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Abstrac t .  We provide a complete system of transformation rules for se- 
mantic unification with respect to theories defined by convergent rewrite 
systems. We show that this standard unification procedure, with slight 
modifications, can be used to solve the satisfiability problem in combina- 
tory logic with a convergent set of algebraic axioms R, thus resulting in a 
complete higher-order unification procedure for R. Furthermore, we use 
the system of transformation rules to provide a syntactic characterization 
for R which results in decidability of semantic unification. 

1 Introduction 

Equation solving is the process of finding a substitution that  makes two terms 
equal in a given theory, while semantic unification is the process which generates 
a basis set of such unifying substitutions. For example, considering the function 
definitions 

even(x + x) = true, even((~ + x) + 1) = / a l ,  e, 

length([]) = O, length([x l Y]) = length(y) + 1, 

if we could unify with respect to + and length, then we could solve queries of the 

form even(length(x)) ~ true in logic-programming languages. In this paper, we 
provide a complete system of transformation rules for semantic unification with 
respect to theories defined by convergent (confluent and terminating) rewrite 
systems. 

There have been different proposals to combine higher-order features with 
first order equational reasoning (including [Bre88, Dou91], and others). Most of 
these deal with the combination of lambda-calculus and a first-order equational 
theory, l~ecently, Dougherty and Johann ([Dou93, D J92]) proposed a method for 
higher-order reasoning by transforming lambda-calculus terms to combinatory 
logic, that  is, they use a combination of combinatory-logic with an equational 
theory as the formulation of higher-order reasoning. In [DJ92], they also provide 
a complete set of transformations for solving the satisfiability problem in such a 
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combined system. Some of the main advantages (pointed out in [DJ92]) of using 
combinatory logic as the basis of higher-order unification (as opposed to the 
traditional lambda-calculus based methods such as [Snyg0, NQ91], etc.) are: it 
eliminates some technical problems associated with bound variables, allows easy 
incorporation of type-variables, and facilitates the use of substitution like in 
the first-order case. We extend the first-order unification procedure to develop 
a complete method for solving the satisfiability problem in combinatory logic 
with a set of algebraic axioms R which can be presented as a convergent rewrite 
system. 

Our approach enjoys the following advantages: 

- It provides more control on positions where rules get applied. In general, we 
apply rules only to the top-most position in goals. 

- It is possible to incorporate additional pruning rules (for example, teacha- 
bility analysis [DS87, CRgl]) directly. 

Finally, we use the system of transformation rules to derive syntactic restric- 
tions on rewrite systems that result in decidable semantic unification problems. 

In general, we use standard terminology and notation for rewrite systems. 
Most of the notations that we use for equational theories are consistent with 
[DJ90], while we borrow notation from [DJ92] for the higher-order aspects. 

Types are formed by closing a set of base types (for example, integer�9 and 
boolean) under the type forming operation ~1 ---* a2 (for types ~1 and ~ ) .  We 
assume the constants Z,/C and S (called redex atoms), given types as usual. A 
term is linear if every variable occurs exactly once. 

For Cs (the simply typed combinatory-logic terms), the convergent rewrite 
system {Z --+ ~, (/Cx)y--~ z, ( ( $x ) y ) z  --~ (~z) (yz ) )  (henceforth denoted C) de- 
fines weak reduction. Note that this rewrite system is terminating only for typed 
combinatory logic. We define combinatory-R reduction as --*v U -+R. Whenever 
any such relation is terminating (convergent) we can talk of the (unique) normal 
forms it assigns to terms. 

It is well-known that using combinatory reductions is not enough to capture 
equivalence of lambda terms. For example, S/C and/CZ are distinct normal forms 
with respect to -+c, though their translations to lambda-calculus are both equal 
to ~yAz.z.  However, it is possible to extend combinatory-R equality to capture 
equivalence of functional terms, by using the following rule of extensionality: 

Infer s -- t if sD = tD, where D is a new constant. 

A term is said to be pure if it does not contain any constant introduced by the 
extensionality axiom. We use the notation s = R e  t (or say that s and t are 
//C-equal) to denote the equality of the lambda-ealeulus translations of s and t 
with respect to flyR convertibility (which, by virtue of the above discussion, is 
identical to the equality induced by C U R with extensionality). 

