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Abstract 

We continue here a study of properties of rewrite systems that are not necessarily terminating, 
but allow for infinite derivations that have a limit. In particular, we give algebraic semantics for 

theories described by such systems, consider sufficient completeness of hierarchical systems, suggest 
practical conditions for the existence of a limit and for its uniqueness, and extend the ideas to condi- 
tional rewriting. 

1. Introduction 

Rewrite systems are sets of directed equations used to compute by repeatedly replacing equal 
terms in a given formula, as long as possibIe. A key property for rewrite system is "canonicity", i.e. 
that every term rewrites to a unique normal form. Canonicity is usually decomposed into two require- 

ments: "termination", which ensures that at least one normal form always exists; and "confluence", 
which ensures that there can never be more than one normal form. For surveys of the theory of 
rewriting, see [Huet-Oppen-80], [Klop-87], or [Dershowitz-Jouannaud-89]. 

In ~ershowitz-Kaptan-89], an investigation was begun into analogous properties of systems that 
have i n f i n i t e  terms as normal forms. Such systems are not terminating in the classical sense; instead 
one is interested in establishing "co-termination", i.e. that any (infinite) derivation has a limit, and 
"c0-confluence", which ensures uniqueness of limits. Together, these two properties imply the 
existence of a (potentially infinite) unique normal form for any input term. 

Let --~ denote any binary relation; we use ~-- to indicate its inverse; by ~ we mean the 
reflexive-transitive closure of --~. A relation --~ over a set S is said to be f i n i t e l y  t e r m i n a t i n g  if there 

exist no infinite chains So  --~ s l  --~ " " " --~ s n  --~ " • • of elements si  in S; it is ( f i n i t e l y )  c o n f l u e n t  

*This research supported in part by the U.S. National Science Foundation under Grant DCR 85-13417 and by the 
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if  for any s, t, and u in S such that u ----; s and u ~ t, it is the case that s ---; v and t ---; v for some v 

in S. Confluence may be expressed as the set-theoretic inclusion *<---o---~ c ---)o e--, where o denotes 

composition of  relations. 

The following are the basic definitions for infinite rewriting: 

Definition 1. Given a binary relation - e  on a topological space S, its ~x-iterate __)cL (for 
given ordinal a)  is defined as follows: 
(a) if  a = 0, then .._~a is the identity relation; 
(b) if  c~ is a successor ordinal [~+1, then ._+a = ---r~ w (-+l~o---~). 
(c) i f  c~ is a limit ordinal, then s o __)a s '  if s o --*[~ s' for some ~ < (~ or if  there exist ele- 

ments (s.¢),/< a forming a transfinite ---~-chain such that lim s~, = s'. 1 
,/<a 

In particular, s _..)o~ t, for s and t in S (as in [Dershowitz-Kaplan-89]), iff s --~ t or there exists a chain 

s = s o --* s 1 - -4  ' ' '  ~ s n --~ ' ' '  such t h a t l i m s  h i s t .  

Definition 2. A binary relation ~ over S is o~- terminat ing  if for any infinite chain 
s o --~ s I ---) " • " ~ s n --~ " • " of elements s n of S, the limit lim s n exists. 

n<0)  

Definition 3. A binary relation ~ over S is co-conf luent  if  ~%-o--) °~ c ---~c°o%--. 

Relations that are both c0-terminating and c0-confluent will be called m - c a n o n i c a l .  

We are particularly interested in relations over t e rms .  Let T z ( X )  (or just T(X) )  denote a set of 

f in i t e  (first-order) terms containing function symbols and constants from some finite vocabulary (signa- 

ture) Z and variables from some denumerable set X. Let 7~z(X) (or just T~(X)) denote the set of finite 

and  inf ini te  terms over the same vocabulary and variable set. The set of  finite g r o u n d  (variable-free) 

terms is TI; (or just plain T); the set of finite a n d  infinite ground terms is T~z(~) (or just T~). A dis-  

t ance  d is defined on T ~ as follows: Denote by v(t , t ' )  the smallest depth of  a position at which t and t '  

differ (with the convention that v(t , t )  = +oo). Let d(t , t ' )  = 2 -v(t¢'). The terms T ~, with this distance, 

form a complete ultra-metric space [Nivat-75], 

A r e w r i t e  s y s t e m  R is a f i n i t e  family of pairs (l ,r)  of (finite) terms of T(X) ,  each written in the 

form l--~r, such that all variables appearing on a right-hand side r also appear in l. A system R 

defines a r e w r i t e  r e la t i on  -'~R over T~(X) as follows: For t e T~(X), we say that t r e w r i t e s  via R to 

(,  and write t ---~R t '  (or simply t ~ t'), iff  there exists a rule l--~r in R, a "contex t"  (term) c in T~(X) 

with a "pos i t ion"  (occurrence) p in c, and a substitution ~J:X~T~(X) such that t = c[ I f ]p  (the subterm 

of t at p is an instance of  the left-hand side t) and t" = c[r~]  e ( (  is the result of  replacing the subterm 

at p with the corresponding instance r c  of the right-hand side). 

