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Abstract 

Language classification is a preliminary step 
for most natural-language related processes. 
The significant quantity of multilingual doc-
uments poses a problem for traditional lan-
guage-classification schemes and requires 
segmentation of the document to monolingual 
sections. This phenomenon is characteristic 
of classical and medieval Jewish literature, 
which frequently mixes Hebrew, Aramaic, 
Judeo-Arabic and other Hebrew-script lan-
guages. We propose a method for classifica-
tion and segmentation of multi-lingual texts 
in the Hebrew character set, using bigram sta-
tistics. For texts, such as the manuscripts 
found in the Cairo Genizah, we are also 
forced to deal with a significant level of noise 
in OCR-processed text. 

1.     Introduction  

The identification of the language in which a 
given test is written is a basic problem in natural-
language processing and one of the more studied 
ones. For some tasks, such as automatic cata-
loguing, it may be used stand-alone, but, more 
often than not, it is just a preprocessing step for 
some other language-related task. In some cases, 
even English and French, the identification of the 
language is trivial, due to non-identical character 
sets. But this is not always the case. When look-
ing at Jewish religious documents, we often find 
a mixture of several languages, all with the same 
Hebrew character set. Besides Hebrew, these 
include Aramaic, which was once the lingua 
franca in the Middle East, and Judeo-Arabic, 
which was used by Jews living all over the Arab 
world in medieval times.  
   Language classification has well-established 
methods with high success rates. In particular, 
character n-grams, which we dub n-chars, work 

well. However, when we looked at recently 
digitized documents from the Cairo Genizah, we 
found that a large fraction contains segments in 
different languages, so a single language class is 
rather useless. Instead, we need to identify mono-
lingual segments and classify them. Moreover, 
all that is available is the output of mediocre 
OCR of handwritten manuscripts that are them-
selves of poor quality and often seriously de-
graded. This raises the additional challenge of 
dealing with significant noise in the text to be 
segmented and classified. 
   We describe a method for segmenting docu-
ments into monolingual sections using statistical 
analysis of the distribution of n-grams for each 
language. In particular, we use cosine distance 
between character unigram and bigram distribu-
tions to classify each section and perform 
smoothing operations to increase accuracy. 
   The algorithms were tested on artificially 
produced multilingual documents. We also 
artificially introduced noise to simulate mistakes 
made in OCR. These test documents are similar 
in length and language shifts to real Genizah 
texts, so similar results are expected for actual 
manuscripts. 

2      Related Work 

Language classification is well-studied, and is 
usually approached by character-distribution 
methods (Hakkinen and Tian, 2001) or diction-
ary-based ones. Due to the lack of appropriate 
dictionaries for the languages in question and 
their complex morphology, the dictionary-based 
approach is not feasible. The poor quality of the 
results of OCR also precludes using word lists. 
   Most work on text segmentation is in the area 
of topic segmentation, which involves semantic 
features of the text. The problem is a simple case 
of structured prediction (Bakir, 2007). Text tiling 
(Hearst, 1993) uses a sliding-window approach. 



 

Similarities between adjacent blocks within the 
text are computed using vocabularies, counting 
new words introduced in each segment. These 
are smoothed and used to identify topic bounda-
ries via a cutoff function. This method is not 
suitable for language segmentation, since each 
topic is assumed to appear once, while languages 
in documents tend to switch repeatedly. Choi 
(2000) uses clustering methods for boundary 
identification.  

3.    Language Classification 

Obviously, different languages, even when 
sharing the same character set, have different 
distribution of character occurrences. Therefore, 
gathering statistics on the typical distribution of 
letters may enable us to uncover the language of 
a manuscript by comparing its distribution to the 
known ones. A simple distribution of letters may 
not suffice, so it is common to employ n-chars 
(Hakkinen and Tian, 2001).  
   Classification entails the following steps: (1) 
Collect n-char statistics for relevant languages. 
(2) Determine n-char distribution for the input 
manuscript. (3) Compute the distance between 
the manuscript and each language using some 
distance measure. (4) Classify the manuscript as 
being in the language with the minimal distance. 
   The characters we work with all belong to the 
Hebrew alphabet, including its final variants (at 
the end of words). The only punctuation we take 
into account is inter-word space, because differ-
ent languages can have different average word 
lengths (shorter words mean more frequent 
spaces), and different languages tend to have 
different letters at the beginnings and ends of 
words. For instance, a human might look for a 
prevalence of words ending in alef to determine 
that the language is Aramaic. After testing, 
bigrams were found to be significantly superior 
to unigrams and usually superior to trigrams, so 
bigrams were used throughout the classification 
process. Moreover, in the segmentation phase, 
we deal with very short texts on which trigram 
probabilities will be too sparse.  
   We represent the distribution function as a 
vector of probabilities. The language with small-
est cosine distance between vectors is chosen, as 
this measure works well in practice. 

