
Higher-Order and Semantic Unification*

N a c h u m D e r s h o w i t z , S u b r a t a Mitra

Department of Computer Science
University of Illinois

1304 West Springfield Avenue
Urbana, IL 61801, U.S.A.

{nachum, mitra}@cs .uiuc. edu

Abstrac t . We provide a complete system of transformation rules for se-
mantic unification with respect to theories defined by convergent rewrite
systems. We show that this standard unification procedure, with slight
modifications, can be used to solve the satisfiability problem in combina-
tory logic with a convergent set of algebraic axioms R, thus resulting in a
complete higher-order unification procedure for R. Furthermore, we use
the system of transformation rules to provide a syntactic characterization
for R which results in decidability of semantic unification.

1 Introduction

Equation solving is the process of finding a substitution that makes two terms
equal in a given theory, while semantic unification is the process which generates
a basis set of such unifying substitutions. For example, considering the function
definitions

even(x + x) = true, even((~ + x) + 1) = / a l , e,

length([]) = O, length([x l Y]) = length(y) + 1,

if we could unify with respect to + and length, then we could solve queries of the

form even(length(x)) ~ true in logic-programming languages. In this paper, we
provide a complete system of transformation rules for semantic unification with
respect to theories defined by convergent (confluent and terminating) rewrite
systems.

There have been different proposals to combine higher-order features with
first order equational reasoning (including [Bre88, Dou91], and others). Most of
these deal with the combination of lambda-calculus and a first-order equational
theory, l~ecently, Dougherty and Johann ([Dou93, D J92]) proposed a method for
higher-order reasoning by transforming lambda-calculus terms to combinatory
logic, that is, they use a combination of combinatory-logic with an equational
theory as the formulation of higher-order reasoning. In [DJ92], they also provide
a complete set of transformations for solving the satisfiability problem in such a

* This research was supported in part by the U. S. National Science Foundation under
Grants CCR-90-07195 and CCR-90-24271.

140

combined system. Some of the main advantages (pointed out in [DJ92]) of using
combinatory logic as the basis of higher-order unification (as opposed to the
traditional lambda-calculus based methods such as [Snyg0, NQ91], etc.) are: it
eliminates some technical problems associated with bound variables, allows easy
incorporation of type-variables, and facilitates the use of substitution like in
the first-order case. We extend the first-order unification procedure to develop
a complete method for solving the satisfiability problem in combinatory logic
with a set of algebraic axioms R which can be presented as a convergent rewrite
system.

Our approach enjoys the following advantages:

- It provides more control on positions where rules get applied. In general, we
apply rules only to the top-most position in goals.

- It is possible to incorporate additional pruning rules (for example, teacha-
bility analysis [DS87, CRgl]) directly.

Finally, we use the system of transformation rules to derive syntactic restric-
tions on rewrite systems that result in decidable semantic unification problems.

In general, we use standard terminology and notation for rewrite systems.
Most of the notations that we use for equational theories are consistent with
[DJ90], while we borrow notation from [DJ92] for the higher-order aspects.

Types are formed by closing a set of base types (for example, integer�9 and
boolean) under the type forming operation ~1 ---* a2 (for types ~1 and ~) . We
assume the constants Z,/C and S (called redex atoms), given types as usual. A
term is linear if every variable occurs exactly once.

For Cs (the simply typed combinatory-logic terms), the convergent rewrite
system {Z --+ ~, (/Cx)y--~ z, (($x) y) z --~ (~z) (yz)) (henceforth denoted C) de-
fines weak reduction. Note that this rewrite system is terminating only for typed
combinatory logic. We define combinatory-R reduction as --*v U -+R. Whenever
any such relation is terminating (convergent) we can talk of the (unique) normal
forms it assigns to terms.

It is well-known that using combinatory reductions is not enough to capture
equivalence of lambda terms. For example, S/C and/CZ are distinct normal forms
with respect to -+c, though their translations to lambda-calculus are both equal
to ~yAz.z. However, it is possible to extend combinatory-R equality to capture
equivalence of functional terms, by using the following rule of extensionality:

Infer s -- t if sD = tD, where D is a new constant.

