
Processing Judeo-Arabic Texts

Kfir Bar, Nachum Dershowitz, Lior Wolf,
Yackov Lubarsky, and Yaacov Choueka

Abstract. Judeo-Arabic is a language spoken and written by Jewish
communities living in Arab countries. Judeo-Arabic is typically written
in Hebrew letters, enriched with diacritic marks that relate to the under-
lying Arabic. However, some inconsistencies in rendering words in He-
brew letters increase the level of ambiguity of a given word. Furthermore,
Judeo-Arabic texts usually contain non-Arabic words and phrases, such
as quotations or borrowed words from Hebrew and Aramaic. We focus on
two main tasks: (1) automatic transliteration of Judeo-Arabic Hebrew
letters into Arabic letters; and (2) automatic identification of language
switching points between Judeo-Arabic and Hebrew. For transliteration,
we employ a statistical translation system trained on the character level,
resulting in 96.9% precision, a significant improvement over the baseline.
For the language switching task, we use a word-level supervised classifier,
also showing some significant improvements over the baseline.

1 Introduction

Judeo-Arabic is a set of dialects spoken and written by Jewish communities living
in Arab countries, mainly during the Middle Ages. Judeo-Arabic is typically
written in Hebrew letters, and since the Arabic alphabet is larger than the
Hebrew one, additional diacritic marks are added to some Hebrew letters when
rendering Arabic consonants that are lacking in the Hebrew alphabet. Judeo-
Arabic authors often use different letters and diacritic marks to represent the
same Arabic consonant. For example, some authors use b (Hebrew gimel) to
represent h. (Arabic jim) and ḃ to represent 	

¨ (ghayn), while others reverse the
two. This inconsistency increases the level of ambiguity of a given word, making
the reading of Judeo-Arabic texts a challenging task even for an Arabic speaker.
For instance, the letter i (Hebrew yod) sometimes represents the letter ø

(ya),

such as in the word it (ú

	
¯, “in/inside”), sometimes represents the letter ø, such

as in the word zliq (��
IÊ

J�

�
�, “I was asked”), and sometimes the letter Z

ø, as in
ilr (ú

�
Î«, “on/to/at”). In addition, the special signs, hamza (the glottal stop),

maddah (the glottal stop, followed by a long a vowel), waslah (unpronounceable
alif), shadda (gemination), as well as short vowels, are usually not marked in
the text. Furthermore, Judeo-Arabic texts are often peppered with Hebrew and
Aramaic citations and borrowings, which cannot be transliterated into Arabic,
but rather need to be translated into Arabic. Those embedded words sometimes
get inflected following Arabic morphological rules; for example, dpikyl` (al-
shkhina, “the divine spirit”), where the prefix al is the Arabic definite article,
and the word shkhina is the Hebrew word for divine spirit.

A large number of Judeo-Arabic works (philosophy, Bible translation, bibli-
cal commentary, and more) are currently being made available on the Internet
(for research purposes). However, most Arabic speakers are unfamiliar with the
Hebrew script, let alone the way it is used to render Judeo-Arabic. Our main
goal in this work is to allow Arabic readers, who are not familiar with the He-
brew script, to nevertheless read and understand these Judeo-Arabic texts. We
divide this task into three subtasks:
1. Identifying the language-switching points, also known as code switching.
2. Transliteration of Judeo-Arabic Hebrew letters into Arabic letters.
3. Arabic error correction: post-processing the Arabic-script text to resolve the

remaining ambiguities and completing some missing characters.
In this paper, we propose automated techniques in each of these three areas.
Code switching is the act of changing language while speaking or writing,

as often done by bilinguals [29]. In our case, the cross-language inflections, in
addition to the rich morphology of all the relevant languages, the task of iden-
tifying code switching turns out to be non-trivial. We use a sequential classifier
that works on the word level, considering both character-level and word-level
features calculated for the surrounding words. In this paper, we focus on the
Judeo-Arabic–Hebrew pair. The classifier is supervised by a relatively large set
of Judeo-Arabic sentences, extracted from various sources, in which Hebrew
words have been marked accordingly.

