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A b s t r a c t  

We provide a set of "natural" requirements for well-orderings of (binary) list structures. 
We show that the resultant order-type is the successor of the first critical epsilon number. 

The checker has to verify that the process comes to an end. Here again he should be 
assisted by the programmer giving a further definite assertion to be verified. This may take 

the form of a quantity which is asserted to decrease continually and vanish when the 
machine stops. To the pure mathematician it is natural to give an ordinal number. In this 

problem the ordinal might be (n - r)w 2 + (r - s)w + k. A less highbrow form of the same 
thing would be to give the integer 2S~ - r) + 24~ - s) + k. 

--Alan M. Turing (1949) 

1 Introduction 

A riddle--consider the Lisp-like function f ,  

f(a) = 
f (b)  = b 

/ ( c o n s ( z , V ) )  = 

a i f x = y = _ a ,  
cons(cons(.. ,  cons(b, f (y ) ) ,  y ) . . . ,  y) if x - b and y ~ b, 
cons(z, cons(z , . . ,  cons(z, cons(f(x) ,  b). . . )))  if y _= b, 
cons( f (x) ,  cons ( f ( x ) , . . ,  cons( f (x) ,  a) . . . ) )  if x ~ a, b and y -- a, 
cons(z, f ( y ) )  otherwise. 

that  maps binary trees with leaves labeled a or b to themselves. Ellipses represent repetitions 
of arbitrary length, so f is actually a multivalued function. Question: Is there any expression 
z over a, b, and cons, such that  z, f (z) ,  f ( f ( z ) ) ,  f ( f ( f ( z ) ) ) , . . ,  is an infinite sequence, or must 
every such sequence {f('~)(z)}n end in all as or bs? This function is depicted in Figure 1, where 
we use bullets ( . )  for internal nodes ("cons cells") and squares for leaves (atoms). 

The surprising answer is that  no other infinite sequences are possible. 

*Research supported in part by the National Science Foundation under Grants CCR-90-07195 and CCR-90- 
24271. 
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In general, such questions can be answered by using the notion of weU-ordering, stemming 
from the fundamental work of Cantor [1915]. Floyd, in his landmark paper [1967], envisioned 
proving termination of programs by showing that some ordinal-valued function decreases strictly 
with each repetition of a loop, as did Taring before him (see the quotation above). The well- 
ordering most commonly used is w, the natural ordering of the natural numbers [Dijkstra, 
1976; Gries, 1981], but lexicographic orderings (w n) also play an important part [Manna, 1974]. 
Occasionally, "larger" orderings have been used (for example, [Dershowitz and Manna, 1979; 
Dershowitz, 1987]); see [Dershowitz, 1987; Dershowitz and Okada, 1988; Cichon, 1990]; 

The riddle above is a termination question on binary trees, one of themost  pervasive data 
structures used in computer science. Like numbers, binary trees can be well-ordered in many 
ways. In this paper, we give "natural" principles that such orderings ought to satisfy. We 
consider infinite binary trees, and show how a "regular" subclass--the trees representable as 
list structures in Lisp--more than suffice for all ordinals up to ee .... + 1, where ee .... is the first 
critical epsilon number. (Different notions of "naturalness" of ordinal notations: are surveyed in 
[Crossley and Kister, 1986/1987].) Conversely, ordinals up to and including e~ .... can be: neatly 
represented by this subclass of infinite binary trees. 

In the next section, we consider natural orderings on binary trees, and some (known) con- 
sequences of those principles for finite trees. By imposing a lexicographic rule, we get--not 
surprisingly--an e0 ordering. Then, in Section 3, we present our main results, the extension 
of the natural ordering to arbitrary list structures, which correspond to the "rat ional '  subset 
[Courcelle, 1983] of infinite binary trees. We show that e~ .... + 1 can be proved well-ordered by 
the Homeomorphic Embedding Theorem on infinite trees. Section 4 mentions related work on 
orderings of (finite) ordered trees, leading to orderings of type r0, the.first impredicative ordinal; 
the last section includes a few remarks on implications for program verification. 

Nonempty lists are built from "cons" cells cons(x, y) containing two pointers, z and y; 
pointers may point either to the empty list nil or to a cons cell. We use Ill for size of a list 
structure l, that is, the number of cons cells and nil pointers in l Thus, for example, I nil I = 1~ 
Icons(n i l ,  nil)l = 3, and Izl = 2, when  z - cons (n i l ,  ~). 

The orderings we deal with are really quasi-orderings; that is, they are not anti-symmetric. 
For a quasi-ordering >__, we use ~- for the intersection of > audits  inverse _<; the:strict ordering 
> is >_ N ~. We use -- for structural equality, and ~ for its complement. 

2 Small  Ordinals 

The ordering principles we propose apply equally well to cyclic and acycUc list structures. We 
begin, therefore, with the more mundane, acyclic variety--that is, with finite binary trees. 

2.1 A x i o m s  of  O r d e r i n g  

Pr inc ip le  1 (Growth). A tree is greater than or equivalent to its subtrees; that is, 

cons(x, y) >_ z, y, 

for  all trees x, y. 

Pr inc ip le  2 (Monotonicity). Replacing a subtree by a greater or equivalent one results in a 
greater or equivalent tree; that is, 

c o n s ( z ,  z)  > cons(y ,  z) 
x > y .  c o . s ( ~ ,  z )  > c o n s ( ~ , y ) ,  

for all trees x, y, z. 
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Okada and: Steele [1988] relate any ordering on finite trees satisfying such principles to Acker- 
manu's ordinal notation. 

By "deleting" in a tree, we mean replacing a subtree by one of its subtrees; "inserting" is 
the inverse operation. 

L e m m a  1. Deleting (inserting) results in a smaller (greater) or equivalent tree. 

Proof .  FOllows from Growth and Monotonicity. D 

So, if tx is homeomorphically embedded in t2, then tl _< t2, where _< is any ordering satisfying 
Principles 1 and 2. (A tree t is homeomorphicolly embedded in a tree t I if there's a mapping of 
nodes of ~1 into nodes of t2 such that each edge of tt corresponds to a disjoint path in t2.) 