A term is said to be pure if it does not contain any constant introduced by the
extensionality axiom. We use the notation s = R e t (or say that s and t are
//C-equal) to denote the equality of the lambda-ealeulus translations of s and t
with respect to flyR convertibility (which, by virtue of the above discussion, is
identical to the equality induced by C U R with extensionality).

In formulating rules for validity and higher-order unification, we deal with

unordered-pairs of terms. A pair s ? t is t r iv ial i fs =- t, and is RC-val id i f s = R e t.
?

A term-pair s -- t has a solution cr if s~ =Rc t~r. These notions can be extended

141

to collections of pairs in the usual way; for example, we say that a collection is
valid iff each of its pairs is valid.

2 Semantic Unification

In this section we provide a complete system o f transformations for semantic
unification with respect to a convergent rewrite system. The main idea behind
using convergent rewrite systems for semantic unification is that if t9 is a solution

? I
to s - t , then there must be a common normal: form w such that s0 --*' w

and tO --*! w. A n equational goal: s ~ t can therefore be converted into two
directed goals s ---~? x and t --+? z, where x is a variable not in t or s. Furthermore,
since the rewrite system is convergent, it is sufficient to use any one complete
rewriting strategy. Therefore, we will henceforth b e interested in enumerating
those solutions 0 which correspond to innermost reductions in the derivation
s0 --+! w and tO --+! w. We do not actually demandal l solutions for completeness;
rather, if for every variable x , ztr and z r are equal (with respect to R) then (at
least) one of ~r or r is deemed redundant. We can use the transformation rules
of Table 1 to solve the semantic unification problem with a convergent R.

Some explanations are in order:

- Each transformation rule consists of an antecedent (the first line), a conse-
quent (the third line) and, optionally, a condition (the fourth line, whenever
present). Whenever a subgoal matches the pat tern of the antecedent of a
transformation rule, we can replace it with the corresponding consequent,
provided the condition holds.

- The transformation rules given in Table 1 are non-deterministic, that it, for
completeness all possibilities have to fie tried. Thus, for any initial goal, we
generate a tree (which we will call the solution tree) of such possibilities.

- We use expressions of the form x ~-+ t, where z is a variable, to keep track of
partial solutions. An "unbound variable" is one that does not occur in the
domain of the partial solution generated so far.

- For convenience, we do not apply resulting substitutions back into left-hand
sides o f goals. This gives basic-narrowing [Itul80, 1Eet87] like capabilities
wi thou t having to keep explicit markers for basic positions. However, we
now need additional transformation rules to handle different possible right-
hand sides of goals.

The transformations of Table 1 suffice:

T h e o r e m l (C o m p l e t e n e s s) . Let R be a convergent rewrite system, and G . -
:{s---~? x,t---~? x} be a set of goals which admit a solution O. Then, there is a
~equence of transformations of the form G ",~! p, such that the generated substi-
tution p is at least as general as 0 (p <_ ~9).

142

Eliminate

Bind

Mutate

D e c o m p o s e

Imitate

A p p l y

{x. ---~.: t}

{~ ~ ~}
where x is an unbound variable that does not occur in t

{X -'+: 8, 2 ~ ~}

{= ~, ,} u rag.(8, 0

{ f (81 , . .

