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Abstract. We apply an abstract framework of canonical inference to explore how
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They are not capable to ground a canonicity
of universal consistency.

—Alexandra Deligiorgi (ΠAI∆EIA, 1998)

1. Introduction

Well-founded orderings of proofs, as developed in (Bachmair and Der-
showitz, 1994), are used to distinguish between cheap “direct” proofs,
those that are of a computational flavor (e.g. rewrite proofs), and
expensive “indirect” proofs, those that require search to find (e.g. equa-
tional proofs). Accordingly, we suggest that proof orderings, rather than
formula orderings, take center stage in theorem proving with contrac-
tion (simplification and deletion of formulæ). Then completeness of a
set of formulæ, what we will call a presentation, means that all theorems
enjoy a minimal proof, while completeness of an inference system means
it has the ability to generate all formulæ needed as premises in such
ideal proofs. This formalism is very flexible, since it allows small proofs
to use large premises. Given a formula ordering, one can, of course,
choose to compare proofs by simply comparing the multiset of their
premises.

This proof-ordering based approach to deduction suggests general-
izations of the concepts of “redundancy” and “saturation.” Saturated,
for us, will mean that all cheap proofs are supported, which demands
more than completeness. By considering different orderings on proofs,
one gets different kinds of saturated sets. The notion of saturation in
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theorem proving, in which superfluous deductions are not necessary
for completeness, was suggested by (Rusinowitch, 1989, 1991) in the
context of a Horn-clause resolution calculus. In our terminology: A
presentation was said to be saturated when all inferrible formulæ are
syntactically subsumed by formulæ in the presentation.

We also define redundancy in terms of the proof ordering, as
propounded by Bonacina and Hsiang (1991, 1995): A sentence is re-
dundant if adding it to the presentation does not decrease any minimal
proof. (See Bonacina, 1992, Chap. 2.) The definition of redundancy in
(Bachmair and Ganzinger, 1991, 1994)—an inference is redundant if
its conclusion can be inferred from smaller formulæ—coincides with
ours when proofs are measured first by their maximal premises. In
(Bachmair and Ganzinger, 1991, 2001; Nieuwenhuis and Rubio, 2001),
saturated means every possible inference is redundant.

The present work continues the development of an abstract the-
ory of “canonical inference,” sketched in (Dershowitz and Kirchner,
2003b; Dershowitz, 2003), and expanded in (Dershowitz and Kirchner,
2003a), which, in turn, grew out of the theory of rewriting (see, for
example, Dershowitz and Plaisted, 2001; Terese, 2003) and deduction
(see, for example, Bonacina, 1999; Bachmair and Ganzinger, 2001;
Nieuwenhuis and Rubio, 2001). Although we will use ground equations
as an illustrative example, the framework applies equally well in the
first-order setting, whether equational or clausal. Though our motiva-
tion is primarily æsthetic; our expectation is that practical applications
will follow.

The next section sets the stage with basic notions and notations, and
introduces a running example. To make this paper self-contained, Sec-
tion 3 recapitulates relevant definitions and results from (Dershowitz
and Kirchner, 2003a, 2003b).1 Specifically, the canonical basis of an
abstract deductive system is defined in three equivalent ways: (1) for-
mulæ appearing in minimal proofs; (2) minimal trivial theorems; (3)
non-redundant lemmata. Section 4 exemplifies the abstract framework.
Sections 5, 6 and 7 carry out the study of derivation and completion
processes. Finally, Section 8 closes with some discussion.

1 The study in (Dershowitz and Kirchner, 2003a) is concerned with defining ab-
stract properties of sets of formulæ; this paper is about deducing sets enjoying those
properties. We apply the abstract theory developed in the former paper, and extend
it with notions, such as fairness, that describe properties of derivations. Whereas
that paper is about properties of objects (presentations), here we study properties
required of processes (derivations) so as to generate the desired presentations.
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2. Proof systems

Let A be the set of all formulæ (ground equations and disequations,
in our examples) over some fixed vocabulary. Let P be the set of all
(ground equational) proofs. These sets of abstract objects are linked
by two functions: Γ : P → 2A gives the premises in a proof, and
∆ : P→ A gives its conclusion. Both are extended to sets of proofs in
the usual fashion.

The framework proposed here is predicated on two well-founded
partial orderings over P: a proof ordering ≥ and a subproof relation �.
They are related by a monotonicity requirement given below (6). We
assume for convenience that the proof ordering only compares proofs
with the same conclusion (p ≥ q ⇒ ∆ p = ∆ q), rather than mention
this condition each time we have cause to compare proofs.

We will use the term presentation to mean a set of formulæ, and
justification to mean a set of proofs. We reserve the term theory for
deductively-closed presentations. Let ΘA denote the theory of presen-
tation A, that is, the set of conclusions of all proofs with premises
A:2

ΘA
!= ∆ Γ−1A

The pre-image Γ−1 of A are those proofs with exactly A as premises:
Γ−1A = {p : p ∈ P, Γ p = A}. We assume the following three standard
properties of Tarskian consequence relations:

ΘA ⊆ Θ(A ∪B) (1)
A ⊆ ΘA (2)

ΘΘA = ΘA (3)

Thus, Θ is a closure operation. It follows from (1) that

ΘA = {∆ p : p ∈ P, Γ p ⊆ A}

We say that presentation A is a basis for theory C if ΘA = C. Presen-
tations A and B are equivalent (A ≡ B) if their theories are identical:
ΘA = ΘB.