Transliteration is the process of converting a text from one script (the input
script) into another (the target script). Transliteration is of course much easier
than translation; in the latter the target text must convey the same meaning of
the input text using words in a different language. All the same, we model the
transliteration process using the same noisy-channel approach that is used for
statistical machine translation. We employ a phrase-based statistical translation
system [19] trained on the character level. The phrase table is generated using
bilingual parallel texts of Judeo-Arabic words aligned with their Arabic render-
ings. To model the Arabic language, we use a large corpus of running Modern
Standard Arabic (MSA) text, and train a character-level language model.

As mentioned above, Judeo-Arabic is a set of dialects, each used by the local
Jewish community in some of the Arab countries. Some texts are similar to MSA,
which is widely used today in formal settings, while other texts are more similar
to local Muslim dialects. We focus, for now, on the Judeo-Arabic version that is
similar to MSA more than on the colloquial versions.

We proceed as follows: Section 2 cites some related work. Our contributions
are described in the following sections:
1. Section 3 proposes a methodology for finding the switching spots between

Hebrew and Judeo-Arabic, both of which use the same Hebrew script.
2. Section 4 provides an automatic Arabic transliteration tool for Judeo-Arabic

for the first time.
3. Section 5 provides preliminary results of using Bidirectional [10], Long Short-

Term Memory Recurrent Neural Network [8,14] for post-processing the out-
put Arabic transliteration to correct some common errors.

Some conclusions are suggested in the final section.

2 Related Work

To the best of our knowledge, this is the first work to deal with code switching
and transliteration of Judeo-Arabic. There are several relevant works about code
switching involving Arabic. Both [5] and [6] deal with code switching between
MSA and colloquial Arabic on the word level. Similar to our work, they use a
language model for predicting the label of every word in context, which can be
either MSA or colloquial. For words that do not exist in the model, they use an
Arabic morphological analyzer to determine its language. In a recent work [27],
there is an attempt to identify Arabic words within a noisy Arabizi text, that
is, an Arabic chat alphabet, rendered in Roman script. In particular, this work
deals with Moroccan Arabic.

Similar to Judeo-Arabic, rendering Arabic from Arabizi text is an ambigu-
ous process. In [3], followed by [7], Arabizi is automatically transliterated into
Arabic. As a first step, the authors identify Arabizi in code-mixed texts using
a sequential classifier, trained over some character-level, as well as word-level,
features. Then, the identified Arabizi words are transliterated into Arabic using
statistical machine translation that works on the character level, combined with
some dictionary-related and morphological processes. Both papers deal with mi-
croblogs extracted from Twitter and manually preprocessed accordingly. Both
report an accuracy above 98% for the code-switch task and above 83% for the
transliteration task. It seems that transliterating Arabizi into Arabic is a more
difficult task than Judeo-Arabic into Arabic, as the variability of writing Arabizi
when referring to a specific Arabic word is larger than with Judeo-Arabic. How-
ever, this variability is affected by the colloquial language that is usually used in
microblogging. Judeo-Arabic texts that are more affected by the colloquial lan-
guage than the texts we are using in this work, increase the level of ambiguity
presented in this work and may introduce some additional challenges. Working
with such texts is one of our plans for future investigation.