{814 :1 i , ,
where f (l l In) -+

�9 , 8.)-J ~ }

...+: ._+: ~}. 8n ~n ~ T

r is a renamed rule in R

{ f (s l , . . . ,8 , ,) -+? f (t l , . . . , $n))

{81 4 ? t l , . . . ,8~ -J" t~,}

{f(,~,. . . , 8,)-~: ~}

:81 -"+7 T , I , . . . , 8 n "-}" ggn, X t--.+ f (X l , . . . , Xn)}
where x is an unbound variable, and xa ,xn axe new variables

:{s --*: ~} u a

{s --+? ta} o

Table 1. Transformation Rules for Semantic Unification

3 H i g h e r - O r d e r U n i f i c a t i o n

In this section we formulate a RC-unification procedure: based on the transfor-
mat ion rules given in Table 1. Given two combinatory-logic terms s and t, we
want to find a complete set of their RC-unifiers; each RC-unifier being a solution
cr as indicated before, that is, we want to enumerate all substitutions ~ such tha t
s ~ = R e t a (with the understanding tha t whenever two substitutions are R C -

equal, at least one of them is redundant) . Since = R c has.no known presentation
as a convergent rewrite system (thus, t ransformat ions from Section 2 cannot
be used verbat im) we use *he idea of extending the convergent relation C U R
with extensionality, as discussed in Section 1. Roughly, t o decide if scr - -no t~,
we reduce sc~ and t~r (using innermost reductions) with respect to C U/~ as
far as possible, and then invoke extensionality; repeating this process until all

term-pairs are triviM.
Our top-down method for combining combinatory-logic with a first-order

rewrite system therefore proceeds as follows:

143

- Given a goal s ~ t, break it into a set of two directed goals of the form:
n c

{s- - . ? x , t ~ ? y}, and solve fo r x and y, which are new variables. The in-
terpretation of a goal of the :form u 4 ? v is: Find a solution a such that

!

U0" "-~CuR Vo'-
-- If the terms bound to z and y are syntactically unifiable with most general

unifier 0, return one solution as the composition of the partial substitution
collected so far with 0 :(details given below).

- If unification fails, s and: t may still be RC-equivalent, by virtue of extension-
ality. We simply apply the extensionality axiom as required, and continue
goal-solving with respect to C U R.

We :now provide details of the different aspects. For the first part, we simply
use the system of transformations given in Table 1, with the understanding that
the only non-zeroary function (for example, f in Decompose, Mutate, etc., in Ta-
ble 1) is "function application." In the rest of our discussion on RC-unification,
we will refer to this system of transformation rules as WR, for weak-R transfor-
mations. When using this system of transformations for higher-order unification
we do not deal explicitly with types. Nevertheless, every transformation rule
must be type preserving. We also insist that only pure terms are bound to vari-
ables (in Eliminate and Bind). Furthermore, we would restrict our attention to
left-linear rewrite systems alone. The more general case can be handled using
ideas developed in [DJ92].

The transformation rules in Table 1 form the crux of the higher-order se-
mantic unification procedure, since they provide a strategy of:unification with
respect to weak-combinatory equality. However, weak combinatory equality is
not identical to = n c . We need to extend the rules for weak-equality to handle
extensionality. Towards this end we provide a new set of transformation rules
(called EXT) shown in Table 2. The rules are non-deterministic (for example,

both Bind and Extend would apply to the sub:goal x ~ t) , and, as usual, all
possibilities have to be tried for completeness.

We are now ready to specify the complete goal-solving procedure:

?

D e f i n i t i o n 1. (RCU) To solve s - ' t for Cs terms s and t, we proceed as follows:

1. Use W R to obtain a partial solution {z ~-* u, y ~-+ v} U cr to the goal
{s--+ ? x,t--+ ? y}.

? ?

2. Use EXT to reduce ua'--va; r to subgoals 0; {li--" ri] i = 1 , . . . , m}.

3. Recursively, find solutions ~:i to li ~ ri, i = 1 , . . . , m.
4. Return {x ~-+ u, y ~ v}. U c~ U 0 U ~-1 U . . . U rm, provided it is a substitution

(that is, it passes the "occur check").

Example 1. Let R b e the rule FOx --+ z, where 0 and x are, respectively, a
constant and a variable o f t ype integer.

We look for solutions to the goal z ~-F0. Since both z (a variable) and F 0
are in C U R normal form, we have u~ -- z and vo- - F0 in step 2 of RCU.