4.    Language Segmentation  

For the splitting task, we use only n-char statis-
tics, not presuming the availability of useful 
wordlists. We want the algorithm to work even if 

the languages shift frequently, so we do not 
assume anything about the minimal or maximal 
length of segments. We do not, of course, con-
sider a few words in another language to consti-
tute a language shift. The algorithm comprises 
four major steps: (1) Split text into arbitrary 
segments. (2) Calculate characteristics of each 
segment. (3) Classify each. (4) Refine classifica-
tions and output final results. 

4.1     Splitting the Text  

Documents are not always punctuated into sen-
tences or paragraphs. So, splitting is done in the 
naïve way of breaking the text into fixed-size 
segments. As language does not shift mid-word 
(except for certain prefixes), we break the text 
between words. If sentences are delineated and 
one ignores possible transitions mid-sentence, 
then the breaks should be between sentences. 

The selection of segment size should depend 
on the language shift frequency. Nonetheless, 
each segment is classified using statistical prop-
erties, so it has to be long enough to have some 
statistical significance. But if it is too long, the 
language transitions will be less accurate, and if a 
segment contains two shifts, it will miss the inner 
one. Because the post-processing phase is com-
putationally more expensive, and grows propor-
tionally with segment length, we opt for relative-
ly short initial segments.  

4.2   Feature Extraction 

The core of the algorithm is the initial classifica-
tion of segments. Textual classification is usually 
reduced to vector classification, so there each 
segment is represented as a vector of features. 
Naturally, the selection of features is critical for 
successful classification, regardless of classifica-
tion algorithm. Several other features were tried 
such as hierarchical clustering of segments and 
classification of the clusters (Choi, 2000) but did 
not yield significant improvement.  

N-char distance – The first and most obvious 
feature is the classification of the segment using 
the methods described in Section 3.  However, 
the segments are significantly smaller than the 
usual documents, so we expect lower accuracy 
than usual for language classification. The fea-
tures are the cosine distance from each language 
model. This is rather natural, since we want to 
preserve the distances from each language model 
in order to combine it with other features later 
on. For each segment f and language l, we com-



 

pute 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒! = 𝐷𝑖𝑠𝑡 𝑙, 𝑓 , the cosine distance of 
their bigram distributions. 

Neighboring segments language – We expect 
that languages in a document do not shift too 
frequently, since paragraphs tend to be monolin-
gual and at least several sentences in a row will 
be in the same language to convey some idea. 
Therefore, if we are sure about one segment, 
there is a high chance that the next segment will 
be in the same language. One way to express 
such dependency is by post-processing the re-
sults to reduce noise. Another way is by combin-
ing the classification results of neighboring 
segments as features in the classification of the 
segment. Of course, not only neighboring seg-
ments can be considered, but all segments within 
some distance can help. Some parameter should 
be estimated to be the threshold for the distance 
between segments under which they will be 
considered neighbors. We denote by (negative or 
positive) Neighbor(f,i) the i-th segment be-
fore/after f. If i=0, Neighbor(f,i) = f. For each 
segment f and language l, we compute 
𝑁𝐷𝑖𝑠𝑡!,! 𝑖 = 𝐷𝑖𝑠𝑡 𝑙,𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑓, 𝑖 . 

Whole document language - Another feature 
is the cosine distance of the whole document 
from each language model. This tends to smooth 
and reduce noise from classification, especially 
when the proportion of languages is uneven. For 
a monolingual document, the algorithm is ex-
pected to output the whole document as one 
correctly-classified segment.  