Monotonicity implies that if x' _> x and y' _> y, then cons(x', y') >_ cons(z, y). What, 
however should the ordering of cons(z, y) and cons(z', y~) be when x' > x and y > y'? We 
choose a texicographic rule in which "left" is more significant than "right". Note, however, that 
Lemma 1 implies that cons(x', y') < cons(z, y) whenever y > cons(x', y~). So, we can't just say 
that x ~ > x implies cons(x t, y') > cons(z, y). Hence, the following lexicographic principle is the 
strongest ~hat can be formulated without violating our prior principles. 

Pr inc ip le  a (Lexicography). If  x' > x and cons(x ~, y') >_ y, then cons(x ~, y') >__ cons(z, y). 

Let > be a minimal ordering satisfying Principles 1, 2, and 3. (A "minimal" ordering is one 
that, if any pair s _> t is removed from the ordering, violates one of the principles.) 

T h e o r e m  1. The ordering >_ is total; that is tl >_ tz, or t2 >_ ta, or both. Specifically, 

y'>_y i f x ' N x ,  
_ cons(~', y,) > y ff  x' > =, cons(x',y') > cons(x,y) if and only if y' > cons(x,y) if  x' < x. 

Proof .  By induction on size of the trees, this definition--combined with the fact that the 
empty tree, nit, is comparable with all trees (by virtue of the Growth Principle)--gives a total 
ordering. This ordering dearly satisfies the principles. Furthermore, any ordering satisfying the 
principles must satisfy the "if" direction, the first case of which follows from Monotonicity; the 
second, from Lexicography; and the third, from the Growth Principle. [3 

L e m m a  2. For any trees x and y, cons(x, y) > nil. 

Proof .  Making cons(x, y) >_ nil ~ cons(x, y) still gives an ordering satisfying the principles. 0 

T h e o r e m  2. Tree comparison o] finite trees tl and t2 can be done in time O(Itll • It21). 

Proof .  Follows from Theorem 1, Lemma 2, and induction on Itll and It21. 13 

The ordering > is actually a quasi-ordering, for 

because, in general, 

r e m m a  a. y x < y, then cons(x, cons(y, z)) cons(y, z). 

Proof .  The inequality cons(z, cons(y, z)) > cons(y, z) follows from the Growth Principle; the 
other direction follows from Lexicography, using Lemma 2. U 
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2.2 Order-Preserving Mapping 

One can map finite binary trees, under the given ordering, to ordinals below e0 in the following 
straightforward way: 

P ropos i t i on  I .  There is an order-preserving mapping from trees under > to the ordinals up to 
Eo: 

[nil] = 0 

[cons(z, y)] = w 1=! + IU] 

In other words, lists ( l l , . . . ,  l ,  ) are interpreted as the noncommutative sum w[ hi. + . . .  + wlt-l. 

This mapping is not one-to-one; as we just saw, there are equivalent, non-isomorphic trees. 
It is order-preserving. This means that for two finite binary trees t and t', t > t' if and only 
if [t] > [t']. Furthermore, there is a one-to-one correspondence between binary trees and 
expressions involving (non-commutative) addition and exponentiation. Since such expressions 
give all ordinals below e0, our ordering is of order-type e0, too. Thus, expressions in Cantor 
Normal Form are in one-to-one correspondence with the equivalence classes on binary trees 
imposed by - .  

2.3 E m b e d d i n g  T h e o r e m  

As a special case of Higman's Lemma [Higman, 1952], we know that, in any infinite sequence 
{ti}i<o~ of finite binary trees, there must be two trees tj and t~ (j < k) such that tj is homeo- 
morphicaUy embedded in tk. In other words, tk can be obtained from tj by deletion only. By 
Lemma 1, it follows that tj < tk; hence, an infinite descending sequence of trees is impossible. 
In other words, our ordering is well-founded. We have already seen that < is'order-isomorphic 
to e0. Since e0 induction is equivalent to the consistency of Peano Arithmetic, this means that 
the Embedding Lemma of Higman cannot be proved in Peano Arithmetic [Friedman, 1977]. 

2.4 A r i t h m e t i c  

The mapping from ordinals to binary trees gives a convenient data structure for representing 
ordinals below e0. Arithmetic operations (commutative addition @, commutative multiplication 
| and exponentiation), and a predecessor operation to get fundamental sequences, are now 
easy to define; the following correspondences are suggestive: 

0 ~ nil 
1 ~ cons(nil, nil) 

x ~ n i l  ~-~ x 
cons(x, y) $ cons( z',  y') ~ cons(x, y @ cons( x', y') ) if z < x' 

x | nil ~ nil 
cons(x, nil) | cons(z', y') ~ cons(x �9 z',  cons(z, nil) | y') 

cons(x, y) | z ~ (cons(z, nil) | z) ~ (y | z) 
w = ~ cons(x, nil) 

pred,,(cons(nil, nil)) ~ nil 
predn( cons(x , nil)) ~ cons(predn(x), nil) | n if x is a successor ordinal 
predn(cons(x , nil)) ~ cons(pred,(x), nil) if x is a limit ordinal 

predn(cons(x,y)) ~ cons(x,predn(y)) if y ~ nil 
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For example, this binary-tree data structure could be used in implementing the computation 
of the various extensions of Ackermann's function (see, for example, [Ketonen and Solovay, 
1981]). An ordinal-indexed function Aa(n)  can be defined for ordinals a and natural numbers 
n by 

{ 2 ~ , ~  i f a = O , n _ > l ,  
A,(n) = A )(1) if a is a successor ordinal # + 1, 

A~ed,(c~)(n) if a is a limit ordinal. 

The computation of this function plays an important role in the unbounded search procedures of 
Reingold and Shen [1991]. Moreover, these search procedures themselves use ordinals to index 
the recursive calls. 

These operations also make it easy to encode problems Uke the "Battle of Hydra and tter- 
enles" of Kirby and Paris [1982] as hard-to-prove-well-defined functions on binary trees. 

3 M e d i u m  Sized Ordinals  

List structures, in general, correspond to "rational" binary trees, which are like ordinary binary 
trees, but paths may be of length w, as long as there are only a finite number of distinct subtrees. 