As a very simple running example, let the vocabulary consist of the
constant 0 and unary symbol s. Abbreviate tally terms si0 as numeral i.
The set A consists of all unordered equations i = j; so symmetry is built
into the structure of proofs. (We postpone dealing with disequations for
the time being.) An equational inference system (with this vocabulary)

2 We use
!
= for definitions.
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might consist of the following five inference rules, where boxes surround
assumptions:

�
0 = 0 Z

i = j

i = j
Ii=j

i = j
si = sj

S
a c
c

P
i = j j = k

i = k
T

where Z is an axiom, I introduces assumptions, and S infers i+1 = j+1
from a proof of i = j. Proof tree branches of the transitivity rule T are
unordered. Projection P allows irrelevant assumptions to be ignored
and is needed to accommodate monotonicity (1).

For example, if A = {4 = 2, 4 = 0}, then

ΘA = {i = j : i ≡ j (mod 2)}

Consider the proof schemata:

�
0 = 0
1 = 1

...
i = i

4 = 2

4 = 2

5 = 3
...

i + 4 = i + 2

4 = 0

4 = 0

4 = 2

4 = 2

2 = 0

...
i− j − 2 = 0
i− j − 1 = 1

i− j = 2
i− j = 0

...
i = j

Let’s use proof terms for proofs, denoting the above three trees by
p = S iZ, q = S iI(4, 2), and r = SjT (T (I(4, 0), I(4, 2)), SS(· · ·)),
respectively. Thus, Γ p = ∅, Γ q = {4 = 2}, and ∆ r is the formula
i = j.

With a recursive path ordering (Dershowitz, 1982) to order proofs,
a precedence Z < S < T < I < P < 0 < 1 < 2 < · · ·, on proof
combinators and signature symbols, and multiset “status” for I, the
minimal proof of a theorem in ΘA takes one of the forms

Sj (∇4k=0) Sj (∇4k=2)

The subproofs ∇4k=0 and ∇4k=2 are defined recursively:

∇0=0 = Z ∇0=2 = T (∇4=0,∇4=2)
∇4=0 = I(4, 0) ∇4(k+1)=0 = T (S 4k∇4=0,∇4k=0)
∇4=2 = I(4, 2) ∇4(k+1)=2 = S2T (∇0=2, S

2∇4k=0)

We call a proof trivial when it proves only itself and has no subproofs
other than itself, that is, if Γ p = {∆ p} and p � q ⇒ p = q. We denote
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by â such a trivial proof of a ∈ A and by Â the set of trivial proofs of
each a ∈ A. For example, 4̂=0 = I(4, 0).

We assume that proofs use their premises (4), that subproofs do
not use non-existent assumptions (5), and that proof orderings are
monotonic with respect to (replacement of) subproofs (6). Specifically,
for all proofs p, q, r and formulæ a:

a ∈ Γ p ⇒ p � â (4)
p � q ⇒ Γ p ⊇ Γ q (5)

p � q > r ⇒ ∃v ∈ Π (Γ p ∪ Γ r). p > v � r (6)

We make no other assumptions regarding proofs or their structure.
Obviously, the Replacement Postulate (6) implies:

p � q > r ⇒ ∃v ∈ Π (Γ p ∪ Γ r). p > v � r (7)

It states that > (which we have restricted to proofs with the same
conclusion) and � commute. In other words, “replacing” a subproof q
of a proof p with a smaller proof r “results” in a proof v that is smaller
than the original p, and which does not involve extraneous premises. All
proof orderings in the literature obey this monotonicity requirement.

Every formula a admits a trivial proof â by (2,4). Let Σp = {q : p�q}
denote the subproofs of p, and likewise ΣP = ∪p∈P Σp. This way, (4)
can be abbreviated Γ̂ p ⊆ Σp. On account of (4,6), proofs are also
monotonic with respect to any inessential premises they refer to, should
the latter admit smaller than trivial proofs.

It may be convenient to think of a proof-tree “leaf” as a subproof
with only itself as a subproof; other subproofs are the “internal nodes.”
There are two kinds of leaves: trivial proofs â (such as inferences I),
and vacuous proofs ā with Γ ā = ∅ and ∆ ā = a (such as Z). By
well-foundedness of �, there are no infinite “paths” in proof trees. It
follows from Replacement that the transitive closure of > ∪� is also
well-founded.

3. Canonical presentations

The results in this section are extracted from (Dershowitz and Kirchner,
2003a, 2003b), which should be consulted for proofs.

Denote the set of all proofs using premises of A by:

Π A
!= {p ∈ P : Γ p ⊆ A}

and define the minimal proofs in a set of proofs as:

µP
!= {p ∈ P : ¬∃q ∈ P. q < p}
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On account of well-foundedness, minimal proofs always exist.
Note that Γ , ∆ , Θ, and Π are all monotonic with respect to set

inclusion, but µΠ is not.
We say that presentation A is reduced when A = Γ µΠ A, that is, A

contains precisely the premises of minimal proofs from A. By a “normal-
form proof,” we mean a proof in µΠ ΘA, the minimal proofs allowing
any theorem as a lemma (that is, as a premise). This leads to our main
definition:

DEFINITION 1 (Canonical Presentation). The canonical presenta-
tion contains those formulæ that appear as premises of normal-form
proofs:

A] != Γ µΠ ΘA

So, we will say that A is canonical if A = A].

The following proposition gives a second characterization of canon-
ical presentation: as minimal trivial theorems.

PROPOSITION 1.

A] = ∆ (µΠ ΘA ∩ Θ̂A)

Â] = µΠ ΘA ∩ Θ̂A

THEOREM 1. The function ] is “canonical” with respect to the
equivalence of presentations. That is:

A] ≡ A (Consistency)
A ≡ B ⇔ A] = B] (Monotonicity)

A] ] = A] (Idempotence)

By lifting proof orderings to justifications and presentations, the
canonical presentation can be characterized in terms of the ordering
directly. First, proof orderings are lifted to sets of proofs, as follows:

DEFINITION 2.

