
Computability and Stability
for Hybrid Algorithms

Nachum Dershowitz1 and Zvi Retchkiman Königsberg2

1 School of Computer Science, Tel Aviv University
Ramat Aviv, Israel

nachum.dershowitz@cs.tau.ac.il
2 Instituto Politécnico Nacional, CIC

Ciudad de Mexico, Mexico
mzvi@cic.ipn.mx

Abstract. Church’s Thesis for discrete algorithms motivates an analo-
gous thesis for dealing with analog algorithms. Specifically, the notions of
analog algorithm and dynamical system are postulated to be equivalent.
Stability for hybrid algorithms is addressed by considering Lyapunov en-
ergy functions for analog algorithms with continuous and discontinuous
states.

Key words: Analog algorithms, Dynamical systems, Hybrid systems,
Church’s Thesis, Stability, Lyapunov functions.

1 Introduction

Gurevich [3] has shown that any algorithm that satisfies three intuitive postu-
lates can be step-by-step emulated by an abstract state machine (ASM). Adding
a postulate of effectivity, Dershowitz and Gurevich [2] proceeded to prove that
all notions of effective algorithms for discrete-time models of computation (e.g.
Turing machines, Minsky counter machines, Post machines, random access ma-
chines) are covered by their formalization. Bournez, Dershowitz and Néron [1]
then extended that axiomatization to supply a generic notion of analog algorithm
and prove completeness results. Their postulates, defining analog algorithms, are
in the same spirit of those given for discrete algorithms. These notions are re-
viewed and adapted in the next two sections.

Our study of stability considers Lyapunov energy functions for algorithms
with continuous and discontinuous states. It extends preliminary work for purely
dynamical systems [5] to handle hybrid systems with both discrete and analog
transitions. This is the subject of Section 4.

The agents of an artificial swarm system are often hybrid by nature. Stability
is a crucial property for such swarm agents.

2 Computability of Discrete Algorithms

The basic characteristic of a computable function, as formalized in [3,2], is that
there must exist a finite description of an algorithm describing how to compute
the function.

According to this view, a function is computable if: (a) given an input from its
domain, it can give the corresponding output by following a procedure (program)
that is formed by a finite number of exact unambiguous instructions – possibly
relying on unbounded storage space; (b) it returns such output (halts) in a finite
number of steps; and (c) if given an input that is not in its domain, it either
never halts or it gets “stuck” and fails.

Gurevich [3] proposed a generic model of computation that incorporates these
properties in what constitutes a “formal” algorithm, and which is outlined next.

Postulate I (Discrete system). An algorithm is a state-transition system,
consisting of a set (or proper class) of states, a subset of which are initial states,
and a partial transition function on states that determines the next-state rela-
tion. States with no next state are terminal.

Postulate II (Abstract state). States are first-order structures with equality,
all sharing the same fixed, finite vocabulary, including the scalar (nullary func-
tion) true. States and initial states are closed under isomorphism. Transitions
preserve the base set (domain), and transitions and isomorphisms commute. The
interpretations given by a state x to the function symbols f in the vocabulary
of the structure are denoted by JfKx, and extended in the usual way to (ground)
terms.

Definition 1 (Locations and updates). If f is a j-ary function symbol in
the state vocabulary and ā is a j-tuple of elements of the base set of a state
x, then their combination f(ā) is called a location. We denote by Jf(ā)Kx its
interpretation JfKx(ā) in x. When x and y are structures over the same base set
and vocabulary, y\x is the set of updates {f(ā) 7→ Jf(ā)Ky : Jf(ā)Ky 6= Jf(ā)Kx}.

Postulate III (Bounded exploration). There exists some finite set of ground
terms over the vocabulary of the states, such that states that agree on the values
of these terms also agree on all next-step state changes.

An abstract state machine, or ASM, is a state-transition system in which
algebraic states (without predicate symbols) store the values of functions of the
current state. Transitions are programmed using a convenient language based
on guarded commands for updating individual states. ASMs captures the notion
that each step of an algorithm performs a bounded amount of work, whatever
domain it operates over, so are central to the succeeding development.

Definition 2 (ASM). An abstract state machine (ASM) is given by a set of
algebraic states (without predicate symbols) sharing a vocabulary and closed un-
der isomorphism, a subset of initial states also closed under isomorphism, and
a program P , composed of:

– assignments s := u, for terms s and u over the vocabulary of the states;

– conditionals if q then P or if q then P else R, where q is a conjunction
of equalities and inequalities between terms and P and R are programs; and

– parallel composition par P1, . . . Pn rap, for programs P1, . . . , Pn.