144

Bind

Decompose

Extend

:{x Lf} UE;G

if x does not occur in t

{Fsl ... s, L Ftl $~} U E;G

{s~Lt~, . . . , s , Ls , ,}UE;G
where F is an atom

{s:t}OE;G

E; G U {sD ~-- tD}
where D is a new constant,

provided sDand tD are type-correct

Table 2, Transformation Rules for Extension

Therefore, one solution to the goal is {z ~-~ F0}: However, there are other so-
lutions, since we can add an argument to the two sides, and thereafter a t tempt

to solve zD ~ FOD~ .that is, zD ~ D (here D is a new constant of type integer).
Some possible derivations with this goal are:

?

zD "-D "~MutaCez z ~ I

?
z D - D "*Mutate~

?

Zl - D, z ~-+ ~z l
Fail

z D L- D " * M u t a t e s

zl D(z2D) ~ D "~Muta te~:

zl D(z2D) ~ D " * M u t a t e s
-, , .+

zlD(z~D)& D,z ~ $zlz2

Z 1 v . -+~ .

za:(z2D)(O(z2O)) ~ D, zl ~ 82a
F a i l

. ?

In the figure we have shown three different ways of muCating the goal zD-- D,
corresp:onding to the three rules in C. The first possibility yields a solution

immediately ({z ~-~ 2;}). In the second case, we get a su.bgoal of the form zl ~ D,
which has no solution (we cannot use elimination, since it would not give a pure
substitution, and we cannot add further arguments, since D is of type integer).
In the last case, we have further branches, only one of which yield :a solutions,
namely {z ~-* SK:z~}, which, in fact, is the same as the previous solution, since
,~lCx =Rv Z for any variable x. We get failure in the last branch, since we have
a subterm of the form D(z~D) which is not type correct, D being of integer

145

type. FinallY, we could mutate zD using the rule from R; this would repeat the
solution {z ~-* F0}. Therefore, we have exhausted all possibilities, and have a
finite solution tree in this case.

Our main result is completeness of the transformation rules for finding solu-
tions to higher-order equations:

T h e o r e m 2 (C o m p l e t e n e s s) . Let R be a left-linear convergent rewrite system.
I f O is a RC-unifier for two terms s and t, then there exists a RCU-sequence that
enumerates a solution ~ that is at least as general as 8.

Note that any RCU.sequence in general would consist of alternate applications
of WR and EXT. Therefore, the completeness proof is a combination of the
following lemmata:

L e m m a 3. Let R be a left-linear convergent rewrite system. Suppose O is a solu-
tion to the goal s--*?t (i.e., sO ~"cun tO), then there is a sequence of WR steps
starting with the goal s--*? t that generates a substitution a which is at least as
general as ~.

L e m m a 4 . Let R be a convergent left-linear rewrite system. I f s and t are terms
?

in C U R normal form, such that O is a solution to s - t , then there exists an

E X T derivation of the form s ~- t; r ~.z ! ~; G, such that cr U T is at least as general
as 8, where r is a solution to the set -of goals G.

Any innermost reduction steps can be simulated using WR (with respect to
C U R). Furthermore, we explicitly add arguments (Extend) and use decompo-
sition to expose inner positions where arguments need to be added.

4 Decidable Semantic Unification

It is well-known that semantic unification is undecidable, even when the the-
ory under consideration admits a convergent presentation. In this section, we
describe a syntactic restriction on rewrite systems which results in decidable
first-order semantic unification. In the following we say that a function f is a
defined function if it appears at the root of a left-hand side of R; any other
function symbol is a constructor.

D e f i n i t i o n 2 (Flat Term). A term is said to be fiat if every path from a vari-
able to its root contains at most one defined function, and the variable appears
immediately below the defined function.

D e f i n i t i o n 3 (Singular). A flat term is singular if all its variables appear under
a single defined function.

For example, if f is a defined function and s, a and 0 are constructors, then
s (f (x i y)) and s(f(f(O, 0), x)) are singular, while f (s (x) , y) (x does not appear
directly below f) is not. Finally, a(f (x , y), f (z , 0)) is flat but not singular, since
the variables appear under two different defined functions.