− Justification Q is better than justification P if:

P w Q
!≡ ∀p ∈ P.∃q ∈ Q. p ≥ q

− It is much better if:

P = Q
!≡ ∀p ∈ P.∃q ∈ Q. p > q
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− Two justifications are similar if:

P ' Q
!≡ P w Q w P

Recall that only proofs with the same conclusion are comparable by
the proof ordering ≥.

Transitivity of these three relations follows from the definitions.
They are compatible: (w ◦ =) ⊆ =, (w ◦ ') ⊆ w, etc. Since it is
also reflexive, w is a quasi-ordering.

The next proposition says that subproofs of minimal proofs are
minimal, bigger presentations may offer better proofs, and minimal
proofs are the best proofs. It follows from (6) and Definition 2 that:

PROPOSITION 2.

− For all presentations A and B:

ΣµΠ A = µΠ A

Π A w Π (A ∪B)

− For all justifications P :

P w µP

This “better than” quasi-ordering on proofs is lifted to a “simpler
than” quasi-ordering on (equivalent) sets of formulæ, as follows:

DEFINITION 3.

− Presentation B is simpler than an equivalent presentation A
when B provides better proofs than does A:

A % B
!≡ ΘA = ΘB ∧ Π A w Π B

− Presentations are similar if their proofs are:

A ≈ B
!≡ Π A ' Π B

Similarity ≈ is the equivalence relation associated with %.

These relations are also compatible.
Canonicity may be characterized in terms of this quasi-ordering:

THEOREM 2. The canonical presentation is the simplest:

A % A]
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Recalling that all subproofs of normal-form proofs are also in normal
form (Prop. 2), we propose the following definitions:

DEFINITION 4 (Saturation and Completeness).

− A presentation A is saturated if it supports all possible normal
form proofs:

µΠ A = µΠ ΘA

− A presentation A is complete if every theorem has a normal form
proof:

ΘA = ∆ (ΠA ∩ µΠ ΘA)

It can be shown that:

LEMMA 1. A presentation A is saturated if and only if

Π A ⊇ µΠ ΘA

A presentation is complete if it is saturated, but for the converse, we
need a further hypothesis: minimal proofs are unique if, for all theorems
c ∈ ∆ Π A, there is exactly one proof in µΠ ΘA with conclusion c. In
particular, this holds for proof orderings that are total (on proofs of
the same theorem).

PROPOSITION 3.

1. A presentation is complete if it is saturated.

2. If minimal proofs are unique, then a presentation is saturated if
and only if it is complete.

For example, suppose all rewrite (valley) proofs are minimal but
incomparable. Then any Church-Rosser system is complete, since eve-
ry identity has a rewrite proof, but only the full deductive closure is
saturated.

The next theorem relates canonicity and saturation.

THEOREM 3.

1. A presentation A is saturated if and only if it contains its own
canonical presentation: A ⊇ A].

− In particular, A] is saturated.
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2. Moreover, the canonical presentation A] is the smallest saturated
set:

− No equivalent proper subset of A] is saturated.

− If A is saturated, then every equivalent superset also is.

PROPOSITION 4.

1. Presentation A is saturated if and only if ΘA ≈ A.

2. Similar presentations are either both saturated or neither is.

3. Similar presentations are either both complete or neither is.

The following definition sets the stage for the third characterization
of canonical presentation, as non-redundant lemmata. Formulæ that
can be removed from a presentation—without making proofs worse—
are deemed “redundant”:

DEFINITION 5 (Redundancy).

− A set R of formulæ is (globally) redundant with respect to a
presentation A when:

A ∪R % A \R

− The set of all (locally) redundant formulæ of a given presentation
A will be denoted as follows:

ρA
!= {r ∈ A : A % A \ {r}}

− A presentation A is irredundant if

ρA = ∅

Intuitively, the notion of global redundancy captures the redundancy
of a whole set of formulæ within or without the presentation, whereas
local redundancy captures the redundancy of formulæ within the pre-
sentation, one at a time. If R ⊆ A, then A ∪ R % A \ R reduces to
A % A \ R. Operationally, this means formulæ in R can be removed
from A. If R ∩ A = ∅, then A ∪ R % A \ R reduces to A ∪ R % A:
operationally, this means it is redundant to add the formulæ in R to
A.

It is thanks to the well-foundedness of > that the set of all locally
redundant formulæ in ρA is globally redundant:
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PROPOSITION 5. For all presentations A:

A ≈ A \ ρA

Thus, it can be shown that A is reduced (i.e., A = Γ µΠ A) if and
only if it is irredundant (ρA = ∅).

The third characterization of the canonical set is central for our
purposes:

THEOREM 4. A presentation is canonical if and only if it is saturated
and reduced.

Informally, A is reduced if it is the set of premises of its minimal
proofs; it is saturated if minimal proofs in A are exactly the normal-
form proofs in the theory; it is canonical if it is the set of premises
of normal-form proofs. Hence, saturated and reduced is equivalent to
canonical.

4. Variations

The idea we are promoting is that, given a set of axioms, A, one is
interested in the (unique) set of lemmata, A] ⊆ ΘA, which—when used
as premises in proofs—supports all the minimal proofs of the theorems
ΘA. These lemmata form the “canonical basis” of the theory.

Returning to our simple example, we can add three inference rules
for disequalities:

i = j j 6= k
i 6= k

T
i 6= i
j = k

Fj=k

i 6= j

i 6= j
Ii6=j

With them, one can infer, for example, 0 6= 0 from 1 6= 1. If F is smaller
than other proof combinators, and I nodes are incomparable, then the
canonical basis of any inconsistent set is {i 6= j : i, j ∈ N}. All positive
equations are redundant, because Fj=k is a smaller proof than Ij=k.