4.3    Post-processing 

We refine the segmentation procedure as fol-
lows: We look at the results of the splitting 
procedure and recognize all language shifts. For 
each shift, we try to find the place where the shift 
takes place (at word granularity). We unify the 
two segments and then try to split the segment at 
N different points. For every point, we look at 
the cosine distance of the text before the point 
from the class of the first segment, and at the 
distance of the text after the point to the language 
of the second segment. For example, suppose a 
segment A1…An was classified as Hebrew and 
segment B1…Bm, which appeared immediately 
after was classified Aramaic. We try to split 
A1…An,B1…Bm at any of N points, N=2, say. 
First, we try F1=A1…A(n+m)/3 and 
F2=A(n+m)/3+1…Bm (supposing (n+m)/3<n). We 
look at cosine distance of F1 to Hebrew and of F2 
to Aramaic. Then, we look at F1 = A1…A2(n+m)/3 
and F2 = A2(n+m)/3+1…Bm. We choose the split 

with the best product of the two cosine distances. 
The value of N is a tradeoff between accuracy 
and efficiency. When N is larger, we check more 
transition points, but for large segments it can be 
computationally expensive.  

4.4    Noise Reduction 

OCR-processed documents display a significant 
error rate and classification precision should be 
expected to drop. Relying only on n-char statis-
tics, we propose probabilistic approaches to the 
reduction of noise. Several methods (Kukich, 
1992) have been proposed for error correction 
using n-chars, using letter-transition probabili-
ties.  Here, we are not interested in error correc-
tion, but rather in adjusting the segmentation to 
handle noisy texts.  

To account for noise, we introduce a $ sign, 
meaning “unknown” character, imagining a 
conservative OCR system that only outputs 
characters with high probability. There is also no 
guarantee that word boundaries will not be 
missed, so $ can occur instead of a space.  

Ignoring unrecognized n-chars – We simply 
ignore n-chars containing $ in the similarity 
measures. We assume there are enough bigrams 
left in each segment to successfully identify its 
language. 

Error correction – Given an unknown char-
acter, we could try correcting it using trigrams, 
looking for the most common trigram of the form 
a$b.  This seems reasonable and enhances the 
statistical power of the n-char distribution, but 
does not scale well for high noise levels, since 
there is no solution for consecutive unknowns. 

Averaging n-char probabilities – When en-
countering the $, we can use averaging to esti-
mate the probability of the n-char containing it. 
For instance, the probability of the bigram $x 
will be the average probability of all bigrams 
starting with x in a certain language. This can of 
course scale to longer n-chars and integrates the 
noisy into the computation. 

Top n-chars – When looking at noisy text, we 
can place more weight on corpus statistics, since 
they are error free. Therefore, we can look only 
at the N most common n-chars in the corpus for 
edit distance computing. 

Higher n-char space – So far we used bi-
grams, which showed superior performance. But 
when the error rate rises, trigrams may show a 
higher success rate. 



 

5.   Experimental Results 

We want to test the algorithm with well-defined 
parameters and evaluation factors. So, we created 
artificially mixed documents, containing seg-
ments from pairs of different languages (He-
brew/Aramaic, which is hard, Hebrew/Judeo-
Arabic, where classification is easy and segmen-
tation is the main challenge, or a mix of all 
three). The segments are produced using two 
parameters: The desired document length d and 
the average monolingual segment length k. 
Obviously, 𝑘 < 𝑑. We iteratively take a random 
number in the range [k–20:k+20] and take a 
substring of that length from a corpus, rounded to 
whole words. We cycle through the languages 
until the text is of size d. The smaller k, the 
harder to segment. 

5.2   Evaluation Measures 

Obviously splitting will not be perfect and we 
cannot expect to precisely split a document. 
Given that, we want to establish some measures 
for the quality of the splitting result. We would 
like the measure to produce some kind of score 
to the algorithm output, using which we can 
indicate whether a certain feature or parameter in 
the algorithm improves it or not. However, the 
result quality is not well defined since it is not 
clear what is more important: detecting the 
segment's boundaries accurately, classifying each 
segment correctly or even split the document to 
the exact number of segments.  For example, 
given a long document in Hebrew with a small 
segment in Aramaic, is it better to return that it 
actually is a long document in Hebrew with 
Aramaic segment but misidentify the segment's 
location or rather recognize the Aramaic segment 
perfectly but classify it as Judeo-Arabic. There 
are several measures for evaluating text segmen-
tation (Lamprier et al., 2007). 

Correct word percentage – The most intui-
tive measure is simply measuring the percentage 
of the words classified correctly. Since the 
“atomic” block of the text is words (or sentences 
in some cases described further), which are 
certainly monolingual, this measure will resem-
ble the algorithm accuracy pretty good for most 
cases. It is however not enough, since in some 
cases it does not reflect the quality of the split-
ting. Assume a long Hebrew document with 
several short sentences in Aramaic. If the He-
brew is 95% of the text, a result that classifies the 
whole text as Hebrew will get 95% but is pretty 

useless and we may prefer a result that identifies 
the Aramaic segments but errs on more words. 