A program P defines a set of updates
a
P (x) for each state x, according to the

standard semantics of these programming constructs, each update being of the
form f(ā) 7→ b, for values ā, b in the base set of x.

Gurevich [3] goes on to prove the following important result.

Theorem 3 (Representation). For every process satisfying Postulates I–III,
there is an abstract state machine (ASM) in the same vocabulary, with the same
sets of states and initial states, that emulates it step-by-step, state-for-state.

To capture the notion of effectiveness, one additional postulate regarding
initial states is needed.

Postulate IV (Arithmetical state). Up to isomorphism, all initial states
have the natural numbers as their base set, all share the same operations and
constants – save input values, and there is exactly one initial state for each pos-
sible input. Their operations are all basic arithmetic (+, −, ×, ÷, <), or can
be programmed by ASMs using only basic arithmetic, or else are completely
undefined.

Employing this last postulate, arithmetical ASMs may be defined [2]. With
all this information, the Church Thesis is proved.

Theorem 4 (Church’s Thesis). A numeric function is partial recursive if
and only if it is computed by a state-transition system satisfying Postulates I–
IV. The input is contained in the initial state of a computation and the output
in its terminal state.

Remark 5. We have restricted this presentation to algorithms that work over the
natural numbers. However, it is possible to extend it to other possible domains
(strings, lists, graphs, etc.) by introducing an encoding notion and the concept
of arithmetized algorithm, as done in [2]. No matter what other effective model
of computation is chosen, its power of computation will not be increased beyond
that given by partial recursive functions. Theorem 3 plays a fundamental role in
the proof. See [2] for more details. As a corollary Turing’s Thesis is obtained.

3 Effectiveness of Hybrid Algorithms

We are interested next in extrapolating from the above discussion to analog
algorithms along the lines suggested by Bournez, Dershowitz, and Néron [1].

Postulate Ia (Dynamical system). A hybrid algorithm is a dynamical sys-
tem (T,X,A, ϕt) consisting of a time set T (a monoid with an addition operator
+ and neutral 0), a metric state space X (with metric d), initial states A ⊆ X,
and a family of evolution operators ϕt : X ⇀ X, parameterized by t ∈ T (but
not necessarily defined for all t ∈ T) and satisfying the following two properties:
ϕt+s = ϕt ◦ ϕs and ϕ0 is the identity function.

Remark 6. In our definition of dynamical system, it is allowed to have, in general,
more than one evolution operator.

Dynamical systems are classified based on the properties of T , X, and ϕ. The
time set T , is it continuous or discrete? Is the state space X finite or infinite?
Continuous or discrete? Finite-dimensional or infinite-dimensional? Regarding
the evolution map ϕt: is it deterministic or stochastic, autonomous or time-
dependent, invertible or not, etc.?

When T = R = (−∞,∞), we speak of a continuous-time dynamical system,
and when T = N = {0, 1, 2, · · ·} we speak of a discrete-time dynamical system.
We will consider T equipped with the absolute value as a normed space (T, | · |).

A dynamical system is generally defined by one or more differential or dif-
ference equations.

Remark 7. When dealing with continuous dynamical systems determined by or-
dinary differential equations on Rn, the euclidean metric d is

d(x, y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2, ∀x, y ∈ Rn.

For discrete dynamical systems determined by difference equations, X equipped
with this euclidean metric defines a metric space.

Definition 8 (Computable system). A dynamical system is said to be com-
putable if its family of evolution operators (also called its trajectories) are ob-
tained as solutions of its mathematical model.

Postulate IIa (Abstract state). A hybrid algorithm is an abstract transition
system satisfying Postulate II.

Definition 9 (Generator). An infinitesimal generator is a function that maps
states to updates, and which respects isomorphisms.

Definition 10 (Semantics). A semantics ψ over a class C of sets S is a partial
function mapping initial evolutions (non-point evolutions starting at t = 0) over
some S ∈ C to an element of S. The infinitesimal generator associated with a se-
mantics ψ maps the state space X, for x ∈ X such that ψ(Jf(ā)Kϕt(x)) is defined
for all locations f(ā), to the set of updates

a
ψ(x) = {f(ā) 7→ ψ(Jf(ā)Kϕt(x)) :

f in vocabulary of x and ā in base set of x}.