If projection P is the most expensive type of inference, then no
minimal proof includes it. And if proofs are compared in a simplification
ordering (subproofs are always smaller than their superproofs), then
minimal proofs will never have superfluous transitivity inferences of
the form

u = t t = t
u = t

T

Suppose we are using something like the recursive path ordering
for proof terms and consider these inference rules for ground equality
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and disequality: S, T, F, I, Z, with S extended to apply to all function
symbols of any arity.

Refutation. If the inference rule F is the cheapest in the proof or-
dering, T < I, and I(i, j) nodes are measured by the values of i
and j, then the canonical basis of any inconsistent presentation is a
(smallest) trivial disequation {t 6= t}. Indeed, all positive equations
can be obtained by applying F to t 6= t, and all negated equations can
be obtained by two applications of T :

n = t t 6= t
n 6= t

t = m

n 6= m

for all numerals m, n and t.

Deduction. If the proof ordering prefers introduction I of assumptions
over all other inferences (including Z), then trivial proofs are best.
In that case, ρΘA = ∅ and the canonical basis includes the whole
theory: A] = ΘA. In other words, everything is needed, because it is
the smallest proof of itself.

Paramodulation. If the proof ordering makes functional reflexivity
S smaller than I (S < T < I), but the only ordering on leaves
is I(u, t) ≤ I(c[u], c[t]) for any context c, then the canonical ba-
sis will be the congruence closure, as generated by paramodulation:
ρA = {f(u1, . . . , un) = f(t1, . . . , tn) : u1 = t1, . . . , un = tn ∈ ΘA}.
The theory ΘA is the closure under functional reflexivity of the ba-
sis A]. If A is as in our first example (i.e., A = {4 = 2, 4 =
0}), then A] = {2j = 0 : j > 0}. The other equalities in ΘA =
{i = j : i ≡ j (mod 2)} are obtained from those in A] by applying
S (e.g., 8 = 4 is derived from 4 = 0 by applying S4 to both sides).

Completion. On the other hand, if the ordering on leaves compares
terms in some simplification ordering ≥≥, then the canonical basis
will be the fully reduced set, as generated by (ground) completion:
ρA = {u = u} ∪ {u = t : t = v ∈ ΘA, t � v, v is not u}.
Operationally, u = t can be reduced to u = v. For our first exam-
ple, A] = {2 = 0}, as all equations in {2j = 0 : j > 0} reduce
to 2 = 0. For another example, if A = {a = c, sa = b} and
sa � sb � sc � a � b � c, then I(sa, b) > T (S(I(a, c)), I(sc, b)),
and hence A] = {a = c, sc = b}.

Superposition. If one distinguishes between T steps based on the
weight of the shared term j, making T > I when j is the greatest,
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and T < I otherwise, then the canonical basis is also closed under
paramodulation into the larger side of equations. Indeed, assume we
have k = j and j = i. If the shared term j is the greatest, the tran-
sitivity proof is a peak k ← j → i, and k ← j → i (T ) > k = i (I)
means that adding k = i by superposition provides a smaller proof.
If the shared term j is the smallest, the transitivity proof is a valley
k → j ← i, and k → j ← i (T ) < k = i (I) means that valley proofs
are the smallest.

5. Inference and derivations

There are two basic applications for saturation-based inference: con-
structing a finite canonical presentation when such exists, and searching
for proofs by forward reasoning from axioms, avoiding inferences
that do not help saturate. Inference steps are defined by deduction
mechanisms.

In general, a (one-step) deduction mechanism ; is a binary relation
over presentations, and we call a pair A ; B, a deduction step. A
deduction mechanism is functional if for any A there is a unique B
(possibly A) such that A ; B. We consider only functional mechanisms
here, using δA to refer to that unique B deducible from A, so A ; δA,
always.

Practical mechanisms are functional (and usually operate determini-
stically); they are obtained by coupling a (nondeterministic) inference
system with a search plan, or search strategy, to yield a completion
procedure or proof procedure. Specific procedures may impose additional
structure, such as singling out a formula as the target theorem or goal,
in which case the deduction mechanism applies to pairs or tuples; see
(Bonacina, 1999) for examples. In this paper, we consider only func-
tional mechanisms that apply to presentations, and take the notion of
a deduction mechanism as a whole. This entails no loss of generality,
since the abstract set P may be limited on the concrete level to proofs
and subproofs of a specific goal.

A sequence of presentations A0 ; A1 ; · · · is called a derivation.
(We do not consider transfinite derivations in this paper.) Let A∗ =
∪iAi be all formulæ appearing anywhere in the derivation. The result
of the derivation is, per Huet (1981), its persisting formulæ:

A∞
!= lim inf

j→∞
Aj =

⋃
j

⋂
i≥j

Ai
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We say that a proof p persists when Γ p ⊆ A∞. Thus, if a proof persists,
so do its subproofs (by Postulate 5). By Proposition 2, we have Π Ai w
Π A∗ for all i.

DEFINITION 6 (Soundness and Adequacy).

− A deduction mechanism δ is sound if δA ⊆ ΘA.

− It is adequate if A ⊆ ΘδA.

− It is both if A ≡ B whenever A ; B.

DEFINITION 7 (Goodness).

− A deduction step A ; B is good if A % B.

− A deduction mechanism δ is good if proofs only get better: A %
δA, for all presentations A. That is, if ; is sound and adequate,
and Π A w Π B whenever A ; B.

− A derivation A0 ; A1 ; · · · is good if Ai % Ai+1 for all i.

We are only interested in good derivations. From here on in, only
good (hence, also sound and adequate) derivations will be considered.

DEFINITION 8 (Finiteness and Compactness).