In formulating rules for validity and higher-order unification, we deal with 

unordered-pairs of terms. A pair s ? t is t r iv ial i fs  =- t, and is RC-val id i f s  = R e  t. 
? 

A term-pair s -- t has a solution cr if s~ =Rc  t~r. These notions can be extended 
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to collections of pairs in the usual way; for example, we say that  a collection is 
valid iff each of its pairs is valid. 

2 Semantic  Unification 

In this section we provide a complete system o f  transformations for semantic 
unification with respect to a convergent rewrite system. The main idea behind 
using convergent rewrite systems for semantic unification is that  if t9 is a solution 

? I 
to s - t ,  then there must be a common normal: form w such that  s0 --*' w 

and tO --*! w. A n  equational goal: s ~ t can therefore be converted into two 
directed goals s ---~? x and t --+? z, where x is a variable not in t or s. Furthermore, 
since the rewrite system is convergent, it is sufficient to use any one complete 
rewriting strategy. Therefore, we will henceforth b e  interested in enumerating 
those solutions 0 which correspond to innermost reductions in the derivation 
s0 --+! w and tO --+! w. We do not actually demandal l  solutions for completeness; 
rather, if for every variable x ,  ztr and z r  are equal (with respect to R) then (at 
least) one of ~r or r is deemed redundant.  We can use the transformation rules 
of Table 1 to solve the semantic unification problem with a convergent R. 

Some explanations are in order: 

- Each transformation rule consists of an antecedent (the first line), a conse- 
quent (the third line) and, optionally, a condition (the fourth line, whenever 
present). Whenever a subgoal matches the pat tern of the antecedent of a 
transformation rule, we can replace it with the corresponding consequent, 
provided the condition holds. 

- The transformation rules given in Table 1 are non-deterministic, that  it, for 
completeness all possibilities have to fie tried. Thus, for any initial goal, we 
generate a tree (which we will call the solution tree) of such possibilities. 

- We use expressions of the form x ~-+ t, where z is a variable, to keep track of 
partial solutions. An "unbound variable" is one that  does not occur in the 
domain of the partial solution generated so far. 

- For convenience, we do not apply resulting substitutions back into left-hand 
sides o f  goals. This gives basic-narrowing [Itul80, 1Eet87] like capabilities 
wi thou t  having to keep explicit markers for basic positions. However, we 
now need additional transformation rules to handle different possible right- 
hand sides of goals. 

The  transformations of Table 1 suffice: 

T h e o r e m l  ( C o m p l e t e n e s s ) .  Let R be a convergent rewrite system, and G . -  
:{s---~? x,t---~? x} be a set of goals which admit a solution O. Then, there is a 
~equence of transformations of the form G ",~! p, such that the generated substi- 
tution p is at least as general as 0 (p <_ ~9). 
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Eliminate  

Bind 

Mutate 

D e c o m p o s e  

Imitate  

A p p l y  

{x. ---~.: t} 

{~ ~ ~} 
where x is an unbound variable that does not occur in t 

{X -'+: 8, 2 ~ ~} 

{= ~, ,} u rag.(8, 0 

{ f (81 , . .  

{814 :1 i ,  . . . .  , 
where f ( l l  . . . . .  In)  -+ 

�9 , 8.)-J ~ }  

...+: ._+: ~}. 8n ~n ~ T 

r is a renamed rule in R 

{ f (s l , . . . ,8 , , ) -+? f ( t l , . . . , $n ) )  

{81 4 ? t l , . . .  ,8~ -J" t~,} 

{f(,~,. . . ,  8,)-~: ~} 

:81 -"+7 T , I , . . . ,  8 n  "-}" ggn, X t--.+ f (X l , . . . ,  Xn)} 
where x is an unbound variable, and xa . . . .  ,xn axe new variables 