Definition 4. An m - n o r m a l  f o r m  for a rewrite system R is a term t that is minimal for ---), 
i.e. i f  t---)t', then t" = t. An c0-normal form o f  a term s in T~(X) is a term t in T~(X), such 
that s~°~t  and t is an co-normal form for R. 

Note that an co-normal form need not be irreducible. 

By NF°~(S)  we denote the set of co-normal forms, for R, of terms in the set S. For example, for 

R = { a - e s ( a ) } ,  NF~R({a ,s (a)} )  = {s(~)}, where s (=) is the infinite term s ( s ( s (  • - . ))), composed just of  

the unary symbol s. 

1I.e. for any neighborhood V of s', there exists a [~<c~ such that sv is in V if 13_<y<~. 
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We say that a rewrite system R is 03-terminating if its rewrite relation ---) is, that it is c0-confluent 

if ---) is, and that it is co-canonical if it is both. For instance, the system {x- - ) f (x )}  is o>-terminating; 

{f(x)---)g(f(x)),  g (x ) - -~ f (g(x) )}  is not. A rewrite system R is said to be l e f t - l i near  if the left-hand side l 

of each rule l--~r in R has at most one occurrence of any variable. A term t is said to o v e r l a p  a term 
t '  if t unifies with a non-variable subterm of t'; a system is n o n - o v e r l a p p i n g  ff no left-hand side over- 
laps another. A system that is both left-linear and non-overlapping is said to be r e g u l a r  [O'Donnell- 

77]. 

In the remainder of this section, we summarize the main results of [Dershowitz-Kaplan-89]. 
Related work is in [Ehrig-88]. 

Theorem 1. F o r  a n y  l e f t - l inear  r e w r i t e  s y s t e m  a n d  o r d i n a l  ~ > 03, 

For non-left-linear systems, such as 

i f (x ,x ,y)  ---) y 

g(x,O) ~ g(s(x) ,O)  

g (x , s (n ) )  --~ i f (g (a ,n ) ,g (b ,n ) ,g ( s (x ) , s (n ) ) )  

this is not the case. Indeed, for this example, g(x,s(i)(O)) ._)o~i g(s(~),s(O(O)).  Note that 
d ( l i m s ( i ) ( a ) , l i m s q ) ( b ) )  = O. 

i<o~ j<o~ 

Infinite normal forms can be considered the "value"  of a term, when they are unique and lend 
themselves to approximation. A f a i r  computation is a derivation for which no redex (position at 

which a rewrite is applicable) persists forever. More precisely, if t o --~ t I ~ - . .  -- ,  t n --) • .  • is a 

fair derivation, and tnl p (the subterm of t n at some position p) is an instance of a left-hand side of a 

particular rule I---)r in R for all n past some N, then (at least) one of the rewrites t i --) ti+ 1 (i > N )  

must be at or above p (i.e. the redex is at a superterm of tip). For left-linear systems (only), fair 

derivations compute c0-normal forms at the limit: 

Theorem 2. L e t  R be  a l e f t - l inear  r e w r i t e  s y s t e m .  

(a )  I f  t a d m i t s  a n  03-normal  f o r m  t', t h en  there  ex i s t s  a f a i r  d e r i v a t i o n  t = 
t0--~ q ..-~ . . .  -.-~ tn --- ~ . . . , w i t h  l i m  tn = t'. 

(b)  F o r  a n y  f a i r  d e r i v a t i o n  t = t o ~ t 1 ~ . . . --~ t n ~ . . . , s u c h  tha t  t h e r e  ex i s t s  a l imi t  

t '  = lira tn, t '  is  a n  03-normal  f o r m  o f t .  
n<o)  

If a system R is finitely terminating and confluent, then any finite term t has exactly one finite 
normal form. Regular systems are always confluent [Huet-80], but since they need not be terminat- 

ing, there may be terms with no normal form. For infinite rewriting, the following two results hold 
[Dershowitz-Kaplan-89]: 

Theorem 3. I f  R is  l e f t - l i near  a n d  03-canonical ,  t hen  e a c h  t e r m  h a s  a u n i q u e  o ~ n o r m a l  
f o r m .  

Theorem 4. I f  R is  r egu lar ,  t hen  it  is  03-confluent.  

Thus, left-linearity is crucial and, throughout this paper, we deal exclusively with left-linear sys- 
tems. 



252 

The next section provides semantics for infinite rewriting. Section 3 addresses the issue of 
sufficient completeness. Section 4 describes methods of establishing c0-canonicity. In the final sec- 
tion, the notion of infinite rewriting is extended to conditional systems. 

2. Algebraic Semantics 

In this section, we consider algebraic aspects of infinitary theories-- i .e ,  their m o d e l s - - a n d  their 

connection to operational aspects (viz. r~-rewriting). Since we are interested in infinite computations, 

it is natural to work with continuous models. (We refer to [Scott-76, Stoy-77] for general references 

on the topic.) It is also natural to use a completion process. Alternative notions of completion have 
been studied in the algebraic framework, leading to different initial models, with their own abstract 

properties. (see, e.g., [ADJ-77, Moeller-84, Tarlecki-Wirsing-86]). 

