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Abstract  

A new positive-unit theorem-proving procedure for equational Horn clauses is presented. 
It uses a term ordering to restrict paxamodulation to potentially maximal sides of equations. 
Completeness is shown using proof orderings. 

1. I n t r o d u c t i o n  

A conditional equation is a universally-quantified Horn clause in which the only predicate 
symbol is equality. We write such a clause in the form 

e l  A . . . A e .  :=~ 8 N t 

(n >__ 0), meaning that the equality s ~ t holds whenever all the equations el, called conditions, 
hold. If n = 0, then the (positive unit) clause, s -~ t, will be called an unconditional equation. 
Conditional equations are important for specifying abstract data types and expressing logic 
programs with equations. Our interest here is in procedures for proving validity of equations 
in all models of a given finite set E of conditional equations. Note that a conditional equation 
el A . . .  A en ~ s ~-- t is valid for E iff s -~ t is valid for E U {e l , . . . ,  en}. Hence, proving validity 
of conditional equations reduces to proving validity of unconditional ones. 

The completeness of positive-unit resolution for Horn clauses is weU-known. An advantage 
of positive-unit resolution is that the number of conditions never grows; it suffers from the 
disadvantage of being a bottom-up method. Ordinary Horn clauses 

pl A " 'Apn ::~ Pn+l 

where the Pi are not equality literals, can be expressed as conditional equations, by turning each 
literal Pl into a Boolean equation Pl = T, for the truth constant T. Ordered resolution, in wkie~ 
the literals of each danse are arranged in a linear order >, and only the largest literal may serve 
as a resolvent, is also complete for Horn clauses (see Boyer, 1971). 

Positive-unit resolution can be expressed by means of the following inference rule: 

EU{ q A s ~ - - T  =} u~-T' ~ 
.................. l~-T J 

E U  l ~- T,  
qa =~ ua ~ - T  
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where a is the most general unifier (mgu)  of I and s. Here, the positive unit clause I --~ T is 
resolved with the negative literal s -~ T in the clause q ^ s ~- T :~ u -~ T, and produces a new 
Horn clause qa ::~ ua  "" T .  The new clause is a logical consequence of the two given clauses, 
since sa  = l r a ,  where r renames variables in l so that it shares none with s. Any unit clause 
that is a logical consequence of a set of Horn clauses E is an instance of a unit clause producible 
by repeated application of this rule of inference. 

Horn clauses with both equality and non-equality literals can be expressed as conditional 
equations with equality literals only. The equality axioms, including functional reflexivity, are 
also Horn clauses. Positive-unit resolution, or any other complete variation of resolution, could 
be used to prove theorems in equational Horn theories, but the cost of treating equality axioms 
like any other clause is prohibitively high. For this reason, special inference mechanisms for 
equality, notably paramodulation (l~ohinson and Wos, 1969), have been devised. In the Horn 
case, a unit strategy can be combined with paramodulation (Henschen and Wos, 1974; Furbach, 
1987). 

In this paper, we describe a new complete theorem-proving method for equational Horn the- 
ories. It utilizes orderings of terms and atoms to restrict inferences, and is a generalization of 
ordered completion (Hsiang and R.usinowitch, 1987; Bachmair, et al., 1989), an "unfailing" ex- 
tension of the "completion procedure" in Knuth and Bendix (1970) for unconditional equational 
inference. Completion operates on asymmetrical equations, that is, on rewrite rules, and has as 
its goal the production of confluent (Church-l~osser) systems of rules that can be used to decide 
validity. For a survey of rewriting, see Dershowitz and Jouannaud (1990). 

Brown (1975) and Lankford (1975) first suggested combining completion for oriented equa- 
tions, with paramodulation for unorientable ones and resolution for non-equality atoms. Paul 
(1986) studied the application of completion to sets of Horn clauses with equality. Completion 
was extended to conditional equations by Kaplan (1987) and Ganzinger (1987). Unit strategies, 
such the one given here, do not seem to be appropriate for completion. Recently, several re- 
strictions of paramodu]ation based on term orderings have been proposed for the full first-order 
case, including Zhang and Kapur (1988) and Rusinowitch (1989). Kounalis and l~usinowitch 
(1987) and Bachmair, et al. (1989) improved upon the earlier Horn-clause methods in various 
ways. 