There are many works that deal with the transliteration of names from one
language into their phonetic equivalents in another script. In [26], names written
in Arabic, but originated in languages other than Arabic (e.g., Wall Street), are
transliterated back into English (also known as the back-transliteration task).
Obviously this is not a trivial task, since Arabic lacks short vowels, which are
needed for reconstruction, and some Arabic letters may have multiple renderings
in Roman script. Given an Arabic string that represents a name, they generate
a lattice of all possible phonetic sequences in English and then find the best se-
quence paths using probabilistic models, which they learn from relatively small
manually created resources, such as a pronunciation dictionary and bilingual
parallel corpora of English names aligned with their corresponding Arabic ren-
derings. This technique was previously applied to Japanese [17]. The limitation
of this technique is in the resources they use, which are not available for ev-
ery language pair. A parallel corpus of personal names, written in both Arabic

and English, is used in [21] for transliterating from Arabic to English. As previ-
ously mentioned, the author uses a phrase-based statistical translation system
for learning how to transliterate personal names, which achieves an accuracy of
43%.

There are additional works on names transliteration: In [4], a parallel corpus
of Arabic-English transliterated pairs, which were obtained automatically fol-
lowing a process called transliteration mining (e.g., [24,15,2]), is employed. They
train a statistical translation system on the extracted parallel data and use it
on unseen (out-of-vocabulary) words to improve a word-based translation sys-
tem. In [13], a method for transliterating names is introduced in the context of
statistical machine translation. They work on the Arabic-English language pair.
The transliteration process is performed by looking for the input Arabic name
in a large corpus of English words (using an index). For every candidate they
calculate a similarity score, based on consonant-matching rules, which they man-
ually developed. Their technique shows a major improvement in an end-to-end
translation system, especially for rare names.

In [9] a naïve-Bayes classification approach is taken for the problem of identi-
fying foreign (borrowed) words and transliterated names in Hebrew. They build
two models: one to generate an original Hebrew word and another one to gen-
erate foreign words written in Hebrew. For training they use a noisy dataset,
which they produce automatically, containing English words with all possible
Hebrew (possibly incorrect) renderings. They achieve 80% precision and 82%
recall running on a set of about 4K unique words.

In [16], a method for transliterating Hebrew words into English is introduced.
As a first step, they focus on identifying the terms to be transliterated, using a
supervised classifier that considers the part-of-speech tags of the word in focus
and of the preceding word. The tags are obtained automatically using a prob-
abilistic tagger, and the positive examples for the classifier are extracted in a
semi-supervised fashion, using some manually created rules that capture words
that do not originate in Hebrew. For transliteration they employ a statistical
translation system, which was trained over a parallel corpus that they extracted
automatically from Wikipedia. They report 38% error reduction when compared
to a baseline algorithm.

Our work applies some of the techniques we described above for the special
case of Judeo-Arabic. Since we already have a parallel transliteration corpus at
hand, we use it for training a statistical translation system that works on the
character level.

3 Code Switching

For language-switch detection, we built a supervised framework to train a clas-
sifier that predicts the language of every word in the order written. To train
our classifier, we needed a corpus of Judeo-Arabic texts, annotated for language
boundaries. Fortunately, the Friedberg Jewish Manuscript Society recently re-
leased a corpus of Judeo-Arabic texts, containing a relatively large number of

books and essays, corresponding to about 4M words. What’s more, as part of the
digitization process, the words were manually annotated for language (Arabic,
Hebrew/Aramaic).

We work on the word level; that is, every word is considered as an instance
for the classifier, formatted as a feature vector. Naturally, our classifier works
sequentially; in that sense, word instances are predicted one-by-one, potentially
using the predicted labels of the previous words as features for classifying the
following word. In this paper, a word must be annotated with exactly one label
out of the three options: Judeo-Arabic, Hebrew, and Other. The latter is used
for punctuation marks and is determined automatically using some simple text-
search queries. We believe that some additional labels, such as one for indicating
a name, could contribute to overall performance, since names may have a differ-
ent distribution of the letters than the two languages in focus. Furthermore, we
noticed that annotators usually marked named entities as Hebrew, as in most
cases the names are originated in Hebrew rather than in Arabic; we believe that
this situation confuses our models. In a recent code-switching shared task [25], a
special label for names was used along with labels to indicate ambiguous words
and mixed languages. Recognizing occurrences of names within Judeo-Arabic
texts is definitely a natural direction for future investigation.