In this paper, to define our class of models, we use the additional assumption that the systems 
under consideration are ol-terminafing. That class admits an initial model, representing precisely the 

chains of m-rewriting. Thus, our approach ex tends - - in  a natural fash ion- - the  classical, finite 

approach, using intuition about rewriting. 

Definition 5. Given a signature ~, a continuous Z-algebra consists of: 
(a) a partially ordered universe (M,<), such that each nonempty increasing sequence has a 
least upper bound (lub) in M, and 
(b) an interpretation fvt : MarCO -* M, for each f ~ Z, that is continuous. 

Given a continuous Z-algebra M, any assignment ~ : X  -* M extends to a morphism 

G : Tz~(X) -*  M, as follows: 

• if t=f ( t  l . . . . .  tn) for s o m e f e  Z, then or(t) =fv/(c(tt) . . . . .  cr(tn)); 

• if t = x for some x e X, then o(t) = o(x). 

Definition 6. Given an m-terminating rewrite system R over Tz(X), an R-model is a con- 
tinuous Z-algebra M that satisfies: 
(1) for any rule l--~r in R, assignment o: X-*M, and context c in Tz(X ), the inequality 
~J(c[/]) < 6(c[r]) holds; 
(2) for any (r : X-*M, lub ~(Un) = lub Cffu'n), for sequences (Un) and (u'n) over Tz(X ) such 
that (un) --'P w %-- (u'n) for some w. 

Notes: 
• The existence of the least upper bounds in (2) comes from the fact that the two sequences (un) and 

(u'n) are increasing. 

* A model need not satisfy equality of left- and right- hand sides, as in the classical case, but, rather, 

an inequality. 
o The class Mod°~R (or just Mod ~) of R-models, with continuous Z-morphisms, is a non-empty 

category. 

Definition 7. Suppose R is an o~-terminating rewrite system. The model 7~R (or just ~ has 
a universe TuNF~(T), consisting of all finite ground terms and all their (possibly ~finite) 
m-normal forms, partially ordered by ._.)c0. Similarly, the model 7~R(X) (or just T(X)) is 
T(X)uNF~(T~(X)), ordered via -*~. 

Theorem 5. If  R is m-terminating, then 7 ~ is initial in Mod ~. 
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Proof. Clearly, 7 ~ satisfies both conditions for R-models. Let M e Mode; we wish to define a 

morphism ~: 7 ~ M .  For t finite, we must take ~[t] = t M. For an infinite co-normal form t~, we have 

&~°~t~, for finite terms (tn). We must have, then: ~ [ t j  = lub ~[tn] -- lub (tM). This shows that, if  

such a ~ is suitable, it is unique. Let (~[f(t~--3] = lubf(~)  = f~t(lub ~ = f~(¢[t~]). Thus, ~ is a Z- 

morphism. Lastly, (~ is continuous, by construction. [] 

Similarly, it can be seen that T(X) is a model of Mod °~. We may now define o(t), for any model 

M in Mod ~ and t e T ( X ) ,  as follows: 

• if  t is finite, ~(t) is as above; 

• if  t is infinite, it is the limit of a chain (tn), and we let or(t) = lub C(tn). 

Thanks to condition (2), the lub does not depend on the choice of (tn). 

Definition 8. Given t, t '  in 7"(X), and M e Mod ~, we say that M satisfies the inequality 
t < t' if  for every assignment ~:X--->M we have ~ ( t )<  g(t'). In that case, we write 
M N t < t ' .  

As usual, we say that Mod ~ satisfies t < t ' ,  and write Mod ~ #  t < t  t, if M #  t < t ' ,  for every 

M e Mod °~. 

Theorem 6. Let  R be m-terminating and t,t' e T(X). Then 
Mod~ # t < t" i f f  t - ~  t'. 

This result may be seen as extending Birkhoff's theorem to the validity of  inequalities in the algebra 

of continuous models. 

Proof. Suppose that Mod ~ # t < t'. In particular, 7~(X) # t < t', which means t--->~t '. Con- 

versely, suppose that t--->°3t ". Let  M e Mod  ~ and let c : X---~M. The term t is finite, since otherwise it 

would be a normal form. There exists a chain (tn) of finite terms such that t=t 0 --->. . .  --> t n 

. . . ___>co t'. For any n, we have or(t) < C(tn). Thus, or(t) < lub (c(tn)) = ~(tt), i.e. M # t -< t'. [] 

Definition 9. The class Eq °~ is the subclass of Mocl ~ for which o(e[/]) = ~(c[r]), for any 
rule l ~ r  in R, substitution a: X ~ T ~ ,  and context e in T(X). 

Note that M is in Eq °~ iff  M ~ l < r and M ~ r < l. 