3.1 A x i o m s  of O r d e r i n g  

All the principles of Section 2.1 apply to this case as well, but an infinite number of deletions 
could increase a tree without violating Principles 1-3. So, we take the following extension of 
Principle 2 as axiomatic: 

Principle 4 (Continni~y). Replacing infinitely many subtrees by greater or equivalent ones re- 
sults in a greater or equivalent tree. 

Principles 1-4 do not, however, give a total ordering. We do not, for example, know howto 
order 

d ~  and % .  

An additional principle is called for: 

Principle 5 (Dominance). I f  x > 
cons(y2,...)). 

Yi, for all i = 1, 2,. . . ,  then cons(x, nil) > cons(y1, 

For finite trees, this is a direct consequence of Theorem 1. 

3.2 O r d e r - P r e s e r v i n g  M a p p i n g  

It turns out that we can restrict ourselves to the class of list structures in which there are no 
cycles except self-loops: Call such a list normalized. 

Theorem 3. For every rational binary tree t there is a normalized list t such that t < ~ < t. 

When comparing structures, like s under <, we mean to compared its (possibly) infinite tree 
expansion. 



122 

P r o o f .  All cycles in the graph representation of a rational tree can be reduced to self loops 
as follows: If  a full binary tree is homeomorphically embedded in t, then t is equivalent to the 
structure z such that  z =- cons(z, z), which is just a double self-loop: 

Consider a cyclic graph z =_ cons(x1, cons (x2 , . . . ,  cons( xn , z))): 

If any of the xk contains all of z as a subterm, then z both contains the full binary tree (obtained 
by deleting all other xi and pruning xk to what is left of z) and is contained by it (as are all 
binary trees). Hence, z is equivalent to the full binary tree. 

If none of the xi have z as a subterm, then, by induction on Illl, we can suppose that there 
is a normalized list among the xi that  h a s a  maximal ordinal assignment. We have z less than 
or equal to the structure g =- cons(max xi,  z ~) by Monotonicity, and z greater than or equal to 
g by Continuity. Hence, we ca~ replace loop in z with the self-loop of z ~. 

Similarly, z = cons( . . .  (cons(cons(z, xn ), xn-1) , . . . ) ,  Xl), that  is, 

can be replaced by the double-self-loop corresponding to the full tree or by a self-loop z ~ =- 
cons(m~,{xl}, z'). 0 

An at tempt to prove a result like Theorem 3 appears in [Brown, 1979]. 

P r o p o s i t i o n  2. There is an order-preserving mapping from normalized lists, under the above 
ordering, onto the ordinals up to and including Q,.... 

P r o o f .  The mapping from lists to ordinals is: 

[nil] = O, 
[t such that  t =- cons(t ,x)] = ,[z], 

It such that  t = cons(x, t)] = w |~1+1 
It such that t -  cons(t,t)] = , ...... 
icons(nil, y)] = 1 + [y],  
Icons(x,  nil)] = ~t~l 
Icons(x,  nil)l = ~ + 1  + 1 
[ cons (~ ,y ) ]  = , .  
[ cons( x, y ) l = ~ + 
Icons(x, Y)I = will + 1 -I- [[Y] 

and its inverse is: 

if x ~ t, 

if Ix] is a limit ordinal, 
if [x] =/3 + 1, 
if Ix] = ~. ,  [yl  < ~, 

if Ix] is not an epsilon number, x, y ~ nil. 

1. ( o ) =  nil 
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Fig. 2. Result Propagation for Changeable Jungles 

edge: if there is a further change of state, the unmarked result is still valid while 
the marked result information expires. Therefore we have an additional set of result 
edges R)  created in situations as above. 

For the implementation this suggests the need to provide space for two result 
edges, a marked and an unmarked one, but this is not really necessary. If we restrict 
t> to the case where R)  is empty, then chains of (non-expired) result edges in the 

normal forms of I> have length at most 2. 
Intuitively, this means the following. Suppose we have an evaluation sequence 

to =~1 t l  : :~  ... ::~n t,~. We draw an unstamped result edge from to to the last ti, 
such that  all the :e~j, ] < i are applicative, and mark ti as an applieatire normal 
form. If i < n, we draw a stamped result edge from tl to t,~, provided no ~z ,  1 < n 
changed the state. 

Notice that  this affects the notion of value: in addition to weak head normal 
forms there are now applicative normal forms. 

The concept of a monolithic state is a bit strict, because it does not reflect locality 
of variables, e.g. (in SML): 

let val p = rex (n,1) in 

while #1(!p) > 0 
r p := ( # 1 ( ! p ) - l ,  op �9 ( ! p ) ) ;  
#2(~p) 

end; 

The lifetime of the variable p does not exceed any call of f a c  and it is not accessible 
outside of f a c  - a dataflow analysis could easily detect this. We could exploit infor- 
mation of this kind for a more sophisticated concept of time and time stamp, but 
this goes beyond the scope of this paper. 

7 Compilation 

One subtask of compiling a function definition in a language that  supports pattern 
matching is the management of a symbol table for the pattern variables. It assigns 
to each variable name a relative address (relative to the stack) and can furthermore 
be used to detect free variables, anonymous variables and non-linear patterns. Non- 
linear patterns are forbidden in most languages (not all), but even when they are 
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allowed, the second occurrence of a variable in a pattern has to be treated differently 
from its first occurrence. 

Under Unlimp, we can generalise the symbol table easily by treating not just 
variables, but  arbi trary non-ground expressions. Ec~sil~], because comparing complex 
expressions is here not more difficult or expensive than comparing variables, since it 
is just  the comparison of addresses. 

The generalisation to non-ground expressions (nge) works as follows: 

- An nge is allocated space on the stack, if and only of it occurs more than once 
in the left-hand or right-hand side of the definition. 

- If an nge occurs a second time, we do not count its subterms as second occur- 
rences. 

