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Abstract. Knuth and Bendix showed that confluence of a terminating first-order
rewrite system can be reduced to the joinability of its finitely many critical pairs.
We show that this is still true of a rewrite system RT ∪ RNT such that RT is
terminating and RNT is a left-linear, rank non-increasing, possibly non-terminating
rewrite system. Confluence can then be reduced to the joinability of the critical
pairs of RT and to the existence of decreasing diagrams for the critical pairs of RT

inside RNT as well as for the rigid parallel critical pairs of RNT.

1 Introduction

Rewriting is a non-deterministic rule-based mechanism for describing intentional compu-
tations. Confluence is the property expressing that the associated extensional relation is
functional. It is well-known that confluence of a set of rewrite rules is undecidable. There
are two main methods for showing confluence of a binary relation: the first applies to
terminating relations [8] and is the basis of the Knuth-Bendix test, reducing confluence
to the joinability of its so-called critical pairs obtained by unifying left-hand sides
of rules at subterms [7]. Based on the Hindley-Rosen Lemma, the second applies to
non-terminating relations [9] and is the basis of Tait’s confluence proof for the pure
λ-calculus. Reduction to critical pairs is also possible under strong linearity assump-
tions [3], although practice favors orthogonal (left-linear, critical pair free) systems for
which there are no pairs. It is our ambition to develop a critical-pair criterion capturing
both situations together.
Problem. Van Oostrom succeeded in capturing both confluence methods within a single
framework thanks to the notion of decreasing diagram of a labelled abstract relation [12].
In [5], the method is applied to concrete rewrite relations on terms, opening the way to
an analysis of non-terminating rewrite relations in terms of the joinability of their critical
pairs. The idea is to split the set of rules into a set RT of terminating rules and a set RNT

of non-terminating ones. While left-linearity is required from RNT as shown by simple
examples, it is not from RT. This problem has however escaped efforts so far.
Contributions. We deliver the first true generalization of the Knuth-Bendix test to
rewrite systems made of two subsets, RT of terminating rules and RNT of possibly
non-terminating, rank non-increasing, left-linear rules. Confluence is reduced – via
decreasing diagrams – to joinability of the finitely many critical pairs of rules in RT

within rules in RT ∪ RNT and the finitely many rigid parallel critical pairs of rules



in RNT within rules in RT ∪ RNT. The result is obtained thanks to a new notion, sub-
rewriting, which appears as the key to glue together many concepts that appeared before
in the study of termination and confluence of union systems, namely: caps and aliens,
rank non-increasing rewrites, parallel rewriting, decreasing diagrams, stable terms, and
constructor-lifting rules. This culminates with the solution of an old open problem raised
by Huet who exhibited a critical pair free, non-terminating, non-confluent system [3]. We
show that the computation of critical pairs should then involve unification over infinite
rational trees, and then, indeed, Huet’s example is no longer critical-pair free.
Organization. Sections 4 and 5 are devoted to the main result, its proof, and extension
to Huet’s open problem. Relevant literature is analyzed in Sect. 6.

2 Term Algebras

Given a signature F of function symbols and a denumerable set X of variables, T (F ,X )
denotes the set of terms built up from F and X . Terms are identified with finite labelled
trees as usual. Positions are strings of positive integers, identifying the empty string
Λ with the root position. We use “·” for concatenation of positions, or sets thereof.
We assume a set of variables Y disjoint from X and a bijective mapping ξ from the
set of positions to Y . We use FPos(t) to denote the set of non-variable positions of
t, t(p) for the function symbol at position p in t, t|p for the subterm of t at position
p, and t[u]p for the result of replacing t|p with u at position p in t. We may omit the
position p, writing t[u] for simplicity and calling t[·] a context. We use ≥ for the partial
order on positions (further from the root is bigger), p#q for incomparable positions
p, q, called disjoint. The order on positions is extended to sets as follows: P ≥ Q (resp.
P > Q) if (∀p ∈ P )(∃q ∈ max(Q)) p ≥ q (resp. p > q), where max(P ) is the set of
maximal positions in P . We use p for the singleton set {p}. We write u[v1, . . . , vn]Q for
u[v1]q1 . . . [vn]qn if Q = {qi}n1 . By Var(t) we mean the set of variables occurring in t.
We say that t is linear if no variable occurs more than once in t.