Our method severely restricts resolution with paramodulation by incorporating an ordering 
on (atoms and) terms. Inferences are limited in the following ways: 

• The functional reflexive axioms are not needed and, at the same time, paramodulation 
into variables is avoided (as for some versions of paramodulation). 

• For all (resolution and paramodulation) inferences, at least one of the equations must be 
unconditional (as in positive unit resolution and positive unit paramodulation). 

• Unless an equation is unconditional only its conditional part is used for paramodulation 
(analogous to positive-unit resolution). 

• Only maximal terms (with respect to a given ordering) are used (analogous to ordered 
resolution). 

Unlike Kounalis and Rusinowitch (1987), we use only unit clauses when paramodulating into 
conditions; unlike Bachmair, et al. (1989), all our inference rules use only the maximal side of an 
equation. Thus, our method is the first to combine a unit strategy with one based on maximal 
terms. It  also allows for (virtually unrestricted) simplification (demodulation) by unconditional 
equations. Since some of the rules we consider delete or simplify antecedent clauses, the above 
format for inference rules, with the equations that participated in the inference also appearing 
as part  of the consequent, is advantageous. 
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Limiting inference partially controls growth; keeping clauses fully simplified stunts growth 
even further. Such restrictions are of paramount importance in any practical theorem prover, 
but their (refutation"l) completeness has been difficult to establish. For our completeness proof, 
we adapt the proof-ordering method of Bachmair, c ta l .  (1986) to conditional proofs. Proof 
orderings allow us to limit narrowing to negative liter,Is, something that appears impossible 
with the recent transfinite-tree proof method of Hsiang and Rusinowitch (1986). The crux of 
our method is the observation that  any conditional equational proof not in "normal form" must 
either have an unconditional "peak", that is, two applications of unconditional equations such 
that  the middle term is the largest of the three involved, or an unconditional "drop", that is, an 
application of an unconditional equation (or reflexivity of equals) to an instance of a condition. 
The proof procedure is designed to eliminate peaks and drops, thereby reducing the complexity 
assigned to the proof. The refutational completeness of this strategy, but not the more general 
proof normalization result, follows from concurrent work of Bachmair and Ganzinger (1990) on 
first-order proofs. A unit Horn-clause strategy with simplification is also proved complete in 
Bachmair (1991). 

2. O r d e r i n g s  

Let T be a set of (first-order) terms, with variables taken from a set r~, and ~ be its subset 
of ground (variable-free) terms. If t is a term in 7", by tl= signifies the subterm of t rooted at 
position x; then by t[s]=, for some term 8, we denote the term t with its subterm ~l~r replaced 
bys .  

Term orderings are of central importance in the proposed method. A total ordering > 
on ground terms ~ is called a complete simplification ordering if it has (a) the "replacement 
property", 8 > t implies that any term u[s]~r, with subterm s located at some position ~r, 
is greater under > than the term u[t]w with that occurrence of s replaced by t, and (b) the 
"subterm property", t > tl~ for all subterms ~1~ of t. Such a ground-term ordering must be 
a well-ordering (Dershowitz, 1982). A completable simplification ordering on all terms 7" is a 
well-founded partial ordering ~- (c) that can be extended to a complete simplification ordering 
> on ground terms, such that (d) s ~- t implies that s~ > t~r for all ground substitutions ~. 
Furthermore, we will assume (e) that  the constant T is minimal in ~-. 

With a total ordering of atoms and with no equations, per se, the method of the next section 
is just selected positive-unit resolution, in which the largest negative literal is chosen. The 
appropriate inference rule would be expressed as: 

E U (  q ^ s ~ - T  =~ 1,.¢ Tu~-T') 

EU l~_T, 
qcr =~ ~, ~- T 

where ~ = raga(s, l), and would only be applied when s > q, by which we meau that 8 is the 
largest negative literal in its clause. A total simplification ordering on non-ground literals is 
not actually possible (which is why the ordering of the parent clause is inherited in ordered 
resolution), but can be approximated by a partial ordering. If only a partial ordering ~- is given, 
we resolve negative literals that are potentially maximal. That  is, we apply the above rule if 
8~ 7~ q~, or, in other words, if the instance 8~ of s created by resolution is not necessarily 
smaller than the other instantiated negative literals. 