:{s --*: ~} u a 

{s --+? ta} o 

Table  1. Transformation Rules for Semantic Unification 

3 H i g h e r - O r d e r  U n i f i c a t i o n  

In this section we formulate  a RC-unification procedure: based on the transfor- 
mat ion rules given in Table 1. Given two combinatory-logic terms s and t, we 
want to find a complete set of  their RC-unifiers; each RC-unifier being a solution 
cr as indicated before, that  is, we want to enumerate  all substitutions ~ such tha t  
s ~  = R e  t a  (with the understanding tha t  whenever two substitutions are R C -  

equal, at least one of them is  redundant) .  Since = R c  has.no known presentation 
as a convergent rewrite system (thus, t ransformat ions  from Section 2 cannot 
be used verbat im) we use *he idea of extending the convergent relation C U R 
with extensionality, as discussed in Section 1. Roughly, t o  decide if scr - -no  t~, 
we reduce sc~ and t~r (using innermost reductions) with respect to C U/~ as 
far as possible, and then invoke extensionality; repeating this process until all 

term-pairs  are triviM. 
Our top-down method  for combining combinatory-logic with a first-order 

rewrite system therefore proceeds as follows: 
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- Given a goal s ~ t, break it into a set of two directed goals of the form: 
n c  

{s- - .  ? x , t ~  ? y}, and solve fo r  x and y, which are new variables. The in- 
terpretation of a goal of the :form u 4 ? v is: Find a solution a such that  

! 

U0" "-~CuR Vo'- 
-- If the terms bound to z and y are syntactically unifiable with most general 

unifier 0, return one solution as the composition of the partial substitution 
collected so far with 0 :(details given below). 

- If unification fails, s and: t may still be RC-equivalent, by virtue of extension- 
ality. We simply apply the extensionality axiom as required, and continue 
goal-solving with respect to C U R. 

We :now provide details of the different aspects. For the first part, we simply 
use the system of transformations given in Table 1, with the understanding that  
the only non-zeroary function (for example, f in Decompose, Mutate,  etc., in Ta- 
ble 1) is "function application." In the rest of our discussion on RC-unification, 
we will refer to this system of transformation rules as WR, for  weak-R transfor- 
mations. When using this system of transformations for higher-order unification 
we do not deal explicitly with types. Nevertheless, every transformation rule 
must be type preserving. We also insist that  only pure terms are bound to vari- 
ables (in Eliminate and Bind). Furthermore, we would restrict our attention to 
left-linear rewrite systems alone. The more general case can be handled using 
ideas developed in [DJ92]. 

The transformation rules in Table 1 form the crux of the higher-order se- 
mantic unification procedure, since they provide a strategy of:unification with 
respect to weak-combinatory equality. However, weak combinatory equality is 
not identical to  = n c .  We need to  extend the rules for weak-equality to handle 
extensionality. Towards this end we provide a new set of transformation rules 
(called EXT) shown in Table 2. The rules are non-deterministic (for example, 

both Bind and Extend would apply to the sub:goal x ~ t ) ,  and, as usual, all 
possibilities have to be tried for completeness. 

We are now ready  to specify the complete goal-solving procedure: 

? 

D e f i n i t i o n  1. (RCU) To solve s - ' t  for Cs terms s and t, we proceed as follows: 

1. Use W R  to obtain a partial solution {z ~-* u, y ~-+ v} U cr to the goal 
{s--+ ? x,t--+ ? y}. 

? ? 

2. Use EXT to reduce ua'--va; r to subgoals 0; {li--" ri ] i  = 1 , . . . ,  m}. 

3. Recursively, find solutions ~:i to li ~ ri, i = 1 , . . . ,  m. 
4. Return {x ~-+ u, y ~ v}. U c~ U 0 U ~-1 U . . .  U rm, provided it is a substitution 

(that  is, it passes the "occur check"). 

Example 1. Let R b e  the rule FOx --+ z,  where 0 and x are, respectively, a 
constant and a variable o f t ype  integer. 

We look for solutions to the goal z ~-F0. Since both z (a variable) and F 0  
are in C U R normal form, we have u~ -- z and vo- - F0 in step 2 of RCU. 
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Bind 

Decompose 

Extend  

:{x Lf} UE;G 

if x does not occur in t 

{Fsl ... s, L Ftl $~} U E;G 

{s~Lt~, . . . , s ,  Ls , ,}UE;G 
where F is an atom 

{s:t}OE;G 

E; G U {sD ~-- tD} 
where D is a new constant, 

provided sDand tD are type-correct 

Table 2, Transformation Rules for Extension 

Therefore, one solution to the goal is {z ~-~ F0}: However, there are other so- 
lutions, since we can add  an argument to the two sides, and thereafter a t tempt  

to solve zD ~ FOD~ .that is, zD ~ D (here D is a new constant of type integer). 
Some possible derivations with this goal are: 

? 

zD "-D "~MutaCez  z ~ I 

? 
z D - D  "*Mutate~ 

? 