− An ordered proof system has finitely-based proofs, if its proofs
use only a finite number of premises:

∀p ∈ P. |Γ p| <∞

− It is compact if minimal proofs use only a finite number of
premises:3

∀A ∈ A. ∀p ∈ µΠ A. |Γ p| <∞

DEFINITION 9 (Continuity). (Minimal) Proofs are continuous if

lim inf
i→∞

µΠ Ai = µΠ A∞ (= µΠ lim inf
i→∞

Ai)

for any chain A0 % A1 % · · ·.
3 We call this compactness (of proofs), because it is used traditionally to infer

compactness (of a logic), namely, that a set A of formulae is unsatisfiable if and
only if it has a finite unsatisfiable subset A′, from completeness (viz. a set A is
unsatisfiable if and only if it is inconsistent). Indeed, if A is unsatisfiable, there is
a proof of ⊥ (falsehood) in Π A (unsatisfiable implies inconsistent). Take a minimal
proof p of ⊥, i.e., p ∈ µΠ A, and let A′ be the finite set Γ p; since p ∈ Π A′, A′ is
unsatisfiable (inconsistent implies unsatisfiable), and it is a finite subset of A.
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LEMMA 2. For good derivations, compactness implies continuity.

Proof. Continuity requires
⋃

j

⋂
i≥j µΠ Ai = µΠ

⋃
j

⋂
i≥j Ai.

− µΠ ∪j ∩i≥jAi ⊆ ∪j ∩i≥j µΠ Ai: Let p ∈ µΠ ∪j ∩i≥j = µΠ A∞. Let
a ∈ Γ p. By compactness, there are only finitely many such a. Let
j be the smallest index in the derivation such that all a ∈ Γ p are
in Aj . Then p ∈ Π Aj . Second, p ∈ µΠ Aj , because p ∈ µΠ A∞ and
the derivation is good. Third, p ∈ ∩i≥jµΠ Aj , because all a ∈ Γ p
persist, since Γ p ⊆ A∞. It follows that p ∈ ∪j ∩i≥j µΠ Aj .

− ∪j ∩i≥j µΠ Ai ⊆ µΠ ∪j ∩i≥jAi: Let p ∈ ∩i≥jµΠ Ai for some j.
It follows that for all a ∈ Γ p, a ∈ ∩i≥jAi, whence a ∈ ∪j ∩i≥j

Aj = A∞. This means that p ∈ Π A∞. Because p is minimal at
all stages i ≥ j, and the derivation is good, p ∈ µΠ A∞.

Since the proof ordering is well-founded:

LEMMA 3. If a deduction mechanism is good then

Π Ai w Π A∞

ΘAi ⊆ ΘA∞

for all presentations Ai in a derivation {Ai}i.

Let Πc A
!={p ∈ Π A : ∆ p = c} signify the proofs of formula c.

Proof. Let pi ∈ µΠc Ai. Since the derivation is good, there are proofs
pj ∈ Πc Aj , j > i, such that pi ≥ pi+1 ≥ · · ·. By well-foundedness,
from some point on these are all the same proof q. Thus, Γ q ⊆ A∞,
q ∈ Π A∞, and Π Ai w Π A∞. That ΘAi ⊆ ΘA∞ follows from the
definitions.

NOTE 1. For bad (i.e. non-good) derivations this is not the case. To
wit, let

P =
{

a

b
,

b

a

}
and consider a ; b ; a ; b ; · · ·. As the derivation oscillates
perpetually between deriving b from a and a from b, at the limit A∞ = ∅
and ΘA∞ = ∅, whereas ΘAi = {a, b} for all finite i.

LEMMA 4. If proofs are compact, then any good derivation {Ai}i is
sound and adequate. That is,

Ai ≡ A∞

for all i.
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Proof. Lemma 3 gives one direction (adequacy), namely ΘAi ⊆
ΘA∞. By Lemma 2, compactness and goodness imply continuity.
Suppose c ∈ ΘA∞. Then there is a p ∈ µΠc A∞. By continuity,
p ∈ ∪j ∩i≥j µΠ Ai, whence p ∈ ∩i≥jµΠ Ai for some j. Thus, c ∈ ΘAi

for all i ≥ j. That c ∈ ΘAi for all i < j, follows from goodness, since
Ai % Aj implies Ai ≡ Aj (see Definition 3).

NOTE 2. This does not necessarily hold for infinitary systems that
violate the compactness hypothesis. Let all proofs be incomparable, in-
cluding: âi (for all i), âj

ai
(for all i, j), â0,â1,...

c , and c . The derivation
{aj : j ≤ i}i is good, but only its limit includes the infinitary proof.

LEMMA 5. For all presentations A and B:

A % B ⇒ B ∩ ρA ⊆ ρB

That is, “once redundant, always redundant.”

Proof. Consider a proof p ∈ Π B that uses a premise a ∈ ρA ⊆
A. Since (by Reflexivity) â ∈ Π A, a must also have an alternative
(nontrivial) proof q ∈ Πa (A \ {a}), such that â > q. By assumption,
there is an r ∈ Π B such that q ≥ r. By the postulates of subproofs,
p � â > r implies the existence of a proof p′ ∈ Π (B ∪ {a}) = Π B such
that p > p′. If a ∈ Γ p′, then this process continues. It cannot continue
forever, so we end up with a strictly smaller proof not involving a,
establishing a’s redundancy vis-à-vis B.

PROPOSITION 6. If a derivation {Ai}i is good, then the limit
supports the best proofs:

A∗ ≈ A∞

Proof. One direction, namely ΠA∞ w Π A∗, follows by Proposition 2
from the fact that A∞ ⊆ A∗. To establish that ΠA∗ w Π A∞, we show
that µΠ A∗ w Π A∞ and rely on Proposition 2. Suppose p ∈ µΠ A∗. It
follows from (Eq. 4 and Prop. 2) that Γ̂ p ⊆ Σp ⊆ µΠ A∗. By goodness,
each a ∈ Γ p persists from some Ai on. Hence, Γ p ⊆ A∞, and p ∈
Π A∞.