Suppose E is a set of Horn clauses in conditional equation form. To handle equality liter"is 
we need to unify at subterms of conditions, not just at the literal level. Suppose 1 _~ r is an 
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equation in E.  Note that whenever we refer to equations in a set, we mean that it, or the 
symmetric equation (with I and r exchanged), or a variant with variables renamed uniformly, 
actually appears in the set. With that in mind, if I unifies with a non-variable subterm sl~ of a 
maximal term s in a condition s -~ t of a conditional equation q A s ~ t :~ u ~ v, then a new 
Horn clause is created by applying the most general unifying substitution a to the conditional 
equation, and then replacing la with ra ,  as per the unit clause l ~- r. More precisely, we infer 
the clause qaAsa[ra]~ ~_ ta =~ Ha ~-- va, provided that  sa is not smaller under ~- than the other 
side of the condition Sa, or of either side of the other conditions qa, or of the new term sa[ra]~. 
Thus, the conditions ensure that  sa is the (potentially) larger side of the condition that is being 
paramodulated into and that the replacement yields a (potentially) smaller condition. 

Of course, the empty ordering is completable. But the strength of the method, both in 
minimizing possible inferences and maximizing potential simplifications, is brought to bear by 
employing more complete orderings. In practice, any efficiently computable ordering should 
be better than uncontrolled paramodulation. The polynomial and path orderings commonly 
used in rewrite-based theorem provers (see Dershowitz, 1987) are completable. In particular, 
the lexicographic variant of the recursive path ordering (Kamin and L6vy, 1980) has decidabil- 
ity properties (Comon, 1990) that make it ideal for this purpose. Choosing an ordering that  
takes the goal (theorem) into account can impart a top-down flavor to the otherwise bottom-up 
procedure. 

3. U n i t  S t r a t e g y  

We formulate our theorem-proving procedure as an inference system operating on a set of 
conditional equations, and parameterized by a completable ordering ~-. 

The rules may be classified into three "expansion" rules and four "contraction" rules. The 
first expansion rule applies to unit clauses: 

t ~- r i f  a = mgu(Hl,r , l) 

Superposition (i.e. oriented paramodulation of positive equational literals) is performed only 
at non-variable positions (ul~ ~ X). Either side of an equation may be used for superposition, 
but only if, in the context of the paramodulation, it is potentially the largest term involved 
(Ha 7( va, ua[ra]~r). Note that the two equations, u -~ v and l -~ r, may actually be the same 
(except for renaming). 

The second rule applies a unit equation to a negative literal: 

N a r r o w  : 
l ~ r i f  a = m g H ( s l ~ ,  t )  

{ q A s ~ - '  =~ u~--v' } 8a~qa'ta'sa[ra]" 
E U  l_~r,  

qa A sa[ra]~ "~ ta ~ ua " va 

Whenever this or subsequent rules refer to a conditional equation llke q A s _~ t :~ u ~ v, the 
intent is that  s -~ ~ is any one of the conditions and u is either side of the implied equation. 

The last expansion rule in effect resolves a maximal negative literal with reflexivity of equals 
(x x). 
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E U (  q A s ' ~ t  =~ u ~ v  ) if ( a = m g u ( s , $ )  
Ref lec t :  E'"U'"~"'qAs~_t =~ u~_v, } saT(q~" 

L qa =~ ua ~ - va 
The remaining, contraction rules all simplify the set of conditional equations. The first 

deletes trivial conditional equations: 

De l e t e :  
E 

Here and later, when a rule refers to a clause of the form q =~ u ~_ v, an unconditional equation 
(u ~- v) is also intended. 

The next rule allows for deletion of conditions that are trivially true: 

E U ( q A s " s  :=} u ' v )  
Condense  : ,, , 

E U { q  =~ u ~ - v }  

The last two contraction rules use unit clauses to simplify other clauses. One rule simplifies 
conditions; the other applies to the equation part. In both cases, the original clause is replaced 
by a version that is equivalent but strictly smaller under ~-. 

if ~ q]~ = la Simplify 

l ~ r ul,~ = l a  
Compose  : if u ~- u[ra]~ 

q ~ T Y v ~ - u V u ~ l  E u (  q = ~  Z~_~-'~["]'~-v') 

By q ~ T we mean that the equation has at least one condition; by u ~,I we mean that u is 
strictly larger than l in the encompassment ordering in which a term is larger than its proper 
subterms and smaller than its proper instances. 