Variables are also nge's, and in this special case the first point is the detection of 
anonymous variables, because variables occurring only once do not need to be stored 
on the stack. For composite expressions it is a common subexpression elimination, 
because we put  them onto the stack if they occur more than once, which corresponds 
to the introduction of a let-expression. An example (in Haskell), taken from [10]: 

dropWhile p [3 = [J 

dropWhile p (x:xs) 

[ p x = dropWhile p xs 

] otherwise = x:xs 

For the first rule, there are 3 nge's, but none of them requires space on the stack, 
p occurs only once and is hence anonymous. In the second rule, we have 8 nge's and 
5 of them are allocated space on the stack, see table 1. 

Table 1. Generalised Symbol Table 

nge occurrences 

dropWhile p (x:xs) 
dropWhile p 

P 
X:X8 

X 

XS 

px 

dropWhile p ls 

In this example, each nge which is to be stored on the stack is a subexpression 
of the left-hand side of the rule. Hence, when an expression matches the left-hand 
side, each age to be stored on the stack is a subterm of this expression and can be 
stored during the matching process. One can argue about nge's like dropWhile  p; 
it depends on other implementation details (representation of function application) 
whether they should count or not. 
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Some care is necessary to treat conditional expressions properly, e.g. common 
subexpressions of the then- and else-parts of a conditional expression are not really 
common. It is harmless to put them onto the stack, but harmful to expect them to 
be there. 

8 Garbage Collection 

... is a weak point of Unlimp. 
The problem is that  there is very little proper garbage. Deallocating an unrefer- 

enced cell would also throw away its result edge and hence a bit of useful information, 
so that  only unreferenced weak head normal forms (have no result edge) and former 
K-redexes 5 (result edge remains NIL under lazy evaluation) are proper garbage. Un- 
fortunately, almost no weak head normal form will be unreferenced, at least there 
is the result edge from some (perhaps unreferenced) vertex, and K-redexes are more 
the exception than the rule. Only in the presence of side-effects can we expect some 
unreferenced weak head normal forms, because the time stamps of the result edges 
pointing to them may have expired. 

For this reason, a garbage collector would need to collect improper garbage, which 
is against the spirit of Unlimp, of course. Each unreferenced vertex is (ira)proper 
garbage. Even vertices only referenced by result edges could be treated as improper 
garbage, but this would require some additional administration, e.g. the garbage 
collection has to be treated as a global slde-effect. 

9 Programming Style 

Working with an Unlimp implementation can influence programming style. First let 
us look at  a similar influence of lazy evaluation. 

Lazy and strict evaluation do not have the same computational power (in a 
practical sense), because lazy evaluation can deal with (conceptually) infinite objects, 
whereas strict evaluation cannot. Thus, when the natural solution of a problem 
requires the intermediate creation of an object of infinite size, solving the problem 
with a strict language means looking for a less natural way. 

But such an influence on programming style is also present when there is no such 
principal difference in computational power, because for certain programming styles, 
strict evaluation is very inefficient. Typical for this are backtracking algorithms, 
see [20]; one example is the following simplified version (in Haskell) of the pairing 
algorithm used for Swiss System chess tournaments: 

type Entry a = (a,[a]) 

type Pairing a = [(Entry a,Entry a)] 

pairing :: (Eq a) => [Entry a] -> Pairing a 
pairing table = if allpairs==[] then error "no pairing" 

else head allpairs 
where allpairs = fullpairs table 

In A-c~culus,(Az.t)uis a K-redexifzis  not ~eein ~. 
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fullpairs :: (Eq a) => [Entry a] -> [Pairing a] 
fullpairs [] = [[]] 
fullpairs (x:xs) = [ (x,y):zs [ y <- xs, condition x y, 

zs <- ~ullpairs (xs\\[y]) ] 
condition :: (Eq a) => Entry a -> Entry a -> Bool 
condition (x,xs)(y,ys) = notE1em x ys 

The function pairing is applied to the actual table of the players (which is 
supposed to be a list of even length) and produces a list of pairs (the pairing for the 
next round), such that each pair fulfills the condition. Moreover, the table leader 
should play (if possible) against the second, the third against the fourth, etc. The 
entries in the table consist of the player and his or her opponents so far, which is 
sufficient for the condition "haven't already played against each other". 

The above algorithm is expressed in terms of computing all possible pairings 
and then selecting the first one, which - because of the structure of the algorithm 
- tends to pairs first with second etc. This is fine for lazy evaluation, but under 
strict evaluation it is very inefficient, because the number of all possible pairings 
usually (depending on condition) grows very fast. Table 2 shows the number of 
reduction steps (successful rule applications) executed to evaluate pairing tab, for 
five different examples s, depending on whether the evaluation strategy is strict or 
lazy and whether full mcmoization is used or not. 

Table 2. Reduction Steps for a Backtracking Algorithm 

strategy stab mtabl mtab2 Itabl itab2 
strict, nomemo 347 16,401 18,211 1,776,421 1,865,213 
strict, memo 184 2,133 2,068 84,117 84,361 
lazy, nomemo 110 134 474 238 2,276 
lazy, memo 88 128 240 230 540 

Clearly, strict evaluation is inappropriate for this program. Although the algo- 
r i thm is correct for strict evaluation too, a programmer using a strict language is 
encouraged to solve the problem on a lower level, e.g. by making the backtracking 
strategy explicit. 

The  impact of memoization on the program is characteristic: the "better" the 
algorithm is, the less is the effect of memoization. It cannot turn a horribly slow 
program into a fast one, but  it can reduce the horror drastically. The drastic im- 
provement under strict evaluation, and the slight but significant improvement for the 
heavy backtrackers (mtab2 and l t a b 2 )  under lazy evaluation arc rather surprising, 
as the p a i r i n g  program does not appear to be a prime candidate for memoization. 

Full memoization can work together with lazy as well as strict evaluation, but  
it does not affect the computational  power of either strategy. Therefore, there is no 

6 The chosen examples were lists of length 6 after 2 rounds (stab), of length 10 after 
3 rounds (mtabl and mtab2), and of length 14 after 4 rounds (ltabl and ltab2). The 
examples mtab2 and 1tab2 were chosen to require a lot of backtracking, in contrast to 
mtabl and itabl. 
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principle need to change the programming style when memoization is absent, but 
we do have similar kinds of unpleasant encouragement to solve problems at a lower 
level. 