Remark 11. When T = R, an example of semantics over the class of sets S
containing T is the derivative ψder, when it exists. When T = N, an example
of semantics over the class of all sets would be the function ψN mapping f to
ψN(fn) = fn+1, n ∈ N.

Remark 12. From now on, we assume that some semantics ψ is fixed to deal
with different types of dynamical systems, it could be ψder, but it could also
be another one. However, it is assumed that the class of dynamical systems is
restricted to those that guarantee the existence of the respective semantics and
as a result its associated set of updates is well defined. Therefore, not all possible
dynamical systems are allowed.

The following corresponds to the Bounded Exploration Postulate, but now
for continuous transitions.

Postulate IIIa (Bounded exploration). For any hybrid algorithm, there ex-
ists a finite set T of variable free terms over the vocabulary of its states, such
that

a
ψ(x) =

a
ψ(y) for all states x and y that coincide for all terms in T .

Definition 13 (Hybrid system). A hybrid algorithm is a ψASM that satisfies
Postulates Ia–IIIa.

In addition to the rules of ASM programs as given in Definition 2, we need
dynamic rules.

Definition 14 (Dynamic ASM). Programs may include statements
Dynamic(f(t1, · · · , tj), t0), where f is a symbol of arity j and t0, t1, . . . , tj
are ground terms. This rule imposes constraints ψ(f(t1, . . . , tj)) = t0, on the
updates

a
ψ(x).

The following plays a fundamental role.

Theorem 15. For every hybrid algorithm, there is a ψASM that has the iden-
tical set of updates for all states.

The proposed model can adequately describe hybrid systems, made of alter-
nating sequences of continuous evolution and discrete transitions.

Example 16 (Bouncing ball). Let us consider a simple model of a bouncing ball,
a classic example of a hybrid dynamical system, whose mathematical model is
given by the equations x′′ = −gm, where g is the gravitational constant and
v = x′ is the velocity, except that upon impact, each time x = 0, the velocity
changes according to v = −kv, where k is the coefficient of impact. Every time
the ball bounces, its speed is reduced by a factor k. Its evolution is described by
its associated set of updates of the following program rules

if x = 0 then v := −kv
else par Dynamic(x, v),Dynamic(v,−gm) rap

with dynamics ψder.

Definition 17 (Program). A ψASM comprises the following: an ASM pro-
gram, a set S of first-order structures with equality over some finite vocabulary
V closed under isomorphisms with a subset I of S closed under isomorphisms,
and a well-defined update set of computations

a
ψ associated with ψ.

We are assuming for that for each dynamical system, the trajectories can
be computed from the description of its dynamical system, as, for example, in
the case of nonlinear differential equation, the Lipschitz conditions are satisfied,
etc. In other words, not all dynamical systems are contemplated just those that
guarantee their existence.

Definition 18 (Unambiguity). A semantics ψ is unambiguous if for all sets
S of first-order structures over some finite vocabulary V closed under isomor-
phisms, and for all subsets S′ ∈ S closed under isomorphisms, whenever there
exists some ϕ and a ψASM, then ϕ is unique.

Bournez, Dershowitz, and Néron finish their presentation giving their main
result (analogous to Theorem 3).

Theorem 19. Assuming ψ is unambiguous, for every process satisfying Postu-
lates Ia–IIIa, there is an equivalent ψASM.

Theorem 20 (Church’s Thesis for hybrid algorithms). A dynamical sys-
tem is computable if and only if a ψASM computes it.

Proof. If the dynamical system is computable (per Definition 8), there exists an
algorithm that computes its trajectories from its mathematical model descrip-
tion and, therefore, the ψASM program will be able to emulate and compute
these trajectories by a proper definition of its rules. For the other direction of
the implication, given a ψASM that first interprets the fixed dynamical system
and then computes its trajectories, we define a numerical procedure that mimics
it and therefore computes the dynamical system’s trajectories. In fact, its tra-
jectories define an exact mathematical model of themselves. ut

4 Stability of Hybrid Algorithms

We are ready now to consider the stability concept for hybrid algorithms in
terms of Lyapunov energy functions. We deal with algorithms whose states are
structures with metric space S, d as base set.

Definition 21 (Stability). Consider a hybrid algorithm. We say that state x
with a ∈ S and time-indexed location ft,t0(a), where t and t0 belong to T , is
stable if for all t0 ∈ T and for all ε > 0 there exists δ = δ(t0, ε) > 0 such that if
given a′ ∈ S, with d(a′, a) < δ ⇒ d(Jft,t0(a′)Kx, Jft,t0(a)Kx) < ε for all t ∈ T .