Ordered completion, which deals just with unconditional equations, uses the rules, super-  
pose, delete ,  and compose.  

As a simple example of our unit strategy, consider the following three clauses: 

0 < c(0) ~ T 

c(~) < c(~) ~_ ~ < 
x < y ~ - T A y < z , ' , T  :~ x < z " T  

Using a (left-to-right) lexicographic path ordering, they generate an infinite number of clauses 
to which contraction rules cannot be applied: 

0 < ci(O) ~ T (i >_ 1) (1) 

~(~) < ~(~) _~ ~ < ~ (2) 

x < J ( ~ )  ~_ T ^ ~ < ~ _~ 7 =~ x < ~J(~) _~ T (j  > 0) (3) 
0 < z "¢ T =} 0 < ck(z) -~ T (k ~ 1) (4) 

z < eJ(0) ~ T =~ z < ci+J(O) ~- T (] :> 0) (5) 

x < y ~ T ^ ckCy) < • __ r ~ ck(~) < ~ _~ T (~ > 1) (~) 

There are no possible reflections, since no condition has unifiable sides. No superposition 
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inferences between clauses of type (1) and (2), or narrowing inferences between (2) and (4), are 
allowed, because c(y) does not unify with 0. 

Unit clauses of type (1) do not unify with the second condition of (6) for the same reason. 
Narrowing at the first condition of (6) is also not possible. That would produce an instance of 
(6) in which the chosen condition is not maximal, since, in 

0 < J ( 0 )  _~ T ^ ck+~(0) < z _~ T ~ ck(0)  < z ~_ T 

the term ck+i(0) is larger than 0. 
Unifying 0 < c~(0) from (1) with the condition of (4) and narrowing yields: 

T - ~ T  =~ O<ci+~(O) 

which condenses to a new equation of type (l): 

o < c~+k(o) 

Similarly, narrowing (5) with (1) generates an equation of type (1). 
Unifying 0 < c~(0) from (1) with the first condition z < cJ(y) of (3) can only succeed if i >_ j ,  

giving 

0<c~(0)-TAc/-J(0)<z~Y =~ 0<c~(z)~T 
as the relevant instance of (3). For i > j ,  the second condition is larger than the first and the 
inference is not performed. For i = j ,  we get the new clause 

T ' T A O < z " T  =~ 0 < c i ( z ) ~ T  

which condenses to a clause of type (4). 
Unifying 0 < c~(0) with the second condition of (3) gives (after condensation) 

x < J ( 0 )  -~ T ~ = < J + J ( 0 )  -~ T 

which is of type (5). 
Unifying (2) with the first condition of (6) gives 

c ( x )  < c (~)  _~ T ^ ck+~(y)  < z _~ T ~ c~+~(x)  < z _~ T 

which simplifies to another type (6) clause: 

Unifying (2) with the second condition of (6) gives (after simplification): 

x < y _~ T ^ ? - ~ ( y )  < z _~ T ~ ok(x)  < c ( z )  ~- T 

which after composition turns out to be an already existing clause: 

z < y , ' . T A c k - l ( y ) < z , . , T  =~ c k - l ( z ) < z ~ _ T  

Similarly, narrowing (3) with (2) generates bigger clauses of type (3), while narrowing (5) 
with (2) gives smaller clauses of type (5). 

Note that clauses like c(0) < c(c(c(O))) ~_ T are not generated; all the same, the complete set 
of unit clauses, (1) and (2), will reduce any equation cJ(0) < c~+:(0) ~ T to the contradiction 
T~7.  

4. C o m p l e t e n e s s  

Let > be any complete simplification ordering extending the given partial ordering ~-. We 
define a symmetric binary relation ,-% for a particular set of conditional equations E, as the 
smallest relation satisfying tiler]= *-~ t[r~]= for all ul ~- vl A. - .  ^ un ~ ~,~ =~ I ~ r in E such 
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that  uia ~ *  via for each i, where ~ *  is the reflexlve-transitive closure of ~ .  This relation 
corresponds to "substitution of equals" according to the axioms in E.  We also define a rewrite 
relation on ground terms G as the intersection of > and ~ .  That  is, $[la]~ ~ t[ra]~ if ul 
vl A - . -  ^ u,~ "~ v,  =~ l --~ r is in E,  t[la]`K > t[ra]`K, and uia ~*  via for each i. We use ~- for the 
inverse of  -% and 4 "  and ~ *  for the reflexive-transitive closures of --* and 4-, respective2y. 