Segmentation error (SE) estimates the algo-
rithm’s sensitivity to language shifts. It is the 
difference between the correct number and that 
returned by the algorithm, divided by correct 
number. Obviously, SE is in the range [–1:1]. It 
will indeed resemble the problem previously 
described, since, if the entire document is classi-
fied as Hebrew, the SE score will be very low, as 
the actual number is much greater than 1.  

5.3 Experiments  

Neighboring segments – The first thing we 
tested is the way a segment’s classification is 
affected by neighboring segments. We begin by 
checking if adding the distance of the closest 
segments enhances performance. Define 
  𝑆𝑐𝑜𝑟𝑒!,! = 𝐷𝑖𝑠𝑡 𝑙, 𝑓 +   𝑎 𝑁𝐷𝑖𝑠𝑡!,! 1 +     𝑁𝐷𝑖𝑠𝑡!,! −1 . For 
the test we set a=0.4. 
   From Figures 1 and 2, one can see that neigh-
boring segments improve classification of short 
segments, while on shorter ones classification 
without the neighbors was superior. It is not 
surprising that when using neighbors the splitting 
procedure tends to split the text to longer seg-
ments, which has good effect only if segments 
actually are longer. We can also see from Figure 
3 that the SE measure is now positive with 
k=100, which means the algorithm underesti-
mates the number of segments even when each 
segment is 100 characters long. By further exper-
iments, we can see that the a parameter is insig-
nificant, and fix it at 0.3. 

As expected, looking at neighboring segments 
can often improve results. The next question is if 
farther neighbors also do. Let: 𝑆𝑐𝑜𝑟𝑒!,! = 𝐷𝑖𝑠𝑡 𝑙, 𝑓 +
   !

!
𝑁𝐷𝑖𝑠𝑡!,! 𝑘1 +     𝑁𝐷𝑖𝑠𝑡!,! −𝑘!

!!! . Parameter N 
stands for the longest distance of neighbors to 
consider in the score. Parameter a is set to 0.3. 
   We see that increasing N does not have a 
significant impact on algorithm performance, and 
on shorter segment lengths performance drops 
with N. We conclude that there is no advantage 
at looking at distant neighbors. 

Post-processing – Another thing we test is the 
post-processing of the splitting results to refine 
the initial segment choice. We try to move the 
transition point from the original position to a 
more accurate position using the technique 
described above. We note is cannot affect the SE 
measure, since we only move the transition 
points without changing the classification. As 



 

shown in Figure 4, it does improve the perfor-
mance for all values of l. 
    Noise reduction – To test noise reduction, we 
artificially added noise, randomly replacing some 
letters with $. Let P denote the desired noise rate 
and replace each letter independently with $ with 
probability P. Since the replacements of charac-
ter is mutually independent, we can expect a 
normal distribution of error positions, and the 
correction phase described above does not as-
sume anything about the error creation process. 
Error creation does not assign different probabili-
ties for different characters in the text unlike 
natural OCR systems or other noisy processing.  
   Not surprisingly, Figure 5 illustrates that the 
accuracy reduces as the error rate rises. However, 
it does not significantly drop even for a very high 
error rate, and obviously we cannot expect that 
the error reducing process will perform better 
then the algorithm performs on errorless text. 
Figure 6 illustrates the performance of each 
method. It looks like looking at most common n-
chars does not help, nor trying to correct the 
unrecognized character. Ignoring the unrecog-
nized character, using either bigrams or trigrams, 
or estimating the missing unrecognized bigram 
probability show the best and pretty similar 
results. 
 
6.    Conclusion 
We have described methods for classifying texts, 
all using the same character set, into several 
languages. Furthermore, we considered segment-
ed multilingual texts into monolingual compo-
nents. In both cases, we made allowance for 
corrupted texts, such as that obtained by OCR 
from handwritten manuscripts. The results are 
encouraging and will be used in the Friedberg 
Genizah digitization project (www.genizah.org). 
 

 
Figure 1:  Correct word percentage considering 
neighbors and not, as a function of segment length k 
(document length was 1500). 

 

Figure 2: Segmentation error considering neighbors or 
not (k =1500). 

Figure 3:  Correct word percentage for various resplit-
ting values N as a function of k. 

 
Figure 4: Correct word percentage with and without 
post-processing. 

Figure 5: Word accuracy as a function of noise. 

 
Figure 6: The performance of suggested correction 
methods for each error rate.  
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