Some further examples (and references) can be found in [11]. We do not have to 
look for examples that  are contrived to support this argument - the following piece 
of program (in SML) to compute the nth prime number was taken from [19]: 

fun prime n = 

let fun next(k,i) = 
if n<=i then k 

else if divides(prime i,k) then next(k+l,O) 

else next(k,i+l) 

i n  

end 

if n=O then 2 
e l s e  n e x t ( p r i m e ( n - I ) + 1 , 0 )  

It was considered there to be "rather inefficient". In a traditional implementation 
it is indeed, but under Unlimp it turns out to be fairly reasonable, because memoizing 
prime makes the algorithm behave like a (rather naive) variation of the sieve of 
Eratosthenes. 

10 S p e e d - U p  in the  Small 

Most examples people mention when they promulgate memoization are like the naive 
version of the Fibonacci function or the above version of prime - without memoiza- 
tion terribly inefficient and - since they are naive - only naive people would write the 
function this way, unless it is known that the implementation supports memoization 7. 

But memoization also has great effects in the small, as in the p a i r i n g  program. 
Sometimes they appear very unexpectedly, like the following one: 

As their favoured benchmark test for functional programs, :I6rn yon Holten and 
Richard Seifert at the University of Bremen took arithmetic on natural numbers 
represented as successor terms. To make the task hard, the following version of 
arithmetic was used: 

data Nat = Z I S Nat 

add Z x = x 

add (S x) y = S (add x y) 

mul Z x = Z 

mul (S x) y = add (mul x y) y 

pow x Z = S Z 

pow x (S y) = mul (pow x y) x 

This version is supposed to make arithmetic expensive, because (minor reason) 
add is not tail recursive and (major reason) the right-hand sides of the last rules for 

7 Another less well-known example of this kind is model checking with binary decision 
diagrams, see [3]. 
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mul and pow have their recursive calls in the first rather than the second argument 

of add and mul. Note that add n ra is linear in n and constant in m. 

However, the response time of an Unlimp implementation turned out to be fairly 

stable under switching the arguments of add and mul in the mentioned rules. The 

reason is that several addition terms reappear in this process, because computing 

+ rr~ involves also the computation of/~ + n~ for all k less than m. 
The following table compares the number of evaluation steps to compute 4 2, 4 ~, 

and 4 4 . The left figures show the number of steps for the above definition, the right 
figures refer to the version obtained by switching the arguments of the mentioned 
calls of add and mnl. 

Table 3. Reduction Steps for a Successor Arithmetic 

strategy 4 ~ 4 ~ 
strict, nomemo 40 42 554 116 8748 
strict, memo 22 40 83 109 324 
lazy, nomemo 96 195 444,678 1,611 too many 
lazy, memo 27 42 192 116 2295 

4 t 

382 
3,58 

13,19.3 
382 

The suspected bad behaviour of exponentiation does not appear under memoiza- 
tion and strict evaluation, here it is even slightly better than the ordinary definition. 
Only for lazy evaluation, memoization cannot fully compensate for the "bad ~ algo- 
rithm. 

As in the p a i r i n g  example, we can again observe different kinds of improvement, 
depending on how "badly" the algorithm behaves. In both cases, the effects appeared 
in the small, i.e. they had no fancy recursive structure (as the prime example), the 
functions were linear recursive. 

11 Conclusion 

A unique representations for expressions can affect compilation, execution and usage 
of functional languages. 

We tried to convey the spirit of thinking in unique representations and of exploit- 
ing it for different purposes, e.g. for compilation. The given modelling by hypergraphs 
stays close to the machine level and allows several meta-observations on a rather ab- 
stract level. We showed how memoization and side-effects can happily coexist, even 
in the hypergraph modelling. 

The effect of memoization on program execution seems to be well-known, but the 
analysis of the given examples suggest that it is not well-known enough. When using 
full memoization, i.e. storing e~er~ evaluation result, an important and often unex- 
pected phenomenon appears: a cumulative speed-up by saving minor, but numerous 
computations. This phenomenon encourages a more problem-oriented programming 
style. 
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(inc, id) is an internal functor, which also satisfies the commutat ive  diagrams for 
preserving the identity and the composition arrows. The arrow id is the identity 
arrow of Co and the arrow inc gives us the inclusion morphisms. A directed 
complete I-category is given by the same diagrams in the category of dcpo's with 
continuous maps. Similarly, an algebraic, respectively continuous, I-category has as 
its base the category of algebraic posets and continuous, compact point preserving 
maps, respectively continuous posers and continuous, way-below preserving maps. 

An internal functor of I-categories preserves the above diagrams and, hence, 
preserves the inclusion morphisms; externally we call it a standard functor or 
an I-functor. Similarly, an internal functor of directed complete I-categories also 
preserves directed joins of morphisms and externally we call it a continuous 
I-functor. Any internal I-category can be completed by taking the completion 
of its objects and arrows to obtain an internal algebraic I-category, which 
externally we call its I-completion. Similarly, we have the notions of I-adjunction, 
I-retraction, I-projection etc. 

Since the main motivation for introducing I-categories has been to obtain a 
common framework for categories of information systems for domains, we will, in 
what follows, give an external description of continuous I-categories as ordered 
categories and then verify that  they have various basic properties analogous to 
continuous posets on the one hand and continuous categories on the other. As in 
the case of partial orders, many properties of algebraic I-categories axe in fact 
best understood in the more general framework of continuous I-categories. For 
reason of space, most of the proofs are omit ted in this paper. 

2 Background: I-categories 

In this work, a dcpo is a directed complete partial order with bottom. 

D e f i n i t i o n  2.1 An I-category is a four-tuple (P, Inc,_if, A) where: 

�9 P is a category, 

�9 Inc _C Mor is the subclass of inclusion morphisms of P such that  in every 
horn-set, hom(A,B) ,  there is at most one inclusion morphism, denoted by 
in(A,B)  or A ~ B, 

�9 UA,B is a partial order on hom(A,B) ,  for all A,B E 0b j ,  

. A E Obj is a distinguished object; 

which satisfy: 

A x  1 (i) The subcategory P~ of all objects and inclusion morphisms of P forms 
a partially ordered class represented as a category. 
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(ii) in(A,A) exists, for all A E Obj and i n ( A , A ) E  f for all morphisms 
f E hom(A, A). 