Definition 10. Suppose that R is 0~canonical. NF ~° is the model whose universe NF~(T) 
consists of  the c0-normal forms of the finite terms, ordered in a discrete fashion (i.e. -<NF" is 
equality). 

Theorem 7. I f  R is co-canonical, then N F  °~ is initial in Eq °~. 

Proof. Let M e Eq °~. We wish to define a morphism ~:  NF~--->M. Denote by ~NF and ¢~M the 

above morphisms T---~NF °~ and 7~--->M, respectively. We must have: ~N/~O~ = ~M' Thus, ~) must be 

defined as follows: for any co-normal form t=, for any sequence of finite terms (tn)---~t~, ~[t] =aey 

lub (tM). One can check that such a ~t is well-defined. It is clear that NF  ~ satisfies the conditions on 

R-models. Moreover, as previously, ~ is a morphism and is continuous. [] 

Corollary.  Let  R be o~-canonical. Let t,t" e Tz. 

Eq°~ ~ t < t~ A t" < t i f f  t --->°~ o %-- t ". 

As above, the last result may be seen as extending Birkhoff's theorem to the validity of equa- 
tions in the algebra of continuous models. 
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The relationship between the classes M o d  ~, E q  °~, and AIg  (the class of the finite, usual models, 
ordered by inclusion), is are lattices. Their relationship, for m-canonical systems, is illustrated in Fig- 

ure 1. 

Example: Let the signature Z consist of two constants, a and b, and a unary operator s. Let R = 
{ a ~ s ( a )  , b--+s(b)}. T h e  model 7~R has as universe 

{a, s(a),  • • . ,  s(")(a), . . • ,  b, s(b),  • • • ,  s(n)(b) . . . . .  s (~)} 

ordered by: 

a <- s(a)  <- - . .  <- s(n)(a) <- " "  <- s (~) 

b <<- s(b)  <- " " ' < s(n)(b) <- ' - - <- s (~). 

The universe NF ~ is reduced to {s(=)}. Notice that M o d  ~ does not satisfy a < b or b < a, and that 

Alg  does not satisfy a=b, whereas Eq °~ validates all these. 

Definition 11. The class of the (o-reachable  mode l s  is the subclass of the models M of 
M o d  ~ such that the canonical morphism 0OM : 7 ~ ---) M is surjective. 

The o~-reachable models form a non-empty, complete sublattice of M o d  ~ (containing at least ~ .  

Theorem 8. F o r  any  o3-reachable m o d e l  M,  there  exists  a con t inuous  c o n g r u e n c e  =M on 

such  that  M is i s o m o r p h i c  to T / -M.  

By "continuous", we mean that for a rewrite chain t0--~ •. • ---~t,:--) • • • such that lira tn--t and t n - t" 

for each n>0, it is the case that t - t ' .  The proof is as in the finite case, with t =M t' iff 

(~M(t) = (~M(t'). 

Triv E 
A -  / The continuous, 

~//~:~.!:\~ ~ equational models 

The continuous, ~ / \ / The classical, finite, 
inequational models \ / \ / equational models 
Mod e ~ ~ Alg 

T T/- 

Figure 1. Classes of models. 
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3. Hierarchical Systems 

In this section, we consider typed systems (cf. [ADJ-77], [Huet-Oppen-80]). A signature is now a 
pair (S,Z) where S stands for a finite family of sort names and Z is a finite family of operators on S. 
All the definitions given so far extend to the sorted case. 

Definition 12. A hierarchical specification is a triple (So~St,Eo~Zt,RouR1), where R 0 and 
RouR 1 are o~terrninating rewrite systems on (S0,E0) and (SouSt,EoUZt), respectively. The 
class HMod~RoUR1 of the hierarchical models is the class of models M of Mod~RouR~ such that 

the restriction Misc. ~ of M to the signature (S0,E0) is isomorphic to 7~so,r~o. 

In the sequel, we suppose that the left-hand sides of the inequalities of R 1 always contain a sym- 

bol of Y'I (otherwise, the next condition of hierarchical consistency could not be satisfied--except in 

trivial cases). 

Definition 13. A hierarchical specification is sufficiently complete iff for every t ~ Ts0,~oU~- 1, 
there exists t' ~ f's~'0,R0 such that Mod°~RoUR1 ~ t <- t'. 

Definition 14. A hierarchical specification is hierarchically consistent iff for any t ~ Tso, z o 
and for any t' ~ 7~s0,~0,~0 , Mocl~RouR~ ~ t < t' iff god~o ~ t <_ t'. 

Note: An infinite term t' ~ 7~&.r.o~0 is by definition a normal form for R 0. It is also a normal form for 

RouR 1, due to the above hypothesis about the left-hand sides of the inequalities of R t. Thus, the 

above two definitions are equivalent to the existence of a t" such that t "-~ouR1 t', and to t ~ouR1 t' 

iff t --~o it, respectively. 