Substitutions are mappings from variables to terms, called variable substitutions
when mapping variables onto variables, and variable renamings when also bijective. We
denote by σ|X the restriction of σ to a subset X of variables. We use Greek letters for
substitutions and postfix notation for their application. The strict subsumption order m
on terms (resp. substitutions) associated with the quasi-order s •≥ t (resp. σ •≥ τ ) iff s = tθ
(resp. σ = τθ) for some substitution θ, is well-founded. Given terms s, t, computing the
substitution σ whenever it exists such that t = sσ (resp. tσ = sσ) is called matching
(resp. unification) and σ is called a match (resp. unifier). Two unifiable terms s, t have a
unique (up to variable renaming) most general unifier mgu(s, t), which is the smallest
with respect to subsumption. The result remains true when unifying terms s, t1, . . . , tn
at a set of disjoint positions {pi}n1 such that s|p1σ = t1σ ∧ . . .∧ s|pnσ = tnσ, of which
the previous result is a particular case when n = 1 and p1 = Λ.

Given F ⊆F , a term t is F -headed if t(Λ) ∈ F . The notion extends to substitutions.

3 Rewriting

Our goal is to reduce the Church-Rosser property of the union of a terminating rewrite
relation RT and a non-terminating relation RNT to that of finitely many critical pairs. The



particular case where RNT is empty was carried out by Knuth and Bendix and is based
on Newman’s result stating that a terminating relation is Church-Rosser provided its
local peaks are joinable. The other particular case, where RT is empty, was considered
by Huet and is based on Hindley’s result stating that a (non-terminating) relation is
Church-Rosser provided its local peaks are joinable in at most one step from each side.
The general case requires using both, which has been made possible by van Oostrom,
who introduced labelled relations and decreasing diagrams to replace joinability.

Definition 1. A rewrite rule is a pair of terms, written l→ r, whose left-hand side l is
not a variable and whose right-hand side r satisfies Var(r) ⊆ Var(l). A rewrite system
R is a set of rewrite rules. A rewrite system is left-linear (resp. linear) if for every rule
l→ r, the left-hand side l is a linear term (resp. l and r are linear terms).

Definition 2. A term u rewrites in parallel to v at a set P = {pi}n1 of pairwise disjoint
positions, written u⇒P

l→r v, if (∀pi ∈ P )u|pi = lσi and v = u[rσ1, . . . , rσn]P . The
term lσi is a redex. We may omit P or replace it by a property that it satisfies.

We call our notion of parallel rewriting rigid. It departs from the literature [3,1] by
imposing the use of a single rule. Rewriting extends naturally to lists of terms of the
same length, hence to substitutions of the same domain. Rewriting terminates if there
exists no infinite sequence of rewriting issuing from an arbitrary term.

Plain rewriting is obtained as the particular case of parallel rewriting when n = 1.
We then also write u→p

l→r v. As a consequence, most of the following definitions will
be given for parallel rewriting, while also applying to plain rewriting.

Consider two parallel rewrites issuing from the same term u with possibly different
rules, say u⇒P

l→r v and u⇒Q
g→d w. Following Huet [3], we distinguish three cases,

P#Q, that is, (∀p ∈ P ∀q ∈ Q) p#q, (disjoint case)
P = {p}, Q > p · FPos(l), (ancestor case)
P = {p}, Q ⊆ p · FPos(l), (critical case)

all other cases being a combination of the above three.

Definition 3 (Rigid parallel critical pairs). Given a rule l → r, a set P = {pi ∈
FPos(l)}n1 of disjoint positions and n copies {gi → di}n1 of a rule g → d sharing no
variable among themselves nor with l→ r, such that σ is a most general unifier of the
terms l, g1, . . . , gn at P . Then lσ is the overlap and 〈rσ, lσ[d1σ, . . . , dnσ]P 〉 the rigid
(parallel) critical pair of {gi → di}n1 on l→ r at P (a critical pair if n = 1).