Ax 2 fi  E f2 & gl E g2 =~ fi;gl E f~;gz, whenever the compositions are defined. 

We denote the partial order induced by inclusion morphisms on Obj by _<1. 
The partial order _<a-, on Mor is defined by f ___r,g if dora(f)<1 dora(g), 
cod(f) <l cod(g), and the following diagram weakly commutes: 

g 
dom(g) . cod(g) 

Ioi 
f 

dom(f) . cod(f) 

We can also define a pre-I-category by requiring in Axiom(i) that (P, Inc) is 
just a pre-order. It is also possible to dispense with the object A and drop 
Axiom 2.1(ii) to get an I-category without a least object. All the results in this 
paper with no reference to A remain valid for I-categories without a least object. 

A directed complete I-category (P, Inc, E ,A)  is an I-category which satisfies the 
following three axioms: 

Ax 3 (Mor, <~m) is a dcpo. 

Ax 4 (Inc, __'~) is a sub-dcpo of (Mor, ___'~). 

Ax 5 Composition of morphisms is a continuous operation with respect to <lm. 

An (w-)algebraic I-category is a directed complete I-category which satisfies the 
following two axioms: 

Ax 6 The dcpo (Mor, ~'~) is (w-)algebraic. 

Ax 7 The (total or partial) maps: 

dom, cod : 
i n ( - , - ) :  

; : 

Mor ~ Obj 
Obj x Obj ~ Mor 
Mor x Mor --* Mor 

preserve compact points in the corresponding dcpo's. 

3 Continuous I-categories 

3.1  B a s i c s  

Defini t ion 3.1 An (w-)continuous I-category is a directed complete I-category 
which satisfies the following axioms: 
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A x  6* (Mot, <~'~) is an (w-)continuous dcpo. 

A x  7* The (total or partial) maps: 

dom, cod : Mot --* Obj 
i n ( - , - )  : Obj • Obj ~ Mor 

- ; - :  M o r •  

preserve the way below relations in the corresponding dcpo's. 

Recall that  in a dcpo the relation "a is way below b" can be interpreted as "a 
is a finite approximation to b" ( [GHK+80, page xii]). Therefore in a continuous 
I-category the mappings dom, cod, i n ( - , - )  and - ; -  preserve the notion of finite 
approximation. The way below relation on objects and morphisms are denoted 
by ~ and ~'~ respectively. 

E x a m p l e  3.2 Continuous dcpo's. Let D be a continuous dcpo. Then, considered 
as a category, (D, Inc, =, L) with Inc = Mor is a continuous I-category. To see 
this, we first prove that  given two morphisms f = in(a,b) and f '  = in(a',/r we 
have f '<~m f iff a ' ~ a  and / r  Suppose f ' ~ " f  and let a = V ~ e t a i .  Put  
fi = in(a/, a); f ,  for each i e I.  Then f '  ,~'~ f = Vi fi and, hence, there exists 
i E I  with f ' ~ ' ~  fl which implies a i _ a ' ,  i.e. a ' , ~ a .  To show that  / / ~ b ,  

assume b = V/Tez and let a = V Ties aj. Then for each j ~ J ,  there exists j '  6 1 with 
aj ~ bj,. Put t ing  f j  = in(hi, bi,), we have f '  ,~" f = V~ fi" It follows that  for 
some j E J we have f '  <lm fi ,  i.e. b' <1 b: which implies that  b' ,~ b. To prove the - -  - -  3 

converse, assume a' ~ a and b' ,~ b and suppose f _<1-~ Vilezfi, with f i : a i  ~ bi. 
Then a <~ V~tet a~ and b ~ V~te~ bl, and, hence there exist ix, i2 e I with a' <~ ai~ 
and b'<~b 6. Let i E I  be such that  fl is above f~l and fi2, then f ~ g m f i  and 
therefore f~ <<mf. This  proves our claim. The three clauses of Axiom 7* now 
follow immediately and it is easy to show that  (Mor, g'~) is continuous. 

Given a continuous I-category P ,  we say that  a subcategory Q of P is a basis of 
P if (MorQ, __m) is a basis of (Morp, ~'~). We then obtain the following results. 

P r o p o s i t i o n  3.3 A continuous I-category with a basis of compact morphisms is 
algebraic. 

P r o p o s i t i o n  3.4 An algebraic I-category is continuous. 

3 . 2  W a y - b e l o w  p r e s e r v i n g  m a p s  

Let ( D , _ )  be a dcpo, where D is now assumed to be a set. We say a map 
f : D --* E between two dcpo's is open if A E f~D * Tf(A) E f iE.  We obtain the 
following topological characterisation of the way below preserving maps. 
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P r o p o s i t i o n  8.5 For a map f : D  ~ E between two continuous dcpo's the 
following are equivalent: 

(i) f preserves the way below relation. 

(ii) f is open. 

P r o o f  (i)=~(ii) Let A be an open set in D. We must show that  Tf(A) is 
inaccessible by directed lubs in E. Suppose, for some x e A, f (x )  = V T B e •f(A). 
Since D is continuous, x is the directed lub of elements of D way below it and 
since A is open one of these elements y, say, is in A. Now y << x implies 
f (y)  << f (x) .  Hence, there exists b e B with f ( y ) E  b, and as f ( y ) e  f (A)  we 
conclude that b �9 Tf(A). 

(ii)=~(i) Let y << x and f(x)E_ VtB.  The set A = {z[y << z} is open (see [Joh82, 
page 290]), and x �9 A. Therefore Tf(A) is open and contains f (x )  and, hence, 
also V~B. So there exists some b �9 B N  Tf(A). But, f ( y ) E  a for all elements 
a �9 Tf(A). It follows that f (y)  C_ b. [] 

Since open sets can be regarded as properties, the above proposition means 
that  way below preserving maps, i.e. maps preserving the notion of finite 
approximation of points, and property preserving maps are basically the same. 
We also have: 

P r o p o s i t i o n  3.6 Let D and E be dcpo's and f : D - - *  E a continuous map. 
Then the following are equivalent. 