These definitions are consistent with the standard ones in the finitary case (cf. [Wirsing-89]), and 

with those of [Tarlecki-Wirsing-86] for their notion of continuous specifications. Sufficient complete- 
ness means that any finite term t of an old sort, built with old and (possibly) new operators, is smaller 

than a (possibly infinite) term t' built with old operators only. Hierarchical completeness means that 

for two terms t and t' built with old operators only, t < t' holds in the new specification iff it holds in 
the old one. Note also that the above definitions extend, as is true for finitary specifications, to the 

case where no new sort is introduced (i.e. St=~);  operators of Z~ are then called constructors, and 

operators of Z t are called derived operators (or simply "non-constructors"). A constructor term is a 

term containing only constructors. A non-constructor term is a term containing at least one non- 
constructor. For instance, the specification: 

constructors : a: ---) elem, cons: elem x elem --~ elem 
derived operator : b: --4 eIem 
law : b < cons(a,b) 

is (co-) sufficiently complete. Note that in the classical, finitary framework, it would simply be rejected 
as not being (finitely) complete. 

Now, the main result is that, as in the finitary case, a hierarchically consistent and sufficiently 

complete specification satisfies its hierarchical const ra ints- - in  the following sense: 

Theorem 9. I f  (SotjS1,ZoUZI,Ro~R1) is sufficiently complete and hierarchically consistent, 
then HMod~ouR~ is a non-empty, complete sub-lattice of Mod~RouR~. Its initial model is 

TRowRI" 
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Proof. The proof is essentially as in the finite case. The main difference is in showing that 

i~eouR 1 is actually in HMod~RouR,, which we establish as follows: 

The restricted model (7~RouR1)~0,~o may be canonically embedded into TRo. If t • (TRoun~)lS~ is 

finite, then t is in fact in Tso,2 o and therefore also in 7~k0, If t is infinite, we may write t o "-~RouR~ tl 

---)Roue~ " " " "~owR~ t, where the (t n) are finite terms of T S ~ .  Using sufficient completeness, there 

exists t '  • 7~s0,~Ro such that t -"~RffoRl tt" Since t is a normal form for RowR1, this proves that t=-t', i.e. 

that t actually belongs to 7 ~ s ~ o .  

Thus, (TRouR~)JS~ may be seen as a subset of  7 ~ s ~ o .  Now, hierarchical consistency shows that 

it is actually equal to the whole set, and that the orderings induced by R 0 and by RouR ~ are identical. 

This finally establishes that 2?Rou& is actually in HMod~RouR: [] 

Define on 7~RouRa a quasi-ordering <oh, as follows: 2 its restriction to the sorts of  SO is ~ o  (or 

equivalently ---)RouRL, because of the hierarchical consistence property), and for a sort s of S 1, for t,t" 

in (TRouR) s, t~°bst' iff for any context c with result in a sort of S 0, then c[t]---)~oc[t']. As usual, we let 

=obs _ <_obs~<obs-~; now, TRouRJ= -°bs is ordered by <obs. 

Theorem 10. TRowRt/=°os is terminal among the co-generated models of  HMOD°~o~ . 

The proof is classical. 

4. o-Norma l  Forms  

In this section, we aim for sufficient conditions for existence and for uniqueness of m-normal 

forms. We concentrate on special cases that are of  practical importance. Recall that a rewrite system 

is co-terminating if  every infinite (co) rewrite chain has a limit. 

Definition 15. A rewrite system R over T is top-terminating if  there are no infinite rewrite 
sequences t 1 ~ t 2 ~ t 3 ---) • • - of  terms in T with infinitely many rewrites at the topmost 
position. 

Note that a top terminating system need not be finitely terminating. 

Theorem 11. A rewrite system R is o-terminating for finite terms in T if  it is top terminat- 
ing for  T. 

The converse is wrong, as demonstrated by the system {x---)f(x)}. 

Proof. If R is top terminating, then after a finite number of rewrites, no more rewrites are 

applied at the top. The same argument can then be applied to the subterms to show that the rewrites 

must occur deeper and deeper, and so R is c0-terminating. [] 

We define co-termination orderings for proofs of  co-termination that are analogous to the well- 

founded quasi-orderings used to show finite termination [Dershowitz-87]. We will say that a quasi- 

ordering > over a set S is well-founded if  it admits no infinite strictly descending sequences s 1 > s 2 > 

• . '  of  e lementss  i i n S .  As usual, s > t m e a n s s > t a n d t  s , s - t m e a n s s > t a n d t > s .  

Definition 16. A well-founded quasi-ordering > is an co-termination ordering if s > t im- 
p l i e s f ( . , . s . . . ) > f ( - - . t . . . ) f o r a l l f ~  Z a n d s , t e  T(X). 

2A quasi-ordering is a reflexive and transitive binary relation. 
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Theorem 12. A rewrite system R is top-terminating i f  there exists an co-termination order- 
ing > such that le; > rcs f o r  all rules I ~ r in R and  substitutions ¢s o f  f ini te  terms f o r  vari- 

ables. 