DEFINITION 10 (Canonical Derivations).

− A derivation {Ai}i is completing if its limit is complete.

− It is saturating if its limit is saturated.
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− It is clean if its limit is reduced.

− It is canonical if it is both saturating and clean.

LEMMA 6.

− A derivation {Ai}i is completing if every theorem of A0 eventu-
ally admits a persistent normal-form proof:

ΘA0 ⊆ ∆ (Π A∞ ∩ µΠ ΘA0)

− It is saturating if all normal-form proofs emerge eventually:

µΠ ΘA0 ⊆ Π A∞

− It is clean if no formula remain persistently redundant:

ρA∗ ∩A∞ = ∅

Proof. By Lemma 4, we know that A∞ ≡ A0 and ∆ (Π A∞ ∩
µΠ ΘA0) ⊆ ΘA0. Hence, ΘA∞ = ∆ (Π A∞ ∩ µΠ ΘA∞).

Similarly, by Lemma 1, the condition µΠ ΘA0 ⊆ Π A∞ gives
saturation.

Suppose that some r ∈ ρA∞ ⊆ A∞ ⊆ A∗. Consider r̂, and compare
it to a smaller proof p ∈ Πr A∞, which must exist because r is redun-
dant. Let q be any proof in µΠ A∗. Were r ∈ Γ q, then replacing r̂ as
a subproof of q with p, would by (6) result in a smaller proof than q,
contradicting the fact that q is minimal. Thus, r cannot be premise of
any minimal proof of A∗. It follows that r ∈ ρA∗, which contradicts
cleanness.

LEMMA 7. A sufficient condition for a good derivation {Ai}i to
be completing is that each non-normal-form proof eventually becomes
much better: ⋃

i

µΠ Ai \ µΠ ΘA0 =
⋃
i

Π Ai

Proof. By Lemma 3, if pi ∈ µΠc Ai then q ∈ Πc A∞, for some q. If
q ∈ µΠ ΘA0 then c ∈ ∆ (Π A∞∩µΠ ΘA0) and we are done. Otherwise,
the sufficient condition implies that for some k, there is a proof qk ∈
Π Ak of c such that pi ≥ q > qk. Completeness follows by induction on
proofs.
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LEMMA 8. A good derivation {Ai}i is canonical if and only if

A∞ = A]
0

Proof. Assume the derivation is canonical, that is, saturating and
clean. Saturating means µΠ ΘA0 ⊆ Π A∞, hence ΓµΠ ΘA0 ⊆ A∞,
hence A]

0 ⊆ A∞. Clean means ρA∞ = ∅, from which it follows that
A∞ ⊆ A]

0 (by way of contradiction, if there were an x ∈ A∞, but
x 6∈ A]

0, this x would be redundant, contradicting cleanness). Together,
A]

0 ⊆ A∞ and A∞ ⊆ A]
0 give A]

0 = A∞. The other direction is trivial.

In summary, the limit of a derivation is complete, reduced, saturated,
if the derivation is completing, clean, saturating, respectively, where
saturated is stronger than complete, and saturated and clean together
mean canonical.

6. Completion procedures and proof procedures

The central concept underlying completion (Knuth and Bendix, 1970)
is the existence of critical proofs. Completion alternates “expansions”
that infer the conclusions of critical proofs with “contractions” that
remove redundancies. More generally, theorem proving with simplifi-
cation (e.g., Dershowitz, 1991b; Bonacina and Hsiang, 1991; Bachmair
and Ganzinger, 1991) entails two processes: Expansion, whereby any
sound deductions (anything in ΘA) may be added to the set of derived
theorems; and Contraction, whereby any redundancies (anything in
ρA) may be removed. The inference-rule interpretation of completion,
accommodating both expansion and contraction, was developed in
(Bachmair and Dershowitz, 1994).

DEFINITION 11 (Expansion and Contraction).

− A deduction step A ; A∪B is an expansion provided B ⊆ ΘA.

− A deduction step A∪B ; A is a contraction provided A∪B % A.

It is easy to see that:

PROPOSITION 7.

− Expansions and contractions are good.

− Derivations, the steps of which are expansions and/or contrac-
tions, are good.
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DEFINITION 12 (Critical Proof). A minimal proof p ∈ µΠ A is
critical if it is not in normal form, but all its subproofs are:

p ∈ µΠ A \ µΠ ΘA

∀q. p � q ⇒ q ∈ µΠ ΘA

We use C(A) to denote the set of all such critical proofs in A, and
use the following notation for their conclusions:

DEFINITION 13 (Critical Formulæ).

∇A
!= ∆ C(A)

DEFINITION 14 (Fairness).

− A good derivation {Ai}i is fair (w.r.t. C) if

C(A∞) = Π A∗

− It is uniformly fair if

Â∞ \ Â] = Π A∗

Critical obligations are proofs that are not in normal form but all
of whose proper subproofs are already in normal form. Fairness means
that all persistent obligations are eventually “subsumed” by a strictly
smaller proof.

THEOREM 5. Presentation A is complete if and only if C(A) = Π A.

Proof. Recall that A complete means ΘA = ∆ (ΠA ∩ µΠ ΘA).