(i) f is an open map. 

(ii) The frame map f~f : f i e  --+ ~'/D preserves meets. 

(iii) The frame map f~f : f~E --+ ~/D, considered as 
categories, has a left adjoint. 

a functor between two 

4 S o m e  func tors  on I -ca tegor ies  

Recall that  a standard functor between two I-categories is one which preserves 
inclusion morphisms and a continuous functor between two directed complete 
dcpo's is one for which the induced mapping on morphisms is continuous. We 
will now introduce a number of standard functors between I-categories, with 
which we are able to generalize the basic categorical properties of partial orders. 



133 

4 . 1  I - a d j u n c t i o n s  

D e f i n i t i o n  4.1 Let P and Q be I-categories. A pair of standard functors 
F : P --* Q and G : Q ~ P forms a Galois I-connection if the induced maps on 
the partial order of morphisms is a Galois connection of partial orders. 

The pair (F, G) will then form a lax adjunction, in which the unit  1/: 1p ---* G o F 
given by YA = in(A, G o F ( A ) )  and the co-unit e : F o  G ~ 1Q given by 
eB = in(FoG(B) ,B)  are lax natural transformations, i.e. their naturali ty diagrams 
are weakly commutative.  

In view of this, we call them an I-adjunction, F the left I-adjoint and G the 
right I-adjoint. 

4 . 2  I - c o m p l e t i o n  

Given a partial order (L, ___), where L is a class, its ideal completion, denoted 
by (L, _c), is the class of directed and downward closed subsets of L ordered by 
inclusion. 

Let P =  (P, Inc, E , A )  be an I-category; its I-completion, P =  (P,i-n-dc, C ,A)  is 
given by: 

�9 Obj F = Objp; 

, MorF = Morp , 

dom(5 r') = { dom( f ) l f  E 9 r} , cod(U) = J,{cod(f)l f E ~'}, 

Id(A) = l{Id(A)lA e .4} , 

F; g = l { f ; g l f  e 9r, g e ~} (assuming cod(Y) = dom(g)) ,  

where IS  is the downward closure of S; 

�9 in(A, B) exists iff A c B, and when it exists we have: 

in(A, B) = l{in(A, B)IA e A, B e 13, A ~_ B}; 

�9 the inclusion c as the partial order on hom-sets; 

�9 = 

P can be shown to be an algebraic I-category. Clearly I-completion is a 
generalisation of ideal completion and for posets these two notions coincide. 
On the other hand, I-completion can be regarded as a restricted form of 
Ind-completion of a category: The I-completion P of an I-category P is equivalent 
to the full subcategory of the Ind-completion, Ind-P,  of P consisting of those 
ind-objects which are small diagrams in pi .  
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A poser P is a dcpo iff the embedding ~ ( - ) : P - - +  P has a left adjoint (the left 
adjoint necessarily sends an ideal to its directed lub in P); and a locally small 
category P has small filtered colimits iff the embedding y : P ~ Ind-P has a left 
adjoint. Similarly, we have: 

P r o p o s i t i o n  4.2 An I-category P is directed complete iff the functor 1(- )  : P ~ 
has a left I-adjoint. 

Furthermore I-completion can be regarded as a functor. Let I -Ca t  be the category 
of small I-categories with standard functors and A lg I -Ca t  the category of small 
algebraic I-categories with standard and continuous functors. I-completion extends 
to a functor C : I - C a t - ~  AlgI-Cat .  We then obtain the following universal 
property, which is the generalization of the corresponding result for partial orders. 

P r o p o s i t i o n  4.3 C is left adjoint to the forgetful functor from Alg I -Ca t  to 
I -Cat .  

4.3 I-retractions and I-projections 

Def in i t ion  4.4 Let P and Q be directed complete I-categories. A standard 
continuous endofunctor R : P  ~ P is called an I-retraction (I-projection) if 
the induced map on morphisms Rm :Mot  ~ Mor is a retraction (projection). 
Two standard and continuous functors R : P ~ Q and E : Q --* P are said 
to form an I-retraction (projection) embedding pair if R,~ : Morv--* MorQ and 
E,~ : MorQ --* Morv form a retraction (projection) embedding pair. 

Note that an I-projection embedding is a Galois I-connection and, hence, a lax 
adjunction. In complete analogy with the theory of partial orders again, we 
obtain the following. 

P r o p o s i t i o n  4.5 (i) The image of an I-retraction is a directed complete 
I-category. 

(ii) The image of an I-projection on a continuous I-category is a continuous 
I-category. 

T h e o r e m  4.6 Any (w)-continuous I-category is the projective image of an 
(w)-algebraic I-category. 

A dcpo D is continuous iff V t ( - ) : D  ~ D has a left adjoint (which will then 
necessarily take any element to the directed set of elements way below it). 
Johnstone and Joyal's definition of continuous category in [JJ82] is in fact a 
generalisation of this. We analogously have: 
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T h e o r e m  4.7 Let P be a directed complete I-category. Then P is continuous iff 
the functor V T ( - ) : P - - *  P has a left I-ad]oint. 

It is well known that a retract of a continuous dcpo is a continuous dcpo. A 
similar result holds for I-categories. The proof of the following result, in effect, 
uses the analogue of the "adjoint lifting" lemma [Joh81] for I-categories. 

T h e o r e m  4.8 Let P be a continuous I-category and P~ a directed complete 
I-category. Suppose R : P ~ P '  and E : pr ~ p form an I-retraction embedding 
pair. Then P '  is continuous. 

5 Effectiveness 

In [ES91a], an effective theory for w-algebraic I-categories was developed and an 
effective version of the initial algebra theorem was presented. We generalise these 
to w-continuous I-categories. To do this, we need to formulate a suitable notion 
of effectively given w-continuous dcpo's, as the existing formulations in [Smy77] 
and [Tan74] do not fit in our context. 

We define the notion of effectively given w-continuous cpo by putting a suitable 
recursive structure on a basis of it. Our treatment resembles that of Plotkin in 
[Plo81] for w-algebraic cpo's. r  denotes the n th partial recursive function in the 
standard enumeration and ( m l , . . . , m , )  is the n-tupling function from N K to N. 