Proof.  Suppose Ic~ > ro  for an m-termination ordering > .  For an infinite rewrite sequence to 

t 1 ---) t 2 ~ • • - ,  if  t i -~  ti+l at the topmost position, then t i > ti+l, and if t i --~ ti+ 1 at an inner posi- 

tion, then t i > ti+ P An infinite number of  top rewrites t i ~ ti+ I would contradict the well-foundedness 

of >. [] 

co-termination orderings are not that hard to devise. What is significant is what happens near the 

top of the term. For example, one can define an co-termination ordering >* on terms that is induced 

by a given quasi-ordering > on operators in Z: i f f  > g in the operator ordering, then f ( s  1 . . . . .  sn) >* 

g(t  1 . . . . .  tn); while if  f =  g, the two are equivalent. 

c0-termination orderings can be applied to hierarchical systems to give methods of establishing 

ground to-confluence, that is, to-confluence on ground terms, and also sufficient completeness, that is, 

any ground term has an co-normal form that is a constructor term. In the remainder of  this section, 

we deal only with the special case in which the following "constructor condition" is satisfied: no two 

terms of  the form u[f(s I • • • sn) ] and u[g(t I • , • tn)] are provably equal (by replacement of equals) 

from R, for distinct constructors f ,g  e Z 0 and for a context u in T~(X). 

Theorem 13, Let  R be a left-linear rewrite system. Suppose there is a well-founded 
quasi-ordering > with the fo l lowing properties: 

(a) I f  s ~ t by a rewrite that is not inside a constructor o f  s and t does not have a con- 
structor at  the top level, then s > t in the quasi-ordering; i f  t does have a constructor at  the 
top, then s > t in the quasi-ordering. 

(b) I f  f is a constructor, then f (  • • • s • • • ) > s in the quasi-ordering; i f  f is not, then 
f ( - ' ' s ' ' ' ) > s .  
(c) Al l  f ini te  ground non-constructor terms are reducible. 
Then R is ground co-canonical. Moreover,  all to-normal f o r m s  o f  ground terms are con- 
structor terms. 

Note that we are not requiring regularity; R may have overlapping left-hand sides. 

P r o o f  We show that, for any ground term s and for any integer k, there is a term t such that s 

--~ t and t has no non-constructors at depths less than or equal to k. This is by induction on s, using 

the quasi-ordering, and for equivalent terms, by induction on k. 

Suppose s =f ( s  1 . . . . .  sn) a n d f i s  a constructor. Then s > s i and the argument below shows that 

(for each i) there is a t /such that si - 3  q and t i has no non-constructors at the top k-1 levels. 

Suppose, without loss of  generality, that f is not a constructor. Then the s i are less than s in the 

quasi-ordering, so we can apply the induction hypothesis to them, and get arbitrarily many construe- 

tots at the top levels of  those subterms. Thus, s i --~ ti, where the t i have no constructors at the top m 

levels, for m larger than the maximum depth of a left-hand side in R. Thus, s ~ f ( t  1 . . . . .  tn). By 

assumption (c), there must be a top-rewrite f ( t  1 . . . . .  tn) ~ t, since all rules in R have depth smaller 

than m and are left-linear, so cannot depend on anything lower down. If t has a constructor at the top 

level, f (q  . . . . .  t n) > t in the quasi-ordering. The subterms of t are smaller than t by properties of the 

ordering, so we can use the induction hypothesis on them as before. If  t does not have a constructor 

at the top, then s > t in the quasi-ordering, and we can apply the induction hypothesis to t. 
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This implies that the limit of the rewrite sequence is a constructor term. Confluence follows 

because no two distinct constructor terms can be equal, by the constructor property. 121 

We next give a non-obvious application of the preceding results. The nesting level N(t) of non- 

constructors in a term t is defined as follows: 

i) If  t is a constructor constant or a variable, then N(t) = O. 

ii) I f  t is a non-constructor constant, then N(t) = 1. 

iii) If t is f ( t  1 . . . . .  tn) and f is a consmactor, then N(t) = maxN(tl). 
l <_i <_n 

iv) ff  t i s f ( t  1 . . . . .  tn) a n d f i s  not a constructor, then N(t) = l+maxN(tl). 
I <_i<_n 

We say that a system R does not increase the nesting level of non-constructors if, for all roles l---~r in 

R and substitutions ~, N(h5) > N(rcy). This condition can be checked syntactically by noting the nest- 

ing of function symbols above each variable. 

T h e o r e m  14. Suppose that R is a left-linear top-terminating rewrite system that does not 
increase the nesting level of  non-constructors. Suppose further that all finite ground non- 
constructor terms are reducible. Then R is ground o~-canonicat and all on-normal forms of  
ground terms are constructor terms. 

