Enumerating Satisfiable
Propositional Formulee

Nachum Dershowitz* Mitchell A. Harris

October 30, 2003

Abstract

It is known experimentally that there is a threshold for satisfiability
in 3-CNF formulae around the value 4.25 for the ratio of variables to
clauses. It is also known that the threshold is sharp [Fri99], but that
proof does not give a value for the threshold.

We use purely combinatorial techniques to count the number of
satisfiable boolean formule given in conjunctive normal form. The
intention is to provide information about the relative frequency of
boolean functions with respect to statements of a given size, and to
give a closed-form formula for any number of variables, literals and
clauses. We describe a correspondence between the syntax of propo-
sitions to the semantics of functions using a system of equations and
show how to solve such a system.

1 Introduction

The purpose of this paper is to apply combinatorial techniques to count the
number of satisfiable boolean formulae for a given syntax and provide in-
formation about the relative frequency of boolean functions with respect to
statements of a given size. This in turn may help one understand the perfor-
mance of algorithms that decide problems such as satisfiability and validity,

*School of Computer Science, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
Supported in part by the Israel Science Foundation. Email: nachumd@tau.ac.il

"Department of Computer Science, Technical University of Dresden, 01062 Dresden,
Germany. Email: maharri@tcs.inf.tu-dresden.de

and may aid in finding bounds on the threshold between satisfiability and
unsatisfiability. The method we use is an explicit counting of those formula
that are satisfiable. We restrict ourselves to k-CNF form, and describe a
correspondence between this syntax of propositions and the semantics of the
boolean functions they represent, using a system of equations. Then we
show how to solve such a system, giving a general closed-form solution. For
the traditional counting model for literals within a clause (unordered with-
out replacement, no contradictory literals), we simplify it to a more specific
solution.

There is great experimental evidence for the phenomenon of a ‘phase
transition’ of satisfiability. That is, there is an experimentally confirmed
threshold between satisfiable and unsatisfiable formulae as the ratio of clauses
to variables increases, where below the threshold almost all formulee are
satisfiable and beyond almost all are unsatisfiable (see Kilpatrick and Selman
[KS94]). Much work has been done to establish that this phase transition
is indeed a sharp threshold (see Friedgut [Fri99], with qualifications as to
“sharpness”) and to place upper and lower bounds on that threshold (see
Janson et al. [JSV00] for a summary of the progress on those bounds). The
closed form provided here could perhaps be used to help determine the exact
threshold analytically.

The importance of the threshold is that, again experimentally, it seems
that the running times of the Davis-Putnam algorithm for deciding satis-
fiability peak around the threshold. The intent of the present paper is to
determine exact probabilities.

Dershowitz and Lindenstrauss [DL89] use generating function techniques
for counting with boolean formula; that method is extended here to solving
systems of equations counting boolean functions generated from a given syn-
tax. Chauvin, Flajolet et al. [CFGGO02] form a similar set of equations for
the case of unrestricted syntax.

2 Syntax and Semantics

The counting problem we address corresponds to the logical problem “k-
CNF-SAT”. We have a set V' of v independent propositional variables, and
a set V of their v negations. Variables and their negations are called literals.
A clause is a disjunction of a sequence of k literals, and a boolean formula
is a conjunction of a sequence of ¢ clauses. Most of the literature on k-CNF

clause size, k k 1 1 k

clauses, ¢ 1 c 1 c 1 c

vars, v 1 1 v v v 1

total # formulee | 28 2¢ 2u (2v)° (20)* ke

satisfiable 282 2 ol (20)F 2(2F —1)°—
()2l (2" -2y

Table 1: Counting satisfiable formula for small values of v, k, and c.

views a clause as a set of literals (unordered without replacement), but a
formula as a sequence of clauses. We use sequences instead of sets implying
that a literal or clause may repeat within a clause or formula, respectively,
and that the order of the literals or clauses matter. For example,

(pVaVvp)ANDBVaVg ANpVBEVG A(@VpVp)

is in 3-CNF form with 4 clauses and 2 variables.