Let E be an w-continuous cpo with a countable basis B and let e : N - - *  B be 
an onto map i.e. an enumeration of the basis elements of E. We say E is 
effectively given w.r.t, e with index (a, s , t ,  u) if 

(i) % = A_. 

(ii) The predicate emTe, (i.e. em and e,~ are bounded above) is recursive in m 
and n with index s. 

(iii) e,, E e, is recursive in m and n with index t. 

(iv) e.~ << e.  is recursive in rn and n with index u. 

An effective chain w.r.t. B of E with index l w.r.t, e is an increasing chain 
(%tin)),>0 with %K',) << [[i e~(O for all n _> 0. An element d E E is computable 
w.r.t. B and e if there exists an effective chain with lub d. The index of d w.r.t. 
e is defined to be the index of this effective chain. We then show that every 
non-negative integer gives rise to an effective chain and we can therefore define a 
computable function in the usual way [Plo81]. 

Having obtained a suitable theory of an effectively given w-continuous dcpo, 
the rest of our work is similar to the case of effectively given algebraic 
I-categories[ES91a]. 
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Defini t ion 5.1 Let P be an w-continuous I-category. An enumeration (A,f)  of 
a basis, Q, of P is given by an enumeration A : N - - *  Objo and an enumeration 
f : N - - +  Morq of objects and morphisms of Q respectively. P is said to be 
effectively given with respect to (A, f)  if (More, <3-,) is effectively given and the 
functions dom, cod, i n ( - , - )  and - ; -  are computable. 

P ropos i t ion  5.2 Let P be an w-continuous I-category effectively given with 
respect to (A, f).  

(i) (Obje , <1) is effectively given with respect to A. 

(ii) The mappings dora, cod : (Mor,_ m) ~ (0b j , _ )  and the mapping 
Id : (0bj,  _)  -+ (Mot, __m) are computable. 

(iii) If B, C E 0bjp are computable and B _  C, then in(B, C) is computable. 

(iv) If g, h E Morp are computable with cod(g) = dom(h), then g; h is also 
computable. 

T h e o r e m  5.3 Let F be a computable endofunctor on an effectively given 
w-continuous I-category P. Then P has a computable initial algebra (D, Id(D)), 
an index for which is effectively obtainable from one for F.  Moreover if (E, k) 
is a computable F-algebra, the unique morphism h satisfying h = F(h);k is 
computable and an index for h can be effectively obtained from one for F and 
one for (E, k). 

6 Locally quasi-compact topological spaces 

Consider a locally quasi-compact space X. It is well known that the lattice of 
open sets of X is a continuous lattice and given two open sets A and B, we have 
A << B iff A is relatively compact w.r.t. B (i.e. every open covering of B has a 
finite subcovering of A) [GHK+80, Page 42]. X in fact gives rise to a non-trivial 
continuous I-category as follows. Let K be the category whose objects are the 
open sets of X and whose morphisms are the continuous functions between 
these open sets. Then one can show that (K, Inc,=,0) ,  where Inc is the set of 
inclusions, is a continuous I-category, in which we have f ___'~g =~ f = grdom(I) 
and 

f ~,,* g r :, f ~_"~ g ~ dom(f) ,~ dora(g) & cod(f) ,~ cod(g). 

The above result coax be generalised to LocCom,  the category of locally 
quasi-compact spaces and continuous maps between them. If A and B are locally 
quasi-compact spaces, we put A ~ B if A is a subspace of B and the inclusion is 
an open map. Then (LoeCom, Inc,=,0) is a continuous I-category. 
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7 Categories of continuous posers 

Categories of continuous posets with continuous functions, e.g. C S D o m ,  are 
not in general equivalent to continuous I-categories: In fact, one can show that 
there are not enough objects way below a given object to generate it. However, 
we can show by refining the category CS-ISys in [ES91a], that the category 
of continuous Scott (bounded complete) domains with strict, continuous open 
maps is a continuous I-category, in which the inclusions correspond to rigid 
projection-embeddings and hom-sets are discretely ordered. The result can be 
extended to other categories of continuous domains including the retracts of SFP 
or L-domains. However, the restriction to rigid projection-embeddings and open 
maps seems to be essential in capturing categories of continuous domains as 
continuous I-categories. 

8 Categories of continuous information systems 

We develop an effective theory for categories of continuous information systems 
and for solving domain equations effectively over continuous domains. 

Let C be an effectively given w-algebraic-I-category. Then the Karoubi envelope 
of C, Kar(C) is a complete I-category but is not in general w-algebraic. However, 
consider the category of arrows, C"* of C; its objects are arrows of C and its 
morphisms are pairs of arrows of C of the form ( a , b ) : f  ~ g with f ; b  E a;g. 
Given objects f : A ~ B  and f ~ : A ' ~ B  ~, we put f <1 c _ g  iff f <l~,g with 
in(f,  f ' )  = (in(A, A'),in(B, B')). Furthermore homsets of C "~ inherit the pointwise 
ordering from the homsets of C and we have: 

T h e o r e m  8.1 The arrow category of a (complete, w-algebraic, effectively given) 
I-category is another such category. 

Kar(C) can clearly be identified with a subcategory of C -~ and is therefore 
effectively given. We therefore have an effective presentation of the Karoubi 
envelope of BC-ISys ,  SFP-ISys ,  DI-ISys,  (defined in the introduction) which 
are equivalent to the categories of the corresponding continuous domains. 

Any endofunctor on C induces in the obvious way an endofunctor on C-'. If 
r :  A ~ A is an object of Kar(C), then the constant endofunctor on Kar(C) 
with value r : A  ~ A can be extended to C-*. All this means that if F is an 
endofunctor on Kar(C) obtained by composition of endofunctors induced from C 
and constant endofunctors, then we can solve the domain equation F ( X )  ~- X 
in Kar(C) effectively by solving it effectively in C--*, i.e. we have an effective 
initial algebra theorem for such functors. In particular we can solve domain 
equations over continuous domains involving disjoint sum, product, function space 
and constant endofuctors. 
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