3.1 Features

We use features from a window of ±n words before and after the word of interest.
We report on the results of using different window sizes. As mentioned above,
for every word, we also consider as features the predicted labels of the n prior
words. We use three main groups of features.

For every instance, the following classes of features are extracted from all the
surrounding words as well as the word in focus:

Word level: This is the surface-form word, as it appears in the text.

Intra-word level: Both Judeo-Arabic and Hebrew are morphologically rich lan-
guages, demonstrating a complicated inflectional morphology. Usually, inflec-
tions are expressed by adding some word prefixes and suffixes. Therefore, to
capture repeating suffixes and prefixes that may help identifying the language,
we consider as features substrings of 1–3 prefix and suffix letters of the words.

We use three additional features for capturing the level of uncertainty of
seeing the sequence of characters that form the specific word. This is done by
employing a 3-mer1 character-based language model, trained over a monolingual
corpus in each language. Then, the two language models, one for each language,
are applied on the word to calculate two log-probability values. We bin those
values into 10 discrete values that are used as the features’ values. The third
feature is a boolean value indicating which of the two models return a lower
1 We use the term “k-mer” for character k-grams, in contradistinction to word n-
grams.

log probability. We train the models on related texts. For Hebrew, we use the
Bible to support the classical nature of the language that is usually embedded
in Judeo-Arabic texts. For the Judeo-Arabic model, we use a pair of books: (1)
Kitab al Khazari (The Kuzari), a medieval philosophical treatise composed by
Judah Halevi in Andalusia in around 1140; and (2) Dalalat al-Ha’Irin (The Guide
for the Perplexed), a philosophical work composed by Maimonides in Egypt, in
about 1190. The Hebrew corpus contains about 5M characters, while the Arabic
one contains about 20M characters.

Inter-word level: We use 3-gram word-level language models, trained over large
corpora in each of the languages. We apply the models to the focus word, consid-
ering it to be the last in a sequence of three words (with the two previous words)
and calculate log probabilities. The values are binned into 10 discrete values,
which are then used as the features’ values. An additional boolean feature is
used, indicating which of the two models return a lower log probability.

3.2 Experimental Approach and Results

We use the Guide as a corpus for training. Then, we test the system on a different
book, the Kuzari. We train on one book and test on a different one in order to
relax the effect of vocabulary repetition. Table 1 presents the label distributions
for both books.

Table 1: Label distribution for the Guide and the Kuzari

Guide Kuzari
Word count 128K 23 K
Hebrew label 29K 3.5K
Judeo-Arabic label 90K 17 K
Other label 9K 2.5K

We train our classifier with SVM [1], using a degree-2 polynomial kernel.
We use different window sizes for extracting features and compare our system’s
performance with a maximum-likelihood baseline algorithm (MLE), which for
every word simply assigns the label with the highest probability as was seen in
the corpus. We use WEKA [12] as a platform for the following experiments. The
results are presented in Table 2. Clearly, our system significantly outperforms the
baseline algorithm. The best accuracy and Hebrew precision are achieved when
using a narrow window of ±1; with larger windows the data becomes too sparse.
The recall for Hebrew is slightly better when using a ±2 window; however, the
drop in precision is more prominent. The F -measure of the ±1 window is 94.93,
while for the ±2 window is only 94.03.

Table 2: Some evaluation results.