Because of the restricted syntax, the set of k-CNF formulee is straight-
forward to specify as a regular language: ((V + V)*)¢. So the total number
of formulae over v variables, k literals, and c clauses is (2v)*¢. From this one
can quickly derive the number of satisfiable formulza for degenerate and small
values of k, ¢, and v.

There are two nontrivial entries. For &k = 1, to be satisfiable, a literal and
its negation cannot appear. So, for the number of variables appearing, ¢t > 1,
we choose first the variables, (z), then their sign, 2!, then their locations,

{i}t!, the number of set partitions of ¢ of size t (Stirling numbers of the
second kind), where the order of the partition matters, that is, the number
of surjective functions from ¢ to t.

For v = 1, we consider the set of four boolean functions and how they are
produced syntactically. First, there are 2¥ possible clauses and none of them
can be F.! There is exactly one way to produce P (likewise P) in a single
clause (by having all the literals identical), and so there are 2¥ — 2 ways to
produce T. In a sequence of ¢ of these clauses, to get T, all the clauses must
be T, so there are (2% — 2)¢ ways for T. One can only get P from a sequence

'We use BOLD CAPITAL notation for both the boolean function itself and the
number of formula representing that function.

PR VIF P P T v |F, P, P, T,
f(l):fg(l):F FIF P PT Fe1 | Fr Py Py Ty
h_f_p PPPTT P, | P, P, T, T,
e PP TPT P, | P, Ty P, T,

TITTTT Ty | T, Ty Tr Ty

(a) (b) (c)

Table 2: (a) The four binary functions of one variable; (b) the operator V on
them; (c) the recurrence for binary operator V for one variable.

of P and T clauses with at least one P clause. So we subtract the completely
true sequences from (2% — 1)°, for a total (25 — 1) — (2 — 2)°. The number
for P is the same, so the total of satisfiable formulee is:

2((2F — 1) — (2F = 2)9) + (2F — 2)c = 2(2F — 1)° — (2" - 2)°

For arbitrary (positive integral) values of all three parameters and for
every one of the 22" boolean functions, we will count the number of formulae
(by number of literals and clauses) that evaluate to each function. For v = 1,
there are 4 functions, F, P, P, and T. For an arbitrary number of variables,
we index a function by the binary representation of the integer corresponding
to its truth table (see Table 2(a)).

For any given boolean operator (here we restrict ourselves to V and A, but
the method can be applied to any operator), the function produced depends
only on the functions represented by the two operands. For example, V has
the behavior shown in Table 2(b). The binary function A has the obvious
dual behavior.

3 The enumeration

From the table of a logical operator acting on boolean functions, one can
construct a system of equations whose solution is the number of formula for
each function.

3.1 A system of equations

For the moment, let us consider the functions that can be represented with
a single clause over one variable.

Let Fy be the number of formule for the boolean function f using k
literals, Vv, and a single variable. Given a clause of length £ — 1, we can
compute Fy by constructing a recurrence from Table 2(c):

F, = FFeo _
P, = FiPyi +P(Firo1 +Pry)
P, = FiPy +Pi(Fri +Pr)
T, = FiT, 1 +P(Pr 1+ Ty 1)+ B
Pi(Py_1+ Tjo1) + Ti(Fimi + Py + Py + Ta)

with base cases

F, = 0
P, 1
P, =1
T1 - 0

the ones produced by the literals, zeroes elsewhere. Note that a solution for
this system is also a solution for a system based on A, but with functions
ordered in reverse (the complement of the bitwise representation).