Chaotic systems are unstable.

Definition 22 (Continuity). Consider a hybrid algorithm. We say that state
x with a ∈ S and time-indexed location ft(a) is continuous at t ∈ T if for all
ε > 0 there exists δ = δ(t) > 0 and state y such that if given t′ ∈ T , with
|t− t′| < δ ⇒ d(Jft(a)Kx, Jft′(a)Ky) < ε.

Definition 23 (Class K). A continuous function α : [0,∞) → [0,∞) is said
to belong to class K if it is strictly increasing and α(0) = 0.

Postulate E (Bounded energy). The Lyapunov energy function associated
with a hybrid algorithm at its starting time point t0 ∈ T multiplied by some
finite constant c ≥ 1 bounds the whole Lyapunov energy function, transferred or
transformed by the whole algorithm, as the Lyapunov energy function evolves
in time.

Theorem 24. Consider a hybrid algorithm with the possibility of discontinuous
states at points t1, t2, . . . ∈ T . Assume there exists a Lyapunov function V :
S × T → R+ and two functions α, β ∈ K, such that

α(d(Jft,t0(a′)Kx, Jft,t0(a)Kx)) ≤ V (Jft,t0(a′)Kx, t)
≤ β(d(Jft,t0(a′)Kx, Jft,t0(a)Kx))

for all a, a′ ∈ S, t, t0 ∈ T . Assume Postulate E and that Jft0,t0(a′)Kx = a′ holds,
then the hybrid algorithm is stable.

Proof. We want to show that there exists a δ = δ(t0, ε) > 0 such that
given a′ with d(a′, a) < δ ⇒ d(Jft,t0(a′)Kx, Jft,t0(a)Kx) < ε for all t ∈ T .
We claim δ = β−1(α(ε)/c) does the job. Indeed, d(Jft,t0(a′)Kx, Jft,t0(a)Kx) ≤
α−1(V (Jft,t0(a′)Kx, t)) ≤ α−1(cV (Jft0,t0(a′)Kx, t0)) = α−1(cV (a′, t0)) ≤
α−1(cβ(d(a′, a))) < ε, where Postulate E has been used in the second inequality
and the equation Jft0,t0(a′)Kx = a′ in the first. ut

An example of a stable hybrid algorithm whose Lyapunov function satisfies
the conditions imposed by Theorem 24 is the one provided in [4], which consists
of a ball in a constant gravitational field bouncing inelastically on a flat vibrating
table. It is interesting to see how the Lyapunov function, proposed in the cited
paper, monotonically decreases as t increases. In other words, Postulate E holds
with c = 1.

References

1. Bournez, O., Dershowitz, N., Néron, P.: An axiomatization of analog algorithms. In:
Computability in Europe 2016: Pursuit of the Universal (CiE, Paris, France). Lec-
ture Notes in Computer Science, Vol. 9709., Switzerland, Springer (2016) 215–224.
Available at http://nachum.org/papers/AxiomatizationAnalog.pdf; full version
at https://arxiv.org/pdf/1604.04295v2.pdf

2. Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof
of Church’s Thesis. Bulletin of Symbolic Logic 14 (2008) 299–350. Available at
http://nachum.org/papers/Church.pdf

http://nachum.org/papers/AxiomatizationAnalog.pdf
https://arxiv.org/pdf/1604.04295v2.pdf
http://nachum.org/papers/Church.pdf

3. Gurevich, Y.: Sequential abstract state machines capture sequential al-
gorithms. ACM Transactions on Computational Logic 1 (2000) 77–
111. Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.146.3017&rep=rep1&type=pdf

4. Heimsch, T.F., Leine, R.I.: A novel Lyapunov-like method for the non-autonomous
bouncing ball system. In: Proceedings of the 7th European Nonlinear Dynamics
Conference (ENOC), Rome (2011)

5. Retchkiman, Z., Dershowitz, N.: The Church thesis, its proof, and the notion of sta-
bility and stabilization for analog algorithms. Communications in Applied Analysis
23 (2019)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.146.3017&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.146.3017&rep=rep1&type=pdf

	Computability and Stability for Hybrid Algorithms
	Nachum Dershowitz
	Introduction
	Computability of Discrete Algorithms
	Effectiveness of Hybrid Algorithms
	Stability of Hybrid Algorithms