Accuracy Hebrew Judeo-Arabic
Precision Recall Precision Recall

Baseline 68.38 36.30 88.64 90.40 75.86
Classifier ±1 98.19 91.92 97.94 99.46 98.02
Classifier ±2 97.80 89.61 98.46 99.58 97.57
Classifier ±3 97.68 89.19 98.24 99.52 97.46

4 Transliteration

As implied above, the transliteration into Arabic cannot be done deterministi-
cally. For some Hebrew letters there is no one-to-one mapping into Arabic; the
correct one may be determined using the context it is mentioned in. Therefore, we
imitate the transliteration process with an automatic translation one, performed
on the character level rather than on the word level. We implement our system
with Moses [18], an open-source instance of a phrase-based statistical translation
system [19], and treat each character as a word and each word as a complete
sentence. In particular, the “phrase table” (henceforth, not adorned with scare
quotes) is composed of entries of character sequences in Hebrew mapped to their
corresponding Arabic ones, and the language model is trained on sequences of
characters of running Arabic texts. (We note that reordering is unnecessary for
this particular task, as we assume that the Hebrew letters and the transliter-
ated Arabic sequences tend to be generated monotonically.) In the following
subsections, we describe the data sources and models we build, and the set of
experiments we perform for evaluation.

4.1 Data Sources and Models

We generate the phrase table from pairs of Judeo-Arabic words, one in Hebrew
script and one in transliterated Arabic form. The parallel words are extracted
from the original Judeo-Arabic version of the Kuzari, alongside its Arabic trans-
lation, prepared by Nabih Bashir [11]. This is the only Judeo-Arabic resource
we could find that was manually transliterated into Arabic and is available dig-
itally.2 The Judeo-Arabic version of this book was taken from the Friedberg
Jewish Manuscript Society.3 In the original text, Judah Halevi brings citations
from various sources, mainly in Hebrew. Those citations are usually translated
into Arabic by Bashir in his translated edition. We manually removed those
translated pairs from parts of the parallel texts, resulting in a corpus of 8,560
parallel words, corresponding to 36K parallel characters. Each pair of words is
2 We gratefully thank Nabih Bashir for providing us with a digital copy of the book.
3 http://www.jewishmanuscripts.org

placed in its own line and spaces are inserted between the characters so that
Moses will treat each character as an individual translation constituent. Figure
1 shows a sample of the generated corpus.

	ס י ל ת
	ע מ א
	ע נ ד י
	מ ן

	א ל א ח ת ג א ג
	ע ל י

	מ כ' א ל פ י נ א
	מ ן

	א ל פ ל א ס פ ה
	ו א ה ל

	א ל א ד י א ן
	ת' ם
	ע ל י

س ئ ل ت !
ع م ا !
ع ن دي !
م ن!
ال اح ت ج اج !
ع ل ى !
م خ ا ل ف ي ن ا !
م ن !
ا ل ف ل ا س ف ة !
و أ ه ل !
ا ل أ د ي ا ن !
ث م !
ع ل ى !

Fig. 1: A sample of the parallel corpus.

For the language model, we use a large portion of Arabic Gigaword (4th ed.)
[23] to train a 3-mer model. Arabic Gigaword is a large archive of newswire text
articles, published by various media outlets. Since we are after modeling the
most probable Arabic character sequences, we are ignoring the effect of using
texts from a different domain.

We use a small part of the parallel corpus for tuning the weights of the
models, using minimum error weight training [22].

After training the system, we use it to transliterate Judeo-Arabic sentences,
written in the original Hebrew script, into Arabic. To do that, we first break the
sentence into words, using some trivial word-boundary indications, and then we
run each word through the translation system, after we insert spaces between
the characters. The decoder of the translation system returns the best sequence
of Arabic letters, which are then glued into words by removing the redundant
spaces. Words are then pasted together to form the complete Arabic output
sentence. Figure 2 summarizes the flow of the system.