Proof. Let s 1 ~ s 2 ~ s 3 ... be an infinite rewrite sequence. Since R does not increase the depth 

of nesting of  non-constructors, N(st) >- N(s2) > N(s3) - - • .  It can be shown that the non-constructors 

must  get farther and farther apart in the terms s t, s 2, s 3, • • • ,  and so the limit exists and is a con- 

structor term. [] 

For instance, let a be a constructor constant, c be a unary constructor, and f ,  a unary non- 

constructor. The system: 

f(a) -~ a 
f(c(x)) --~ c(f(c(x))) 

is m-convergent by the above theorem. On the other hand, if, instead of  the second rule, we have the 

" inc reas ing"  rule 

f(c(x)) --> f(f(c(x))), 

then there are non-constructor oynormal forms, e.g., )'(~). 

T h e o r e m  15. I f  R is top-terminating and left-linear, no rewrite sequence has unbounded 
nesting of  non-constructors, and all finite ground non-constructor terms are reducible, then 
R is ground o~-canonical. 

In particular, one can prevent unbounded increase in non-constructor nesting depth in the follow- 

ing way: We say that a term is constructor-based if it is of the form f ( t  1 . . . . .  tn), where f is a non- 

conslructor and the t i are all constructor terms and that a system is defined on constructors if  all its 

left-hand sides are constructor-based. Any system defined on constructors, for which there is a con- 

stant N such that t has a constructor at the top whenever s --~ t (for some finite term s) by a sequence 

of N or more rewrites, has constructor normal forms. 

To conclude this section, we present some definitions and results leading up to a corollary to the 

above theorem. 
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Definition 1% A term t is a k-constructor term if  all function symbols at depths less than 
or equal to k, are constructors. A rewrite is a k-constructor rewrite if the redex is of  the 
form f(s  1 • • • s n) where f is a non-constructor and the s i are k-constructor terms. 

Definition 18. Parallel outermost k-constructor rewriting is the rewriting strategy in which 
at each step all outermost k-constructor rewrites are done. 

L e m m a  1. Suppose R is left-linear, defined on constructors, and m-terminating. Suppose 
further that no R rewrite sequence has unbounded nesting of  non-constructors, and all finite 
ground non-constructor terms are reducible. Then, the set of  o3-normal forms of  a term is 
the same as the set of  normal forms obtained by parallel outermost k-constructor rewriting, 
for  k greater than or equal to the maximum depth of  a left-hand side in R. 

Proof  Any infinite fair R rewrite sequence can be rearranged to have a prefix that is a parallel 

outermost k-constructor rewrite sequence. [] 

L e m m a  2. I f  R is defined on constructors and left-linear, no R rewrite sequence has un- 
bounded nesting of  non-constructors, and all finite ground non-constructor terms are redu- 
cible, then R is o~-terminating iff all parallel outermost k-constructor rewrite steps produce 
a term with a constructor at the top level, with k as in the previous lemma. 

Definition 19. A rewrite system R has bounded parallel outermost k-constructor rewriting 
if  there is an integer N such that for all constructor-based ground terms s, if s --~ t by a 
parallel outermost k-constructor rewrite sequence of length N or more, then t has a construc- 
tor at the top. 

The intuition is that an "ou tpu t"  must be produced after a bounded amount of  "computation t ime".  

A constructor at the top level is like an output of  a computation. 

If R is defined on constructors and left-linear, no R rewrite sequence has unbounded nesting of 

non-constructors, and all finite ground non-constructor terms are reducible, then it is semi-decidable 

whether R has bounded parallel outermost k-constructor rewrites. This is because such rewriting can 

onIy depend on the structure of  s near the top, where there are only finitely many possibilities. 

We are ready now for the promised corollary: 

Corollary.  I f  R is left-linear, defined on constructors, has bounded parallel outermost k- 
constructor rewriting (for k no less than the maximum depth of  a left-hand side in R), no 
rewrite sequence has unbounded nesting of  non-constructors, and all finite ground non- 
constructor terms are reducible, then R is ground o3-canonieat. 

Note that R may be top-terminating even if  the set of rules l--~r with r having a non-constructor 

at the top is non-terminating. For example, take a~f(a) ,  with f a non-constructor. 

A constructor-based programming language with infinite normal forms is described in [Narain- 

88]. 

5. Conditional co-rewriting 

In this section, we consider extensions of some of the results given so far to conditional rewrit- 

ing. We presume the reader knows the basics about ordinary, finitary conditional rewriting (el., e.g., 

[Kaplan-Remy-89]). A conditional rewrite system is a finite family of  conditional rules of  the form 
m 

A uuvi  => 1--*r, where all variables of  a rule also occur in the left-hand side. Operational semantics 
/=1 
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are defined as follows: 

Theorem 16. For  any conditional rewrite system R, there exists a smallest  binary relation 
I11 

--~ on TO(X) such that, f o r  each rule A u y v  i => l---~r in R ,  context c, and substitution ci, 
i=l 

c[lo] --~ c[rc~] if ui(Y ---)°~o~--°~ vicY f o r  all i = 1 . . . . .  m. (*) 

This stems from the fact if a family of predicates satisfies the condition (*), then their intersection 
also satisfies (*) and that the "always true" predicate satisfies (*). Now, the essential question is 
whether __.~o~ may be finitely approximated, as is the case for unconditional rules (see Section 1). 
Somewhat surprisingly, a positive answer may be provided to this question, by means of what we will 
call "clausal rewriting". 