A proof of an equation s -~ $ between ground terms (any variables in s and $ may be treated 
as Skolem constants) is a "derivation" 

S = $1 ( "~'1 ) t 2  < ̀ K2 ) • • • "Ken; ~ m + l  = t 
~I0"1 ~ a  2 ~mO'm 

1 1 I 
/'1 P~ P~ 

of m + I terms (m >_ 0), each step tk ~ tk+~ of which is either trivial (tk+~ = tk), or else is 
justified by a conditional equation ek in E ,  a position 7rk in tk, a substitution ak for variables 
in the equation, and subproofs auk for the conditions pkak of the applied instance ekak. Steps 
employing an unconditional equation do not have subproofs as part of their justification. By 
the completeness of positive-unlt resolution for Horn clauses, any equation s ~ $ that  is valid 
for a set E of conditional equations is amenable to such an equational proof. 

We use the notation E ~- E t to denote one inference step, applying any of the seven rules to 
a set E of conditional equations to obtain a new set E I. The inference rules are evidently sound, 
in that  the class of provable theorems is unchanged by an inference step. 

By a peak, we mean a proof segment of the form s ~ u ~ t; by a valley, we mean a proof 
segment of the form u --** w *-* t; by a drop, we mean a step s --, t with valley subproofs; a 
plateau is a trivial subproof of form s ~ s. The depth of a proof is the maximum number of 
nestings of subproofs; it is one more than the maximum depth of its subproofs. A normal-form 
proof is a valley proof of depth 0. That  is the same as saying that  a normal-form proof has no 
peaks, no drops, and no plateaus. Normal-form proofs may be thought of as "direct" proofs; 
in a refutational framework the existence of such a proof for s -~ t means that  demodulation of  
s and t using positive unit equations suffices to derive a contradiction between the Skolemized 
negation s ~ ~ t I of the given theorem and x -~ x. 

The above inference rules are designed to allow any equational proof to be tranformed into 
normal form. A strategy based on these rules is complete if we can show that,  with enough 
inferences, any theorem has a normal-form proof. We call an inference "fair" if all persistent 
superpositions, narrowings, and reflections have been considered: 

Def in i t i on .  An inference sequence E0 I- F_q b . . .  is fair if 

exp(Eoo) C_ Ui>OEi, 

where B~o is the set l iminfi  B i = Ui>oni>iB i of persisting conditional equations and exp(B~o) is 
the set of  conditional equations that  may be inferred from persisting equations by one application 
of  an expansion nile ( s u p e r p o s e ,  n a r r o w ,  or reflect) .  

Our goal is to  demonstrate tha t  for any proof s *-~* t of s --- t in Eo, there eventually exists an 
unconditional valley proof s --** w *-* L Were it not for contraction rules, it would be relatively 
easy to  show that  n a r r o w  and ref lect  eventually provide an unconditional proof of s ~ $, and 
that  s u p e r p o s e  eventually turns that  into a valley. 

T h e o r e m  ( N o r m a l i z a t i o n ) .  I f  an inference sequence Eo ~" E1 b . . .  is fair, then for any proof 
of  s "" t in Eo, there is a normal.form proof of s ~- t in Eoo. 

This is shown by transfinite induction on proofs. Proofs axe measured in the following way: 
For each step 
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7 
P 

in a proof, where e is a conditional equation ql ^ " "  A qn =~ ~z ~_ v, we consider the quintuple 

(n, ~ a A - - - A  q~ ,  tk, u, tk+l), 

where (with loss of generality) we are assuming ~/c >_ t/~+l in the complete ordering >. Quintuples 
axe compared left-to-right lexJco~aphical]y, with the first component (the number of conditions 
n) compared in the natural ordering of natural numbers, the second (the instantlated conditions 
ql~ ^ . . .  ^ q, cr), third (tk), and fifth (tk+i) components under the complete ordering >, and 
the fourth component (u) in the encompassment ordering ~,. An unconditional step has 0 as 
its first component and T as its second. Finally, proofs are compared by comparing multisets 
consisting of quintuples for all steps in their top-level proofs or subproofs, using the extension 
to finite multlsets of the above ordering on quintuples. We use >> to denote this proof ordering. 
It can be shown by standard arguments (Dershowitz and Manna, 1979) that >> is well-founded. 