− C(A) = Π A implies ΘA = ∆ (ΠA ∩ µΠ ΘA): Assume, by way of
contradiction, that A is incomplete. Then there is a c ∈ ΘA such
that c 6∈ ∆ (Π A∩µΠ ΘA), or there is no proof of c in ΠA∩µΠ ΘA.
However, there are proofs of c in ΠA: let’s take a minimal one,
that is, let p ∈ µΠc A. By the above, p 6∈ µΠ ΘA, or p is not in
normal form. If p is not in normal form, it means that it has some
subproof(s) that are not in normal form, that is, some q � p that
is not in normal form. By the well-foundedness of �, let q be a
minimal (with respect to �) such proof. Minimality with respect
to � means that all subproofs of q are in normal form. Thus, we
have a (possibly trivial) subproof q of p, which is not in normal
form, but such that all its subproofs are. But this is the definition
of critical proof: q ∈ C(A). The hypothesis C(A) = Π A implies
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that there exists a proof r ∈ Π A such that r < q. Since we have
p � q > r, by Replacement (7), there exists a p′ ∈ Π A, such that
p′ < p, with r in place of q, i.e., p > p′ � r. This contradicts the
fact that p is minimal.

− ΘA = ∆ (ΠA ∩ µΠ ΘA) implies C(A) = Π A: Assume, by way of
contradiction, that C(A) 6= Π A: there exists a p ∈ C(A) such that
for no q ∈ Π A do we have p > q. Let c = ∆ p. By completeness,
there is a normal form proof q of c in Π A∩µΠ ΘA and q is smaller
than p, precisely because it is in normal form, contradicting the
above.

COROLLARY 1. If a good derivation is fair, then its limit is complete.

Proof. By the definition of fairness we have C(A∞) = Π A∗. By
Proposition 6, A∗ ≈ A∞, and Π A∗ ' Π A∞, so that C(A∞) = Π A∞.
By Theorem 5, A∞ is complete.

This result suggests completing an axiomatization A0 by adding,
step by step, what is needed to make for better proofs than the critical
ones.

For example, suppose a proof ordering makes ĉ > b̂
c and ĉ

b > b̂. Start
with A0 = {c}, and consider ĉ. Were ĉ to persist, then by fairness a
better proof would evolve, the better proof being b̂

c . If b̂ is in normal
form, then b ∈ A∞ and both minimal proofs persist.

Another example: µP = {b̂, ĉ, b̂
c} and A = {b}, then A ; A ; · · ·

is fair, since A∞ = A and C(A∞) = ∅. The result is complete but
unsaturated (c is missing).

Clearly, a fair derivation is also completing. On the other hand,
completing does not imply fair, because the limit could feature a normal
form proof of some c ∈ ΘA0, without having reduced all persistent
critical proofs of c. The two notions serve different purposes: completing
is more abstract, and represents a precondition for getting a complete
limit. Fair is stronger and more concrete, as it specifies a way to achieve
completeness by reducing all persistent critical proofs.

A saturated limit is not necessarily reduced, unless it is also clean,
in which case it is canonical:

THEOREM 6 (Fair Completion). Clean, fair derivations are canoni-
cal, provided minimal proofs are unique.

Proof. This follows from Lemma 6, Corollary 1, Proposition 3 and
Theorem 4.
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By Proposition 1, this also means that each a ∈ A∞ (= A]) is its
own ultimate proof â ∈ µΠ ΘA, so is not susceptible to contraction.

We are left with the task of identifying sufficient conditions for
saturation, in case minimal proofs are not unique:

THEOREM 7. Presentation A is saturated if and only if Â\Â] = Π A.

Proof. Recall that A saturated means µΠ A = µΠ ΘA.

− Â \ Â] = Π A implies µΠ A = µΠ ΘA: Assume, by way of contra-
diction, that µΠ A 6= µΠ ΘA. Then there is a theorem c ∈ ΘA for
which a normal form proof p∗ is absent from µΠ A. Instead, there
is a minimal non-normalized proof p ∈ µΠ A\µΠ ΘA. Then, there
is some x ∈ Γ p such that x ∈ A but x 6∈ A] (were Γ p ⊆ A], then
p would be in normal form). By the hypothesis, x̂ > r for some
r ∈ Π A. By Replacement (7), there exists a v ∈ Π A, such that
p > v � r, and p is not minimal.

− µΠ A = µΠ ΘA implies Â \ Â] = Π A: If x ∈ A \A], there exists a
p ∈ µΠx A = µΠx ΘA such that x̂ > p, because x̂ 6∈ µΠx ΘA, since
x 6∈ A].

By the above theorem, if A is saturated, A\A] is redundant: A\A] ⊆
ρA or A \A] = A ∩ ρA.

COROLLARY 2. If a good derivation is uniformly fair, then its limit
is saturated.

Proof. By uniform fairness we have Â∞ \ Â] = Π A∗. By Proposi-
tion 6, A∗ ≈ A∞, and ΠA∗ ' Π A∞, so that Â∞ \ Â] = Π A∞. By
Theorem 7, A∞ is saturated.

7. Instances of the framework

What has traditionally been called “completion” can be described as
an inference system, wherein each step Ai ; Ai+1 is the composition
of an expansion, Ai ; Ai ∪∇Ai = Bi followed by a contraction, Bi ;

Bi \ ρBi = Ai+1:

DEFINITION 15 (Bulk Completion, Bachmair, 1991, pp. 28–29).
Bulk completion is a sequence of steps:

A ; [A ∪∇A] \ ρ[A ∪∇A]
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By Proposition 7:

LEMMA 9. Bulk completion is good.

LEMMA 10. The canonical presentation has no critical formulæ.

Proof. ∇A] = µΠ A] \ µΠ ΘA] = ∅.

COROLLARY 3. The canonical presentation is stable under bulk
completion:

A] ; A′ ⇒ A′ = A]

THEOREM 8. Bulk completion is canonical, provided minimal proofs
are unique:

A]
0 = Abulk

∞

This follows from Theorem 6, because derivations by bulk comple-
tion are (a) fair, since bulk completion derives all critical formulæ en
masse, and (b) clean, since bulk completion also removes redundancies
immediately.