146

T h e o r e m 5. Let R. be a (left- and right-} linear convergent rewrite system. I f
for every function f defined by R there is at most one rule with a right-hand side
that is neither a constructor term nor a subterm of the corresponding left-hand
side and that is singular, then the semantic unification problem is decidable for
1L

Proof. The main idea is to show that for any goal of the form r---*?t, where r
is a variant of some right-hand side of R, a complete set ofsolutions can:be
expressed as a linear recurrence.

Consider the goal r--,? t. The interesting case. is when we have to apply the
transformation rule for mutation. (Without mutat ion and with r singular, we get
a finite, branch of the solution tree, which is not a .problem.) Furthermore, muta-
tion using rules for which the right-hand sides are either constructor terms or sub-
terms of the corresponding left-hand sides leads to finite branches (see [DMS:92]
for details). If r has any leading constructors, then we can use Decompose and
Imitate as required, a n d end up with a goat of the form f (r l , . . . , r n) - - * ? t ~,
where f is a defined function. Consider mutation of this goal using the rule
f (l l , . . . , In) ~ r ~. By the assumptions of the theorem, each ri is either a vari-
able or a ground term. Therefore, all the subgoals of the form ri --+? li can:: be
solved without mutation, which leaves a single subgoal of the form r ~ --*? t ~. Fur-
thermore, because of flatness and linearity, no variable in r ~ could have been
bound when solving the ri ---*? li subgoals. Also, along any path in the solution
tree, the right-hand sides of goals cannot get any more complicated (mutation
keeps the right-hand side intact; decomposition reduces the structure).

Therefore, if there is an infinite path in the solution tree it must contain a
repetition of the form:

gi --- {ri---*?ti} " * M u t a t e * { r2' '*?t2} - g 2 ,

where r2 and t2 are renamed versions of ri and t i , respectively. In this situation
we can express finitely a complete set of solutions to gi without having to explore
g2 further. Let e denote the substitution generated in the path from gi to g2,
and or' be any solution along some other finite path to gi. (Since there is a single
singular rule, there can be no other infinite paths.) Then, corresponding to or',
we get a complete set of solutions, which can be expressed as e" o~', n > 0 (refer
to the example below for details).

Therefore, we can express all solutions to the goal under consideration as a set

of linear equations. Finally, we can: reduce any general goal s ~ t to finitely many
sets of goals of the form {ri ---*? ti }, where each ri is a variant of a right-hand side
of R; thus, each such subgoal has a recurrence pattern (as discussed above)as
its solution. Since terms are expressible using a regular language and a system of
linear equations, there is a unification algorithm (using intersections of regular
languages) for such terms, which can be used in case of repeated variables in s
and t.

Example 2. Consider the rewrite system for addition:

0:+x--* z (1)

147

(2)

The goal
?

y + . (y + z) "--z+z

is transformed into two directed goals, {y + (y + z) ----~ ? x', z + z---+ ? x '} . S o m e o f
the derivation steps are:

z-t-z ---*? x' " ~ M u t a t e (2) s(xt --+' y -4- Yl)S(Xl)'z.z +--+?Y+Z z--+?x '

We can solve the goal z + z --+? x' by changing it to zl + z2 --*? x', zl : z2. (This
is how we can handle non-linear variables in the original goal in general.) The
steps involved in solving the goal zl + z2 ---~? x' are:

{zl § z2 --*? x'} "~Mutate(1) {zl ---~? 0, z2 --+? z0, z0 -+? x'}
{zl 0, z2 x'}

{zl + z2 ---J x'} ~-ZMutate(2) {zl ---*? s(x2), z2 ~ ? Y2, s(x2 + Y2) ---~? x'}
{z2 + y2 --*? z", 0}

where 0 = {zt ~-+ s(x2) ,z2 ~-~ y~, z ' ~-+ s(x")}. We now have a subsuming
pattern of the form {Zl + z2 -+? x'} ~-** {x2 + Y2 --+? x"}, producing the solution
zl =-sn(0), z2 = zo, x" = sn(zo), which, together with the constraint z~ =-z2,
simplifies to z = sn(O), x ' = s2"(O). Similarly, we can simplify the remaining
goals to get the following: Xl - " Sin(O), Yl "-- YO, X ' = s'~+l(yo) (as a general
solution to the goal s(z~ + y l) - - . ? x'), y = s.i(O),z = z~ ,y l = si(z~) (from the
goal y + z ~ ? yl), and y = s(x~). We solve these equations (with respect to n, m
and j) to get y = sJ(O),z = s"(O), where z ' = s2J+n(O) = s2'*(O), which gives
2j = n after simplification.

In the above example, we handled non-linear variables in the original goal by
solving additional constraints, which was simple because we had a unary function
(s) to deal with. We now briefly indicate how solutions can b e represented and
such constraints solved in general. According to the requirements of Theorem 5,
i fx is a variable in the original goal, then along the infinite branch of the solution
tree, we have the following:

. . . ,

where v is the context which gets repeated due to the subsuming pattern. Thus,
in effect, the variable x gets bound to a term-pattern, which we represent as
x ~ u[vn[x,+l]]. Therefore, in solving a constraint of the form x = y, where
both z and y could be bound to such term patterns, we have to "unify" these
patterns. We will consider the case where the term pattern contains a single
infinite branch, since multiple branches would be at independent positions, and
therefore could be solved independently. This path itself can be represented as
a simple regular expression containing function symbols. (For example, for the
binding of z as shown above, such a path is of the form {11}{12}*{13}, where

148

11 is the path in the context u, 12 is i n v and /3 is in the substitution used
for xn+l along any finite path for solving x.) Therefore, in order to solve the
equality constraint x = y (or, to unify such patterns), we find the intersection .of
the regular expressions which represent these two paths. It can be shown that
this intersection is a similar regular expression, which, if infinite, represents the
infinite path in the unified term. Once we get this regular path, we have to unify
the finite branches along it, which is not difficult.

5 Discussion

Higher-order semantic unification is of interest in automated theorem proving,
type inferencing, higher-order extensions of logic-programming, etc. Our higher-
order unification procedure performs better than one based on narrowing. In
particular, we provide an example showing how infinitely many branches of the
solution tree can be eliminated.

Example 3. L e t / / b e the convergent rewrite system:

A (S x) ---, A Z
B(s) BZ

Here A, B, Z and S are constants, while x is a variable. We also assume that the
C rules are available as usual.

Note that a term with A at its head can never be :RC-unified with a term
with B as its head, since there are no rules to change one to the other. Now

?

consider the goal: A (x Z) - B Z . Using the approach of [DJ92], the sub-term x Z
could be narrowed indefinitely:

�9 Z ~ x l Z (y l Z) , x ~ (Sx l)Y l

However, using the approach outlined in this paper, we first transform the: goal
to get {A(xZ)---* ? x" x', ~ (BZ)} , since (B Z) is in ground:normal~form. We
therefore have the following possible derivation sequences:

{ n (x z) ---~? x'} " * I m i t a t e {xZ-- ,? xl , x' ~ A x l }
~,z F a i l

{A(xZ) --*? x'} ~ '*Mutate {xZ 4 ? Sxl, A.Z--*? x'}
{ = Z ~ ? Sxl ,z ' ~ AZ}

~,~ Fail

Whenever we bind x ~ to any term which has A as the head, we can prune the
corresponding branch (because of the observation about R made before); thus,
the initial goal is unsatisfiable.

This example shows that for RC-unification, the top-down.approach works
better than one based on narrowing. Similar pruning capabilities of the top-down

149

approach for the first-order case alone has been mentioned in [DS87, DMS90],
and they carry over to higher-order solving also. More elaborate pruning mech-
anisms have been studied for the first order case by [CR91], where a graph of
terms based on R and the goals under question has been used. Their approach
is top-down, so we believe that it is possible to combine it with the higher-order
capabilities developed here.