Zl - D, z ~-+ ~z l  
Fail 

z D L- D " * M u t a t e s  

zl D(z2D) ~ D "~Muta te~:  

zl D(z2D) ~ D " * M u t a t e s  
-, , .+ 

zlD(z~D)& D,z  ~ $zlz2 

Z 1 v . -+~ .  

za:(z2D)(O(z2O)) ~ D, zl ~ 82a 
F a i l  

. ?  

In the figure we have shown three different ways of muCating the goal zD--  D, 
corresp:onding to the three rules in C. The first possibility yields a solution 

immediately ({z ~-~ 2;}). In the second case, we get a su.bgoal of the form zl ~ D, 
which has no solution (we cannot  use elimination, since it would not give a pure 
substitution, and we cannot  add further arguments, since D is of type integer). 
In the last case, we have further branches, only one  of which yield :a solutions, 
namely {z ~-* SK:z~}, which, in fact, is the same as the previous solution, since 
,~lCx =Rv Z for any variable x. We get failure in the  last branch, since we have 
a subterm of the form D(z~D) which is not type correct, D being of  integer 
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type. FinallY, we could mutate  zD using the rule from R; this would repeat the 
solution {z ~-* F0}. Therefore, we have exhausted all possibilities, and have a 
finite solution tree in this case. 

Our main result is completeness of the transformation rules for finding solu- 
tions to higher-order equations: 

T h e o r e m  2 ( C o m p l e t e n e s s ) .  Let R be a left-linear convergent rewrite system. 
I f  O is a RC-unifier for two terms s and t, then there exists a RCU-sequence that 
enumerates a solution ~ that is at least as general as 8. 

Note that  any RCU.sequence in general would consist of alternate applications 
of WR and EXT. Therefore, the completeness proof is a combination of the 
following lemmata: 

L e m m a  3. Let R be a left-linear convergent rewrite system. Suppose O is a solu- 
tion to the goal s--*?t (i.e., sO ~"cun tO), then there is a sequence of WR steps 
starting with the goal s--*? t that generates a substitution a which is at least as 
general as ~. 

L e m m a 4 .  Let R be a convergent left-linear rewrite system. I f  s and t are terms 
? 

in C U R normal form, such that O is  a solution to s - t ,  then there exists an 

E X T  derivation of the form s ~- t; r ~.z ! ~; G, such that cr U T is at least as general 
as 8, where r is a solution to the set -of goals G. 

Any innermost reduction steps can be simulated using WR (with respect to 
C U R). Furthermore, we explicitly add arguments (Extend) and use decompo- 
sition to expose inner positions where arguments need to be added. 

4 Decidable  Semantic Unification 

It is well-known that  semantic unification is undecidable, even when the the- 
ory under consideration admits a convergent presentation. In this section, we 
describe a syntactic restriction on rewrite systems which results in decidable 
first-order semantic unification. In the following we say that  a function f is a 
defined function if it appears at the root of a left-hand side of R; any other 
function symbol is a constructor. 

D e f i n i t i o n  2 (Flat Term). A term is said to be fiat if every path from a vari- 
able to its root contains at most one defined function, and the variable appears 
immediately below the defined function. 

D e f i n i t i o n  3 (Singular). A flat term is singular if all its variables appear under 
a single defined function. 

For example, if f is a defined function and s, a and 0 are constructors, then 
s ( f ( x  i y)) and s(f( f(O, 0), x)) are singular, while f ( s (x) ,  y) (x does not appear 
directly below f )  is not. Finally, a( f (x ,  y), f ( z ,  0)) is flat but not singular, since 
the variables appear under two different defined functions. 
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T h e o r e m  5. Let R. be a (left- and right-} linear convergent rewrite system. I f  
for every function f defined by R there is at most one rule with a right-hand side 
that is neither a constructor term nor a subterm of the corresponding left-hand 
side and that is singular, then the semantic unification problem is decidable for 
1L 

Proof. The main idea is to show that  for any goal of the form r---*?t, where r 
is a variant of some right-hand side of R, a complete set ofsolutions can:be 
expressed as a linear recurrence. 