4.2 Experimental Approach and Results

To evaluate our transliteration system, we set aside 500 words out of the parallel
corpus we put together as described in the previous section, and use them as a
test set. In addition, we use 550 pairs of words out of the same parallel corpus
for tuning. This left us with 7,558 parallel words for building the phrase table.
Given the 500 input words, our system was able to predict 96.9% of the letters

Fig. 2: The complete flow of the transliteration system, as modeled by
phrase-based statistical machine translation (PBSMT).

correctly. However, it turns out that most Judeo-Arabic Hebrew characters can
be transliterated deterministically into Arabic, especially when a character has
a one-to-one mapping; hence, a simple baseline algorithm with some determin-
istic rules is able to correctly transliterate 93.4% of the test set, only 3.5% less
than our system’s accuracy. We performed a qualitative evaluation; Figure 3
summarizes the common mistakes of both systems. It is clear that our system
learned how to deal with most of the common ambiguities; however, it still con-
fuses about whether to place hamza (the glottal stop) at the end of a word or
not, and it still cannot properly predicts when to use the letter è (ha) or �

è (ta
marbuta) at the end of a word. Furthermore, both system confuses about when
and where to place a shadda (gemination).

ת" ت ,ث !"
ד" د ,ذ "!"
א" "اء",ا !
ג" "ج ,غ !

א " "ؤ ,ا ,أ ,إ !
ה" ة",ه !"
י" ى ,ي ,ئ !"

א" "اء",ا !
ה" ة",ه !"

Fig. 3: Common mistakes made by the baseline (on the left) vis-à-vis our
transliteration system (on the right). Each entry represents one common

mistake; the left part of the entry represents the Hebrew letter in the original
Judeo-Arabic text, and the right part represents a list of possible Arabic

renderings, which the algorithm confuses between.

Furthermore, to remove author-specific effects, we evaluated our translitera-
tion system on a different resource. We train the system with the same Kuzari
parallel corpus as described above, and test it on the seventh section of the Book
of Beliefs and Opinions written in 933 c.e. by Sa’adia Gaon. The Arabic ver-
sion of this treatise was also created by Nabih Bashir. The test-set contains 50
words, extracted in a similar way to the one described above. The same baseline
algorithm was able to predict merely 88.7% of the letters, while our system was
able to improve on this, correctly transliterating 91.6% of the test-set letters.
Table 3 summarizes the results of the two experiments.

We noticed that in some cases when the decoder concludes with the wrong
sequence, the correct one exists as a second or third best choice. Therefore, we
use a 3-gram (word-based) Arabic language model, trained on a large portion of
Arabic Gigaword, to re-rank the five best sequences as returned by the decoder.
With re-ranking, we were able to significantly improve on the 91.6% accuracy
on Sa’adia Gaon’s book, correctly transliterating 96.2% of the letters. This is an
absolute improvement of 4.6%.

Table 3: Evaluation results: the Kuzari and the Book of Beliefs and Opinions.

Kuzari Beliefs
Baseline 93.4 88.7
Our system 96.9 91.6

5 Arabic Error Correction

The results of the previous step left us with some errors, which may cause some
inconvenience for a native Arabic reader. We mention some of those errors in
Figure 3. In this section we suggest an elegant way for post-processing the text
to correct the such errors automatically. This part of the work is still in progress;
some encouraging results are presented.

We build an individual predictor for each correction task and train it over
a corpus of correct MSA texts. We experiment initially with two correction
tasks: (1) hamza (the glottal stop) reconstruction at the end of a word (as in
ZA

�
�Ó, “evening”); and (2) deciding on the correct Arabic letter corresponding to i

(Hebrew yod) at the end of a word (either ø

or ø). To make sure the training data

we use is written correctly, we use the Arabic Treebank 1 Version 2 (ATB1v2.0)
[20], including 734 stories from the Agency France Press. We only use part of
the corpus, corresponding to about 120K words. We use a Bidirectional Long
Short-Term Memory (BLSTM) Recurrent Neural Network (RNN) with 3 layers,
and train a separate network for each task. In fact, for the second task, we use

two networks, one for predicting ø

(ya) and one for predicting ø (dagger alif).

Our implementation is based on CURRENNT [28]. Some preliminary results for
these two tasks are presented in Table 4, where we use a split of 90% of the
corpus for training and 10% for testing. We plan to investigate this topic further
and apply similar algorithms on the results of the previous transliteration step.

