. The next question is if
farther neighbors also do. Let: 𝑆𝑐𝑜𝑟𝑒!,! = 𝐷𝑖𝑠𝑡 𝑙, 𝑓 +
 !

!
𝑁𝐷𝑖𝑠𝑡!,! 𝑘1 + 𝑁𝐷𝑖𝑠𝑡!,! −𝑘!

!!! . Parameter N
stands for the longest distance of neighbors to
consider in the score. Parameter a is set to 0.3.
 We see that increasing N does not have a
significant impact on algorithm performance, and
on shorter segment lengths performance drops
with N. We conclude that there is no advantage
at looking at distant neighbors.

Post-processing – Another thing we test is the
post-processing of the splitting results to refine
the initial segment choice. We try to move the
transition point from the original position to a
more accurate position using the technique
described above. We note is cannot affect the SE
measure, since we only move the transition
points without changing the classification. As

shown in Figure 4, it does improve the perfor-
mance for all values of l.
 Noise reduction – To test noise reduction, we
artificially added noise, randomly replacing some
letters with $. Let P denote the desired noise rate
and replace each letter independently with $ with
probability P. Since the replacements of charac-
ter is mutually independent, we can expect a
normal distribution of error positions, and the
correction phase described above does not as-
sume anything about the error creation process.
Error creation does not assign different probabili-
ties for different characters in the text unlike
natural OCR systems or other noisy processing.
 Not surprisingly, Figure 5 illustrates that the
accuracy reduces as the error rate rises. However,
it does not significantly drop even for a very high
error rate, and obviously we cannot expect that
the error reducing process will perform better
then the algorithm performs on errorless text.
Figure 6 illustrates the performance of each
method. It looks like looking at most common n-
chars does not help, nor trying to correct the
unrecognized character. Ignoring the unrecog-
nized character, using either bigrams or trigrams,
or estimating the missing unrecognized bigram
probability show the best and pretty similar
results.

6. Conclusion
We have described methods for classifying texts,
all using the same character set, into several
languages. Furthermore, we considered segment-
ed multilingual texts into monolingual compo-
nents. In both cases, we made allowance for
corrupted texts, such as that obtained by OCR
from handwritten manuscripts. The results are
encouraging and will be used in the Friedberg
Genizah digitization project (www.genizah.org).

Figure 1: Correct word percentage considering
neighbors and not, as a function of segment length k
(document length was 1500).

Figure 2: Segmentation error considering neighbors or
not (k =1500).

Figure 3: Correct word percentage for various resplit-
ting values N as a function of k.

Figure 4: Correct word percentage with and without
post-processing.

Figure 5: Word accuracy as a function of noise.

Figure 6: The performance of suggested correction
methods for each error rate.

0.5	

0.7	

0.9	

50	 100	 150	 200	 250	

N=1	

N=2	

N=3	

N=4	

0	

0.5	

1	

50	 100	 150	 200	 250	

No	
Neighbours	

With	
Neighbours	

0	

0.5	

1	

50	 100	 150	 200	 250	

No	
Neighbours	

With	
Neighbours	

0.7	
0.75	
0.8	
0.85	
0.9	

0	 0.1	 0.2	 0.3	 0.4	 0.5	

trigrams	 Ignoring	
error	 correc>on	 avearge	 bigram	

0.7	

0.8	

0.9	

1	

0.1	 0.2	 0.3	 0.4	 0.5	

100	

150	

200	

250	

0.5	

0.7	

0.9	

50	 100	 150	 200	 250	

Without	 Post	
Processing	

with	
PostProceesing	

Without Post-
processing

With Post-
processing

Acknowledgement
We thank the Friedberg Genizah Project for supplying
data to work with and for their support.

References
Gökhan Bakır. 2007. Predicting Structured Data.

MIT Press, Cambridge, MA.

Freddy Y. Y. Choi. 2000. Advances in domain inde-
pendent linear text segmentation. Proc. 1st North
American Chapter of the Association for Compu-
tational Linguistics Conference, pp. 26-33.

Juha Häkkinen and Jilei Tian. 2001. N-gram and
decision tree based language identification for
written words. Proc. Automatic Speech Recogni-
tion and Understanding (ASRU '01), Italy, pp.
335-338.

Marti A. Hearst. 1993. TextTiling: A quantitative
approach to discourse segmentation. Technical
Report, Sequoia 93/24, Computer Science Divi-
sion.

Sylvain Lamprier, Tassadit Amghar, Bernard Levrat,
and Frédéric Saubion. 2007. On evaluation meth-
odologies for text segmentation algorithms. Proc.
9th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), volume 2, pp. 19-
26.

Karen Kukich. 1992. Techniques for automatically
correcting words in text. ACM Computing Surveys
24(4): 377-439.