Consider the goal r--,? t. The interesting case. is when we have to apply the 
transformation rule for mutation. (Without mutat ion and with r singular, we get 
a finite, branch of the solution tree, which is not a .problem.) Furthermore, muta- 
tion using rules for which the right-hand sides are either constructor terms or sub- 
terms of the corresponding left-hand sides leads to finite branches (see [DMS:92] 
for details). If r has  any leading constructors, then we can use Decompose and 
Imitate as required, a n d  end up with a goat of the form f ( r l , . . . , r n ) - - * ? t  ~, 
where f is a defined function. Consider mutation of this goal using the rule 
f ( l l , . . . ,  In) ~ r ~. By the assumptions of the theorem, each ri is either a vari- 
able or a ground term. Therefore, all the subgoals of the form ri --+? li can:: be 
solved without mutation, which leaves a single subgoal of the form r ~ --*? t ~. Fur- 
thermore, because of flatness and linearity, no variable in r ~ could have been 
bound when solving the ri ---*? li subgoals. Also, along any path in the solution 
tree, the right-hand sides of goals cannot get any more complicated (mutation 
keeps the right-hand side intact; decomposition reduces the structure). 

Therefore, if there is an infinite path in the solution tree it must contain a 
repetition of the form: 

gi --- {ri---*?ti} " * M u t a t e *  { r2' '*?t2} - g 2 ,  

where r2 and t2 are renamed versions of ri  and t i ,  respectively. In this situation 
we can express finitely a complete set of solutions to gi without having to explore 
g2 further. Let e denote the substitution generated in the path from gi to g2, 
and or' be any solution along some other finite path to gi. (Since there is a single 
singular rule, there can be no other infinite paths.) Then, corresponding to or', 
we get a complete set of solutions, which can be expressed as e" o~',  n > 0 (refer 
to the example below for details). 

Therefore, we can express all solutions to the goal under consideration as a set 

of linear equations. Finally, we can: reduce any general goal s ~ t to finitely many 
sets of goals of the form {ri ---*? ti }, where each ri is a variant of a right-hand side 
of R; thus, each such subgoal has a recurrence pattern (as discussed above)as 
its solution. Since terms are expressible using a regular language and a system of 
linear equations, there is a unification algorithm (using intersections of regular 
languages) for such terms, which can be used in case of repeated variables in s 
and t. 

Example 2. Consider the rewrite system for addition: 

0:+x--* z (1) 
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(2) 

The goal 
? 

y + . ( y + z )  "--z+z 

is transformed into two directed goals, {y  + (y + z) ----~ ? x',  z + z---+ ? x '} .  S o m e o f  
the derivation steps are: 

z-t-z ---*? x' " ~ M u t a t e ( 2 )  s(xt --+' y -4- Yl)S(Xl)'z.z +--+?Y+Z z--+?x ' 

We can solve the goal z + z --+? x' by changing it to zl + z2 --*? x', zl : z2. (This 
is how we can handle non-linear variables in the original goal in general.) The 
steps involved in solving the goal zl + z2 ---~? x' are: 

{zl § z2 --*? x'} "~Mutate(1) {zl ---~? 0, z2 --+? z0, z0 -+? x'} 
{zl  0, z2 x'} 

{zl + z2 ---J x'} ~-ZMutate(2 ) {zl ---*? s(x2), z2 ~ ?  Y2, s(x2 + Y2) ---~? x'} 
{z2 + y2 --*? z", 0} 

where 0 = {zt ~-+ s(x2) ,z2 ~-~ y~, z '  ~-+ s(x")}. We now have a subsuming 
pattern of the form {Zl + z2 -+? x'} ~-** {x2 + Y2 --+? x"}, producing the solution 
zl =-sn(0),  z2 = zo, x" = sn(zo), which, together with the constraint z~ =-z2, 
simplifies to z = sn(O), x '  = s2"(O). Similarly, we can simplify the remaining 
goals to get the following: Xl - "  Sin(O), Yl "-- YO, X '  = s'~+l(yo) (as a general 
solution to the goal s(z~ + y l ) - - .  ? x'),  y = s.i(O),z = z~ ,y l  = si(z~) (from the 
goal y + z ~  ? yl), and y = s(x~). We solve these equations (with respect to n, m 
and j)  to get y = sJ(O),z = s"(O), where z ' =  s2J+n(O) = s2'*(O), which gives 
2j = n after simplification. 