Intuitively, the first component is designed to decrease with each appl/cation of reflect  or 
condense,  the second with applications of nar row or simplify,  the third with superpose ,  the 
fourth and fifth cater to compose.  The multiset structure of the proof ordering ensures that 
decreasing the complexity of subproofs decreases the complexity of the whole proof (and also 
takes care of delete).  We need to show that inferences never increase the complexity of proofs 
and, furthermore, that there are always inferences that can decrease the complexity of non- 
normal proofs. Then, by induction with respect to >>, the eventual existence of a normal-form 
proof follows. 

Lemma I. I f  E F E l, then for any proof P in E of an equation s ~-- t, there exists a proof p t  
in E '  of s N ~, such that P > P'  or P = P' .  

This is established by consideration of the effects of each contracting inference rule that 
deletes or replaces equations, since for expansion rules, E C E', and we can take P '  = P.  

Consider any ground proof and look at a step tic = w[u~]~ ~ w[v~]~r = tk+l. 

De le te  can prevent a proof from employing a clause p =~ u ~- u. There is, however, an 
alternative proof that splices out the step tk ~ tk+l = tk, leaving just tic, and omits all its 
subproofs. Tiffs strictly decreases the complexity of the whole proof, by eliminating one 
or more quintuples from the multiset measure. 

Condense  erases a condition s ~- s from a clause. If e is such a clause, there is a new proof 
using the condensed clause instead, which omits any (unnecessary) proofs of that condition. 
The quintuple associated with the step experiences a decrease in its ~rst component. 

Simplify changes the second component of the step's cost from q[l~] to the smaller q[rcr]. 
Though the cost of the subproofs is increased on account of an additional unconditional 
step q[hr] ~ q[ra] needed to establish q[r~r] (given proofs of q[/cr]), that unconditional step 
(with 0 in its first component) is dominated by the simplified conditional one (with m > 0 
in its first component). 

Compose  replaces a step tk = zo[/~'] ~ - , ~ , = ~  tk+l with a two-step proof tk = zo[ll"] --* 
wire'] *-~ ~k+l. The cost of the replaced step is (n, pcr, tk, u,~k+l) if ~/~ > tk+l; otherwise, 
it is (n ,p~ ,~+a,v , t~) .  If ~k > ~+1, then the cost of wire-] ~ tk+~ is smaller in the 
third component; if t~ < t~+x, it is smaller in the last. (The first two components axe in 
any case unchanged.) The cost (0, T, tk, l, w[r~']) of the unconditional step tk ~ w[rr] is 
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smaller than that of the replaced step in the first, third, or fourth component, depending 
on which of the enabling conditions of the inference rule is satisfied: if the replaced step 
was conditional (q ~ T), then it is smaller in the first; if q = T, but v > u, then (by the 
replacement and substitution properties) tt+~ > t~, and the reduction is in the third; if 
q = T and v < u, but u l~l, then the first three components are the same, but the fourth 
is smaller in the encompassment ordering. 

L e m m a  2. If  P is a non-normal-form proof in E,  then there ezists a proof P~ in E U exp(E)  
such that P >> P~. 

The argument depends on a distinction between "non-critical" subproofs, for which there is 
a proof P~ in E itself, and "critical" subproofs, for which equations in exp(E)  are needed. A 
peak tk-1 ~ z ~ _ ~  tk ~¢r~_~arP ~k+l~ where ~k = w[l~]~[~r]p, is critical if the position ~r 
is at or below the position p in w at whi'ch ~ ~ v is applied, but not at or below a position 
corresponding to any variable in u, or (symmetrically) if p falls within the non-variable part of 
the occurrence of I in w. Similarly, a drop tk ~ q ~ m  tk+l is critical if the first or last step of 
one of the subproofs for qo" takes place within the non-variable part of the condition q. 