The linear system can be represented as a matrix of coefficients for the
recurrence:

Fy Joo Jor J10 Jin Fi
Pe | _| 0 foo+ fou 0 fio+ fun | P
Py 0 0 foo + f1o Jor + fu P,
Ty, 0 0 0 foo + for + fio + fu1 T

Letting f; be the vector for the set of all boolean functions formed by a
clause of length k, and OR(1) be the above matrix, the equation

fr=O0OR(1)"- f;

can be solved by simply multiplying out the matrix for fixed k, or, sym-
bolically, by Gaussian elimination. But we would like to solve the system
symbolically for an arbitrary number of variables. That the system is linear
is a direct consequence of the grammar for k-CNF being regular.

The linear system for an arbitrary number of variables can be described
recursively.

Definition 1

0:or(n—1) 1:or(n—1)

or(n) 0 0:o0r(n—1)+1:0r(n—1)

izor(0) = f;

where x : or(n) appends the digits x to the front of all digits referred to in
the matriz or(n) and + is matriz addition.

Since we are concerned with n = 2%, we end up with a system of 2%’
equations.

Definition 2
OR(v) = or(2")

For instance,

_ [0:or(0) Lior(0)] _ [f f
OR(0) = or(1) = 0 0:or(0)+1:0r(0) | — [00 f0+f1]
_ [0:or(1) L:or(1) |
OR(1) = or(2) = _ 0 0:o0r(1)+1:o0r(1)] -
l Joo Jfor] f1o u
0 foo+ for 0 fiot+/fu
0 [Jfoo Jou] " f10 fu
0 foo+ for 0 fio+fu

as seen above.
All we need now is to justify that the recursively constructed system
counts the functions as expected:

Theorem 1 If f is the vector that counts the boolean functions on v vari-
ables, and f]' is a conjunction of n such functions, then

"= OR(v)"™" - f

Proof: We'll work with or(n) first; the result follows immediately for
OR(2"). The matrix or(n), and so also or(n)¥, must be upper triangu-
lar, since for @ < j, there is no x such that f; will contribute to f, V f;. The
[i, j] entry of or(v) is the sum of all the f, such that f, V f; = f;. This
leads to 3 entries in or(n + 1): in the upper left quadrant, a zero bit has
been added to the truth table representation, so nothing has changed; in the
upper right, the additional bit is one and so only those functions with 1 in
the most significant place are added; and in the lower right, the extra bit can
be either 0 or 1 and so both sets of functions are added. 0

The system for AND(v) is dual, so we can use the same matrix, reversing
the indices for the entries.

Notice how we are being more general than just using the traditional
literals by allowing an atomic symbol for any function.

3.2 Solving the system

Let B,, be the Boolean lattice with n generators, with partial order <, where
a = bif avb = 0b The symbol V is conveniently overloaded for both
the lattice’s least upper bound and the bitwise-or operation on the binary

representation of integers from 0 to 22" —1. For v variables, we are concerned
with Bzv .

Theorem 2 The number of formule of length n equivalent to f; (generated
as a disjunction of atomic function symbols fo, f1,...) is given by:

oR(): = T |1 (T 4)'] W

5=t t<s

For example, OR(1); = (fo+ fi+ fo+ f3)" - (fo+ f1)"= (fo+ fo)"+ f¢-
If the base cases are as above, then OR(1)} = 2" — 2. Note that to reduce
the symbolic complexity of Equation 1, the base case fl is implied.

Proof: By induction on n. If n = 1, then by inclusion-exclusion, all that is
left is f!. From the linear system in (1), OR(v)” = OR(v)- OR(v)"~'. Any
entry in OR(v)" is the dot product of constants, the coefficients from OR(v)
being the complement of those in OR(v)"~!. Since these are of opposite sign,

what is left over for a term is

zo)(z0) (=)

This is a closed-form formula for the number of propositional formula, as
a sequence of clauses in disjunction, regardless of the makeup of the clauses.
Were some other method used to count clauses, or even some other syntax
used to construct items in place of clauses, the above theorem would still
allow us to enumerate the disjunctions representing any particular boolean
function.

There is a difficulty in purely computational terms: the summations range
over all the items in the boolean algebra, namely all 22" functions. So we
seek simplifications.