Finally, as far as the decidability results are concerned, it may be possible to
handle non-linearity and multiple singular right-hand sides by generalizing the
definition of subsuming goals.

References

[Bre88]

[CR91]

[DJ90]

[DMS90]

[DMS92]

[DS87]

[Dou91]

[Dou93]

[DJ92]

[H~80]

V. Breazu-Tannen. Combining Algebra and Higher-order Types. In Proc. of
the Third Annual IEEE Symposium on Logic in Computer Science, pages 82-
90, 1988.
J. Chabin and P. R6ty. Narrowing Directed by a Graph of Terms. In Proc. of
the Fourth Int. Conference on Rewriting Techniques and Applications, Como,
Italy, April, 1991. Vol. 488, pages 112-123, of Lecture Notes in Computer
Science, Springer Verlag, 1990.
Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J.
van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 6,
pages 243-320, North-Holland, Amsterdam, 1990.
Nachum Dershowitz, Subrata Mitra and G. Sivakumar. Equation Solving in
Conditional AC-Theofies. In Proceedings of the Second International Con-
ference on Algebraic and Logic Programming, Nancy, France, October 1990.
Vol. 463, pages 283-297, of Lecture Notes in Computer Science, Springer
Verlag (1990).
Nachum Dershowitz, Subrata Mitra, and G. Sivakumar. Decidable matching
for convergent systems. In Proceedings of the Eleventh Conference on Auto-
mated Deduction, pages 589-602, Saratoga Springs, NY, June 1992. Vol. 607
of Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin.
Nachum Dershowitz and G. Sivakumar. Solving Goals in Equational Lan-
guages. In Proceedings of the First International Workshop Conditional
Term Rewriting System, Orsay, France, July 1987. Vol. 308, pages 45-55,
of Lecture Notes in Computer Science, Springer Verlag (1987).
D. J. Dougherty. Adding Algebra to the Untyped Lambda Calculus. In
Proe. of the Fourth Int. Conference on Rewriting Techniques and Applica-
tions, Como, Italy, April, 1991. Vol. 488, pages 37-48, of Lecture Notes in
Computer Science, Springer Verlag, 1990.
D. J. Dougherty. Higher-order unification via combinators. Theoretical
Computer Science 114, pages 273-298.
Daniel 3. Dougherty and Patricia Johann. A Combinatory Logic Approach
to Higher-order E-unification. In Proc. of the Eleventh Conference on Au-
tomated Deduction, Saratoga Springs, New York, Jane, 1992. Vol. 607,
pages 79-93, of Lecture Notes in Computer Science, Springer Verlag, 1992.
Jean-Marie Hullot. Canonical forms and unification. In R. Kow~lski, ed-
itor, Proc. of the Fifth International Conference on Automated Deduction,

150

[NQ91]

[Ret87]

[Sny90]

pages 318-334, Les Arcs, France, July 1980. Vol. 87of:Lecture Notesin
Computer Science, Springer, Berlin.
T. Nipkow and Z.. Qian. Modular Higher-order E-Unification. In Proc..o]
the Fourth lut. Conference on Rewriting Techniques and Applications, Como,
Italy, April, 1991. Vol. 488, pages 200-214, of Lecture Notes in Computer
Science, Springer Verlag, 1990.
Pierre R~ty. Improving Basic Narrowing Techniques. In P. Lescanne,.edi-
tot, Proc. of the Second International Conference on Rewriting Techniques
and Applications, pages 228-241, Bordeaux, France, M~ty 1987. Vol. 256 of
Lecture Notes in Computer Science, Springer, Berlin.
Wayne Snyder. Higher Order E-Unification. In Proceedings of the Tenth Int.
Conference on Automated Deduction, Kaiserslautern, FRG, July 1990. Vol.
449, pages 573-587, of Lecture Notes in Computer Science, Springer Verlag,
1990.