Table 4: Error correction with BLSTM RNN. Results for predicting the
existence of hamza at the end of a word, and for deciding on the correct Arabic

letter between ø

(ya) and ø (dagger alif), occurring at the end of a word.

Network Precision Recall F-Measure
hamza 96 93 94

ø

97 94 96
ø 98 97 97

6 Conclusion

This work shows some techniques for processing Judeo-Arabic text, a special
case of Arabic – written in Hebrew letters. Our goal is to allow Arabic speak-
ers and readers to read Judeo-Arabic texts in the Arabic script rather than in
the original, ambiguous, Hebrew one. Inspired by previous works, we employ
a phrase-based statistical translation system that works on the character level,
and train it using a parallel corpus of Judeo-Arabic words mapped to their
corresponding Arabic renderings. This method was found to show encouraging
results (e.g., 96.2% accuracy as opposed to 91.6% obtained by a baseline algo-
rithm) when trained on one book and then applied to another book. However,
in both books the authors use Judeo-Arabic that is pretty similar to MSA. One
can imagine that, when working with a more colloquial version of Judeo-Arabic,
the transliteration into Arabic will prove more challenging.

We have seen that reranking the top few results generated by the transla-
tion system improves the overall accuracy. The reranking is done by combining
information about word contexts in addition to the character-level information
considered by the decoder of the translation system.

As another step towards improved results, one may employ error-correction
algorithms applied to the Arabic output, such as completing hamza at the end of
a word – something that our current transliteration algorithm tends to miss. We
show some preliminary, encouraging results; we plan on pursuing this direction
further.

As mentioned earlier, not all words in Judeo-Arabic texts should be translit-
erated in the same fashion. Usually there are some words and citations in Hebrew

and Aramaic, sometimes modified using Arabic morphological rules. To identify
the Judeo-Arabic words that are originated in Arabic, we employ a supervised
sequential classifier that predicts the language of every word in order. We com-
bine word- and character-level features, learned from an annotated corpus and
achieve a major improvement over a baseline algorithm.

Identifying named entities, which are currently annotated as Hebrew, may
also help improve the prediction.

References

[1] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine Learning, 20(3):273–297, 1995.

[2] Kareem Darwish. Transliteration mining with phonetic conflation and
iterative training. In Proceedings of the 2010 Named Entities Workshop,
pages 53–56. Association for Computational Linguistics, 2010.

[3] Kareem Darwish. Arabizi detection and conversion to Arabic. arXiv
preprint arXiv:1306.6755, 2013.

[4] Nadir Durrani, Hieu Hoang, Philipp Koehn, and Hassan Sajjad. Inte-
grating an unsupervised transliteration model into statistical machine
translation. EACL 2014, page 148, 2014.

[5] Heba Elfardy, Mohamed Al-Badrashiny, and Mona Diab. Code switch
point detection in Arabic. In Natural Language Processing and Infor-
mation Systems, pages 412–416. Springer, 2013.

[6] Heba Elfardy, Mohamed Al-Badrashiny, and Mona Diab. AIDA: Iden-
tifying code switching in informal Arabic text. EMNLP 2014, page 94,
2014.

[7] Ramy Eskander, Mohamed Al-Badrashiny, Nizar Habash, and Owen
Rambow. Foreign words and the automatic processing of Arabic social
media text written in Roman script. EMNLP 2014, page 1, 2014.

[8] Felix Gers. Long short-term memory in recurrent neural networks. Un-
published PhD dissertation, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, 2001.

[9] Yoav Goldberg and Michael Elhadad. Identification of transliterated
foreign words in Hebrew script. In Computational Linguistics and In-
telligent Text Processing, pages 466–477. Springer, 2008.

[10] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classifica-
tion with bidirectional LSTM and other neural network architectures.
Neural Networks, 18(5):602–610, 2005.