Since any proof must have at least one subproof of depth 0, any non-normal proof must have 
a plateau, an unconditional peak, or a drop of depth 1 with (unconditional) valley subproofs. 
Thus, we need not worry about peaks involving a conditional rule, nor drops in which the proof 
of some condition is not unconditional. All plateaus of depth 0 can be spliced out. Critical 
unconditional peaks, critical drops with non-empty unconditional valley subproofs, and drops 
with empty proofs of conditions can each be replaced by a smaller proof, using the conditional 
equation generated by a superpose ,  nar row,  or reflect  inference, respectively. Superposition 
replaces two steps with one that is smaller in the third component (the first two are unchanged); 
narrowing results in a step that is smaller in the second component (and removes a step from 
the subproof); reflection causes a decrease in the first component. Narrowing can be restricted 
to the maximal side of the maximal condition, since a drop with non-empty subproofs must have 
a step emanating from the larger side of its largest condition. 

Non-critical unconditional peaks tt~-i *-- t/c -4 tk+l have alternative, smaller proofs tk-1 --+* 
t~ *--* tk+l in E by the version of the Critical Pair Lemma of (Knuth and Bendix, 1970) in 
(Lankford, 1975). Consider a non-critical drop w[n~r] ~q~.~_- .~ w[v~], with unconditional 
subproof/~r -4 /¢  --~*/¢~ ~-*/¢#, where pa is no smaller than any other term in the subproof 
qa. Suppose p has a variable z at position Ir and the first step applies within the variable part 
pl=. That  is, pa  =/~r[z~r], -4 p~[r]= = /~ .  Let 1" be the same substitution as cr except t h a t  

: z ~-+ r.  There is a smaller proof (smaller, vis-a-vis :~) in E: w[u~r] 4--* w[ur] * -~a~_~q  
to[#~'] --** ~o[v~r]. The new conditional step w[~r] 4-* z0[vr] is cheaper (in the second component) 
than the original, since qr must be strictly smaller than qa. The steps w[ua] *--* w[ur] and 
to[v~-] --** w[v~r] are also cheaper than w[uo'] ~ w[wr], since they are unconditional (hence 
smaller in the first component). Also any rewrites z~ - 4  r that need to be added to turn a proof 
of q~ into a proof of q~" are unconditional. 

The Norma~zation Theorem follows. If s ___ t is provable in ~o, then (by Lemma 1) it has a 
proof P in the limit Eoo. If P is non-normal, then (by Lemma 2) it admits a smaller proof P~ 
using (in addition to Eoo) a finite number of equations in exp(Ec¢). By fairness, each of those 
equations appeared at least once along the way. Subsequent inferences (by Lemma I) can only 
decrease the complexity of the proof of such an equation once it appears in a set Ej (and has a 
one-step proof). Thus, each equation needed in P~ has a proof of no greater complexity in Eoo 
itself, and hence (by the multiset nature of the proof measure), there is a proof of s -~ t in Eco 
that is strictly smaller than P. Since the ordering on proofs is well-founded, by induction there 
must be a normal proof in E~.  
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5. Extensions 

In the above method, the same ordering is used for simplification as for choosing the maximal 
literal. In fact, a different selection strategy can be used for choosing the literal to narrow, as 
in (Ganzinger, 1987; Sivakumar, 1989), but then the term ordering must be used to choose the 
larger side of the equality. 

We used only unconditional equations for simplification and composition. Conditional equa- 
tions can also be used--but only in those cases where the proof ordering shows a decrease 
anyway. An alternative is to design an inference system that distinguishes between different 
kinds of non-unit clauses. An instance p~ =~ u~ _~ v~ of a conditional equation is "decreasing" 
(in the terminology of Dershowitz and Okada, 1990) if u# ~- va, pa in the completable order- 
ing. This is the same condition as imposed on conditional rewrite rules by the completion-like 
procedures of Kaplan (1987) and Ganzinger (1987). In these methods, superposition is used 
when the left-hand side is larger than the conditions; narrowing, when a condition dominates 
the left-haad side. As theorem provers, however, they are refutationa~y incomplete, since they 
make no provision for "unorientable" equations s -~ t such that s ~ t and t ~ s. For a complete 
method, the inference rules given here must be modified to use the largest positive or negative 
clause in each expansion, and to treat decreasing equations like unit equations. In particular, 
superposition is needed between decreasing conditional rules. We must redefine a normal-form 
proof of 8 _~ t to be a valley proof in which each subproof is also in normal form and ea~ term 
in a subproof is smaller than the larger of s and t; see (Dershowitz and Okada, 1988). (The 
normal forms of the previous section are a special case.) Any non-normal-form proof has a peak 
made from decreasing instances with normal-form subproofs, or else has a non-decreasing step 
with a drop. 
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