In the above example, we handled non-linear variables in the original goal by 
solving additional constraints, which was simple because we had a unary function 
(s) to deal with. We now briefly indicate how solutions can b e  represented and 
such constraints solved in general. According to the requirements of Theorem 5, 
i fx  is a variable in the original goal, then along the infinite branch of the solution 
tree, we have the following: 

. . . ,  

where v is the context which gets repeated due to the subsuming pattern. Thus, 
in effect, the variable x gets bound to a term-pattern, which we represent as 
x ~ u[vn[x,+l]]. Therefore, in solving a constraint of the form x = y, where 
both z and y could be bound to such term patterns, we have to "unify" these 
patterns. We will consider the case where the term pattern contains a single 
infinite branch, since multiple branches would be at independent positions, and 
therefore could be solved independently. This path itself can be represented as 
a simple regular expression containing function symbols. (For example, for the 
binding of z as shown above, such a path is of the form {11}{12}*{13}, where 
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11 is the path in the context u, 12 is i n  v and /3 is in the substitution used 
for xn+l along any finite path for solving x.) Therefore, in order to solve the 
equality constraint x = y (or, to unify such patterns), we find the intersection .of 
the regular expressions which represent these two paths. It can be shown that 
this intersection is a similar regular expression, which, if infinite, represents the 
infinite path in the unified term. Once we get this regular path, we have to unify 
the finite branches along it, which is not difficult. 

5 Discussion 

Higher-order semantic unification is of interest in automated theorem proving, 
type inferencing, higher-order extensions of logic-programming, etc. Our higher- 
order unification procedure performs better than one based on narrowing. In 
particular, we provide an example showing how infinitely many branches of the 
solution tree can be eliminated. 

Example 3. L e t / / b e  the convergent rewrite system: 

A ( S x )  ---, A Z  
B(s ) BZ 

Here A, B, Z and S are constants, while x is a variable. We also assume that the 
C rules are available as usual. 

Note that a term with A at its head can never be :RC-unified with a term 
with B as its head, since there are no rules to change one to the other. Now 

? 

consider the goal: A ( x Z )  - B Z .  Using the approach of [DJ92], the sub-term x Z  
could be narrowed indefinitely: 

�9 Z ~ x l Z ( y l Z ) ,  x ~ (Sx l )Y l  

However, using the approach outlined in this paper, we first transform the: goal 
to get {A(xZ)---* ? x"  x', ~ (BZ)} ,  since ( B Z )  is in ground:normal~form. We 
therefore have the following possible derivation sequences: 

{ n ( x z )  ---~? x'} " * I m i t a t e  {xZ-- ,? xl ,  x' ~ A x l }  
~,z F a i l  

{A(xZ) --*? x'} ~ '*Mutate {xZ 4 ? Sxl,  A.Z--*? x'} 
{ = Z ~  ? Sxl ,z '  ~ AZ} 

~,~ Fail 

Whenever we bind x ~ to any term which has A as the head, we can prune the 
corresponding branch (because of the observation about R made before); thus, 
the initial goal is unsatisfiable. 

This example shows that for RC-unification, the top-down.approach works 
better than one based on narrowing. Similar pruning capabilities of the top-down 
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approach for the first-order case alone has been mentioned in [DS87, DMS90], 
and they carry over to higher-order solving also. More elaborate pruning mech- 
anisms have been studied for the first order case by [CR91], where a graph of 
terms based on R and the goals under question has been used. Their approach 
is top-down, so we believe that it is possible to combine it with the higher-order 
capabilities developed here. 

Finally, as far as the decidability results are concerned, it may be possible to 
handle non-linearity and multiple singular right-hand sides by generalizing the 
definition of subsuming goals. 
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