[11] Yehuda Halevi. The Kuzari – In Defense of the Despised Faith; translit-
erated, translated and annotated by Nabih Bashir. Al-Kamel Verlag,
Beirut, 2012.

[12] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. The WEKA data mining software: an
update. ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

[13] Ulf Hermjakob, Kevin Knight, and Hal Daumé III. Name translation
in statistical machine translation—learning when to transliterate. In
ACL, pages 389–397, 2008.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[15] Sittichai Jiampojamarn, Kenneth Dwyer, Shane Bergsma, Aditya Bhar-
gava, Qing Dou, Mi-Young Kim, and Grzegorz Kondrak. Transliteration
generation and mining with limited training resources. In Proceedings
of the 2010 Named Entities Workshop, pages 39–47. Association for
Computational Linguistics, 2010.

[16] Amit Kirschenbaum and Shuly Wintner. Lightly supervised transliter-
ation for machine translation. In Proceedings of the 12th Conference of
the European Chapter of the Association for Computational Linguistics,
pages 433–441. Association for Computational Linguistics, 2009.

[17] Kevin Knight and Jonathan Graehl. Machine transliteration. Compu-
tational Linguistics, 24(4):599–612, 1998.

[18] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch,
Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. Moses: Open source toolkit for statistical ma-
chine translation. In Proceedings of the Interactive Poster and Demon-
stration Sessions of the 45th Annual Meeting of the ACL (ACL ’07),
pages 177–180, Stroudsburg, PA, USA, 2007. Association for Computa-
tional Linguistics.

[19] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-
based translation. In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on
Human Language Technology-Volume 1, pages 48–54. Association for
Computational Linguistics, 2003.

[20] Mohamed Maamouri, Ann Bies, Tim Buckwalter, and Wigdan Mekki.
The Penn Arabic Treebank: Building a large-scale annotated Arabic
corpus. In NEMLAR conference on Arabic language resources and tools,
pages 102–109, 2004.

[21] David Matthews. Machine transliteration of proper names. Master’s
thesis, University of Edinburgh, Edinburgh, UK, 2007.

[22] Franz Josef Och. Minimum error rate training in statistical machine
translation. In Proceedings of the 41st Annual Meeting on Association
for Computational Linguistics, volume 1, pages 160–167. Association
for Computational Linguistics, 2003.

[23] Robert Parker et al. Arabic Gigaword Fourth Edition LDC2009T30.
Linguistic Data Consortium (LDC), Philadelphia, 2009.

[24] Tarek Sherif and Grzegorz Kondrak. Bootstrapping a stochastic
transducer for Arabic-English transliteration extraction. In Annual
Meeting—Association for Computational Linguistics, page 864, 2007.

[25] Thamar Solorio, Elizabeth Blair, Suraj Maharjan, Steven Bethard,
Mona Diab, Mahmoud Gohneim, Abdelati Hawwari, Fahad AlGhamdi,

Julia Hirschberg, Alison Chang, et al. Overview for the first shared
task on language identification in code-switched data. EMNLP 2014,
page 62, 2014.

[26] Bonnie Glover Stalls and Kevin Knight. Translating names and tech-
nical terms in Arabic text. In Proceedings of the Workshop on Compu-
tational Approaches to Semitic Languages, pages 34–41. Association for
Computational Linguistics, 1998.

[27] Clare Voss, Stephen Tratz, Jamal Laoudi, and Douglas Briesch. Finding
romanized Arabic dialect in code-mixed tweets. LREC 2014, 2014.

[28] Felix Weninger, Johannes Bergmann, and Björn Schuller. Introducing
CURRENNT–the Munich open-source CUDA RecurREnt Neural Net-
work toolkit. Journal of Machine Learning Research, 15, 2014.

[29] Donald Winford. Code Switching: Linguistic Aspects, chapter 5, pages
126–167. Blackwell Publishing, Malden, MA, 2003.