We first note that the usual, finitary approach to conditional rewriting (cf. [Kaplan-84]) is unsa- 
tisfactory here. Indeed, the " l imi t " - - in  any reasonable sense---of the sequence of relations, -% = 

and ---~n+l such that c[lcy] "-~n+l c[rcy] /ff for all i = 1 . . . . .  n, ui(3 ----)nOn¢~ --- vi(y, does not yield --~. For 
example, consider the system {a --* s(a), b --* s(b), a = b => c --4 d}. The sequence of relations (--%) 

is stationary, and thus certainly cannot approximate --~ (which satisfies c ~ d). 

Let C~(X) stand for the set of finite or infinite conjunctions of equalities between terms of TO(X) 
modulo finitary and infinitary applications of the following identities: 

( p A Q )  A R  - p A ( Q A R )  

p A Q  - Q A p  
p a p  -- p 

p A u--v - P I~v':-u 

p A U=U - P 

p A U=V A C[U]=C[V] - P A u=v 

Let CT~(X) stand for the Cartesian product C~(X) xT~(X). We call elements of CT~(X)  conditional 

terms, and write them in the form p:t .  The distance for C°°(X), is just the distance between the con- 
junctions considered as trees, with an associative-commutative operator 'A' and a commutative opera- 
tor '=' .  A distance is then finally defined on the conditional terms of CT"(X) as the minimum of the 
distances in C~(X) and T°(X). 

The main idea of this section is to rewrite conditional terms so that (for instance): 

true:c ~ a=b 'd  - -~  sa=b:d ~ sa=sb:d - -~  co s(~)=s(~):d =_ true'd,  

validating the (infinitary) rewrite c---)d. We call this "clausal rewriting". 

Definition 20. The relation --~ of clausal rewriting is defined as the smallest relation on 
CTO(X) such that, for any rule q => l---~r, any context c and any substitution or: 

p " c[l~] ~ p h q~  : c[rcs] (a) 
p h (c[l(~]=v) : t - -~  p Ix q(~ h (c[ro]=v) : t (b) 

Step (a) corresponds to conditionally rewriting the conclusion, and step (b) to rewriting inside the 
premise. 

Definition 21. A conditional TRS is multi-linear if 
• the left-hand side of each rule is linear, 
• the terms occurring in the premises are linear, 
• there is no equation between variables in the premises. 
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Theorem 17. I f  R is multi-linear, then f o r  any ordinal o~ > co, - - ~  ~ = ~ co. 

The proof is by transfinite induction. It is actually enough to show that ~ 0~+1 = ~ ~, which is easy 

by case analysis on the (0yt-1) st s t e p - - o f  type (a) or (b). 

Definition 22, A conditional rewrite system R is o3-terminating if  the relation - -~  is, i.e. 
if for any chain t I - -~  . • • ~ t n - -~  • • • ,  there exists limt n. 

¢l<tl)  

This extends the notions of Section 1. We then have the following fundamental theorem, linking the 
relations ~ and ~ : 

Theorem 18. I f  R is multi-l inear and o~-terminating, then 
t --->~ t" i f f  true:t  - -~  o~ true:t" 

Note: This means that the relation of interest ._>o~ is approximated by the f initary iterates - ~  n 

Proof.  Define the relation t - - >  t" iff true:t  - ~  ~ true:t'.  We first prove that - - >  satisfies Con- 
m 

dition (*) (of Theorem 16). Suppose that for substitution c~ and rule A u u v  i => l--->r in R, we have 
/=1 

ui(Y-->C°oC°<--l)i(y for each antecedent condition. We need to show that, for any context c, 

c[I~] - - >  c[ro]. Notice that: 

m 

true: c[RJ] ~ A ui(Y---l~i(y : C[F(Y]. (**) 
/=1 

Now, for multi-linear systems (by the previous theorem), true:uic ~ o~ true:w i ~_.  o~ t rue :vp ,  for 

some infinite term wi, for each i (l<i~_n). Consider the first part: true:u~J ~ ~ truelwi; it states that 

there exist terms ui, n and conjunctions Pi,n such that: 

trueIui(~ ~ Pi,1 I ui, 1 ~ . . . ~ to trueI ui,to. 

Now, the fact that limPi,n is equivalent to " t rue" ,  implies that, actually, for n greater than some Ni, 
t l <  011 

we have Pi,n true. Similarly, for the vt~'s. Let N be the maximum of the Ni's.  The  above relation 
(**) now yields (for all n > N): 

true:clio] - - ~  * Amlui,n--vi, n : c i r r i  ~ c0 ~ l w F w  i true: c[ra] = true: c[rtJ], 

i.e. c[R~] - - >  c[rc]. By rninimality of ---), this actually proves that ~ c - - > .  Thus, ...)o~__>, since 

- - >  is c0-closed. Since the reverse inclusion is clear, this concludes the proof. [] 
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