O

3.3 Simplifying the answer

The number of satisfiable c-clause k-CNF formulae over v variables is the
total number of formulz less the unsatisfiable ones, namely (2v)" — ANDE,
where the base case AND; = OR(v)y2_;. As a corollary to Theorem 2,
we first determine OR/(v)} for all 4, and then OR(v)¥, and then use that to
compute AND(v)§.

Under different models of random selection, there are different ways of
specifying OR(v)}. Theorem 2 works for a disjunction (or dually a conjunc-
tion) as a sequence; it does not matter how the clauses f are computed.

We can use the model of selection for how a clause is generated to simplify.
The traditional method for generating random k-CNF formulee is first by the
literals in the clause, as a set of variables without replacement, then by sign
for each variable. This gives 2* (Z) possible clauses, and these clauses all
produce distinct functions.

Since there is only one of each of these functions, we can apply this
to Theorem 2, and simplify. Under this model, in Equation 2, there are at
most 2% (Z) possible distinct terms. In computing the number of unsatisfiable

formulee, (2"C (Z))C is the largest term, and is removed by subtracting to get

v

the satisfiable formulee. The next largest term is ((2’“ - 1)(k))c This is an

upper bound on the number of satisfiable formulae. The ratio of satisfiable

to total is then

2k o 1 T\ v
when ¢ = vr, a linear ratio of v. The limit of this, as v goes to infinity, is a

step function where
2k —1\"

or, for k=3, at r = 1(%8% ~ 5.191, a well-known upper bound for the 3-SAT
threshold.

4 Conclusion

Using elementary arguments, we were able to count the number of k-CNF
formulae for every boolean function, and specifically the number of satisfiable
formule for a given number of variables, clauses, and literals per clause. The
method of creating a system of equations to count the functions can be
applied to any formula syntax using any set of operators. In this case, CNF
syntax and the dual boolean operators simplify the analysis considerably.

How does the general result compare with other counting methods? It is
terribly impractical for v > 4; might other methods be better? The generate-
and-test method would involve generating all formulae and then running a
satisfiability decider on each. Though the number of formulee, (2v)*, is far
below doubly exponential, the test time is (conjectured to be—of course)
worst case exponential in v. Though (2v)%2? is still much better than 22" in
terms of calculation, the general formula quantifies the situation much better
and is amenable to symbolic manipulation.

Simply counting combinatorial objects is interesting enough in its own
right, but the method and the result can be used for other things. The
general method can be applied to other families of formulee, especially those
with a simple syntax and those with other logical operators. For non-linear
grammars, that is non-regular grammars, the results will involve the Catalan
numbers and its analogues.

Once the result is refined to give the exact function for the number of
satisfiable k-CNF formulae, asymptotic analysis will give better bounds on
the SAT/UNSAT threshold phenomenon.

References

[CFGGO02] Brigitte Chauvin, Philippe Flajolet, Daniéle Gardy, and Bern-

[DL8Y]

[Friog]

[JSVO0]

[KS94]

hard Gittenberger. And/or trees revisited. Submitted to Combi-
natorics, Probability, and Computing, page 27, December 2002.

Nachum Dershowitz and Naomi Lindenstrauss. Average time
analyses related to logic programming. In Logic programming
(Lisbon, 1989), pages 369—-381. MIT Press, Cambridge, MA, 1989.

Ehud Friedgut. Sharp thresholds of graph properties, and the k-
sat problem. J. Amer. Math. Soc., 12(4):1017-1054, 1999. With
an appendix by Jean Bourgain.

Svante Janson, Yannis C. Stamatiou, and Malvina Vamvakari.
Bounding the unsatisfiability threshold of random 3-SAT. Ran-
dom Structures Algorithms, 17(2):103-116, 2000.

Scott Kirkpatrick and Bart Selman. Critical behavior in the satis-
fiability of random Boolean expressions. Science, 264(5163):1297—
1301, 1994.

10