Returning to the ground equation case, let ≥≥ be a total
simplification-ordering of terms, let P > I > T > S > Z in the
precedence, let proofs be greater than terms, and compare proof trees in
the corresponding total recursive path simplification-ordering. Ground
completion is an inference mechanism consisting of the following
inference rules:

Deduce: E ∪ {w = t[u]} ; E ∪ {w = t[v]} if u = v ∈ E
and u� v

Delete: E ∪ {t = t} ; E

Furthermore, operationally, completion implements these inferences
“fairly”: No persistently enabled inference rule is ignored forever.

COROLLARY 4 (Completeness of Completion). Ground completion
results—at the limit—in the canonical, Church-Rosser basis.

Proof. Ground completion is good, since Deduce and Delete
do not increase proofs (;⊆%). In particular, I(w, t[u]) >
T (I(w, t[v]), Sn(I(u, v))) if u � v, since t[u] � t[v] and t[u] ≥≥ u � v.
Ground completion is fair and clean. For example, the critical obligation

w = t t = v
w = v

T
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when t� w, v, is resolved by Deduce. Also, since T > S, non-critical
cases resolve naturally:

w = t
fw = ft

t = v
ft = fv

fw = fv
>

w = t t = v
w = v

fw = fv

8. Discussion

Completion processes have been studied intensively since their dis-
covery and application to automated theorem proving by Knuth and
Bendix (1970) and Buchberger (1985). The fundamental role of proof
orderings in automated deduction, and the interpretation of comple-
tion as nondeterministic application of inference rules, was conceived
in (Bachmair et al., 1986; see Bachmair and Dershowitz, 1994). The
(inference-rule based) completion principle can be applied in numerous
situations (Dershowitz, 1989; Bonacina and Hsiang, 1995), including
equational rewriting (Peterson and Stickel, 1981; Jouannaud and Kirch-
ner, 1986; Bachmair and Dershowitz, 1989), Horn theories (Kounalis
and Rusinowitch, 1987; Dershowitz, 1991a, 1991c), induction (Kapur
and Musser, 1987; Fribourg, 1989), unification (Doggaz and Kirchner,
1991), and rewrite programs (Bonacina and Hsiang, 1992; Dershowitz
and Reddy, 1993).

Our abstract framework can be applied to re-understand comple-
tion mechanisms in a fully uniform setting. Because we have been
generic in our approach, the results here apply to any completion-based
framework, including standard completion mechanisms, like ground
completion (Snyder, 1989; Gallier et al., 1993), as illustrated herein,
equational completion, or completion for unification, and also to derive
new completion algorithms, such as for constraint solving.

In (Bachmair and Dershowitz, 1994), a completion sequence is
deemed fair if all persistent critical inferences are generated. In
(Nieuwenhuis and Rubio, 2001, fn. 8), an inference sequence is held
to be fair if all persistent inferences are either generated or become
redundant. In (Bonacina, 1992; Bonacina and Hsiang, 1995), the notion
of fairness was formulated in terms of proof reduction with respect to a
proof ordering, and made relative to the target theorem, suggesting for
the first time that fairness should earn one a property weaker than sat-
uration. The definition of fairness propounded here combines all these
ideas. Fairness means that all persistent critical proofs are reduced,
but it only earns completeness, not saturation. As we saw, a stronger
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version of fairness, namely uniform fairness, is needed for saturation
when the proof ordering is partial.

Bulk completion, as investigated here, is an abstract notion. Con-
crete procedures are obtained by coupling the inference system with
a search plan that determines the order in which expansion and con-
traction steps take place. ¿From a practical point of view, fairness and
cleanness are two requirements for the search plan: it should schedule
enough expansion steps to be fair, hence complete, and enough con-
traction steps to be clean. Specific search plans may settle for some
approximation of these properties. The two are intertwined, as a basic
control issue is how best to avoid performing expansion inferences from
premises that can be contracted, because such expansion inferences
would generate redundancies. This principle has led many to design
search plans called by various authors simplification-first, contraction-
first or eager contraction plans. Our definition of critical obligations
also allows one to incorporate “critical pair criteria” (see, for example,
Bachmair and Dershowitz, 1988).

On the other hand, making sure that contraction takes priority over
expansion is not cost-free, because it involves keeping a potentially very
large database of formulæ inter-reduced. In turn, this involves forward
contraction, that is, contracting newly generated formulæ with respect
to already existing ones, and backward contraction, that is, contracting
formulæ already in the database with respect to the new formulæ
that survived forward contraction. In practice, forward contraction
is considered to be part and parcel of the generation of a formula,
while backward contraction is considered to be a bookkeeping task for
the database of formulæ. In our framework, the effort to implement
contraction efficiently is the effort to make clean derivations efficient.

An observation that has helped streamline implementations of com-
pletion, and of theorem-proving strategies based on completion, was
that backward contraction can be implemented by forward contrac-
tion. That is, it suffices to detect that a formula in the database is
reducible, and then subject it to forward contraction, as if it were
newly generated. This way, formulæ generated by backward contrac-
tion are treated like formulæ generated by expansion. This observation
appeared in implementations since the late eighties, most notably in
Otter (McCune, 1994). This kind of prover works by maintaining a list
of formulæ already selected as expansion parents, and a list of formulæ
to be selected, where new formulæ that survived forward contraction are
added. Another major intuition in the implementation of completion-
based strategies was to realize that, in addition to search plans that aim
at keeping the union of the two lists inter-reduced, it is good to have
search plans that inter-reduce only the list of selected formulæ. The E
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theorem prover (Schulz, 2002) features these search plans, while most of
Otter’s successors, such as SPASS (Weidenbach et al., 1999), Vampire
(Riazanov and Voronkov, 2002) and Waldmeister (Hillenbrand, 2003),
implement both kinds.
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