Definition 4. A labelled rewrite relation is a pair made of a rewrite relation→ and a
mapping from rewrite steps to a set of labels L equipped with a partial quasi-order �
whose strict part � is well-founded. We write u⇒P,m

R v for a parallel rewrite step from u
to v at positions P with label m and rewrite system R. Indexes P,m,R may be omitted.
We also write α� l (resp. l � α) if m� l (resp. l �m) for all m in the multiset α.

Given an arbitrary (possibly labelled) rewrite step→l, we denote its projection on
terms by→, its inverse by l←, its reflexive closure by→=l, its symmetric closure by
←→l , its reflexive and transitive closure by→→α for some word α on the alphabet of
labels, and its reflexive, symmetric, transitive closure, called conversion, by ←←→→α.



We sometimes consider the word α to be a multiset. Given u, {v |u→→ v} is the set of
reducts of u. We say that a reduct of u is reachable from u.

The triple v, u, w is said to be a local peak if v l←u→m w, a peak if v α←←u→→β w,
a joinability diagram if v→→α u β←←w. The local peak v p,ml→r←u→q,n

g→d w is a disjoint,
critical, ancestor local peak if p#q, q ∈ p · FPos(l), q > p · FPos(l), respectively.
The pair v, w is convertible if v←←→→α w, divergent if v α←←u→→β w for some u, and
joinable if v→→α t β←←w for some t. The relation→ is locally confluent (resp. confluent,
Church-Rosser) if every local peak (resp. divergent pair, convertible pair) is joinable.

Decreasing Diagrams. Given a rewrite relation→ on terms, we first consider specific
conversions made of a local peak and an associated conversion called a local diagram
and recall the important subclass of van Oostrom’s decreasing diagrams and their main
property: a relation all whose local diagrams are decreasing enjoys the Church-Rosser
property, hence confluence. Decreasing diagrams were introduced in [12], where it is
shown that they imply confluence. Van Oostrom’s most general form of decreasing
diagrams is discussed in [5].

Definition 5 (Local diagrams). A local diagramD is a conversion made of a local peak
Dpeak = v ←u→ w and a conversion Dconv = v←←→→ u. We call diagram rewriting
the rewrite relation⇒D on conversions associated with a set D of local diagrams, in
which a local peak is replaced by one of its associated conversions:

P Dpeak Q⇒D P Dconv Q for some D ∈ D

Definition 6 (Decreasing diagrams [12]). A local diagram D with peak v l←u→m w
is decreasing if Dconv = v→→α s→=m s′→→δ←←δ′ t′=←l t←←β w, with labels in α (resp.
β) strictly smaller than l (resp. m), and labels in δ, δ′ strictly smaller than l or m. The
rewrites v→→α s and t←←β w, s→=ms′ and t′=←lt, s′→→δ←←δ′ t′ are called the side steps,
facing steps, and middle steps of the diagram, respectively. A decreasing diagram D is
stable if C[Dγ] is decreasing for arbitrary context C[·] and substitution γ.

Theorem 1 ([5]). The relation⇒D terminates for any set D of decreasing diagrams.

Corollary 1. Assume that T ⊆ T (F ,X ) and D is a set of decreasing diagrams in T
such that T is closed under⇒D. Then the restriction of→ to T is Church-Rosser if
every local peak in T has a decreasing diagram in D.

This simple corollary of Theorem 1 implies van Oostrom decreasing diagram theorem
by taking T = T (F ,X ). With a different choice of the set T , it will be the basis of our
main Church-Rosser result to come.

Layering. From now on, we assume two signatures FT and FNT satisfying
(A1) FT ∩ FNT = ∅.
and proceed by slicing terms into homogeneous subparts, following definitions in [4].

Definition 7. A term s ∈ T (FT ∪ FNT,X ) is homogeneous if it belongs to T (FT,X ) or
to T (FNT,X ); otherwise it is heterogeneous.

Thanks to assumption (A1), a heterogeneous term can be uniquely decomposed
(w.r.t. Y and ξ introduced in Section 2) into a topmost homogeneous part, its cap, and a
multiset of remaining subterms, its aliens, headed by symbols of the other signature.



Definition 8 (Cap, aliens). Let t ∈ T (FT ∪ FNT,X ). An alien of t is a maximal non-
variable subterm of t whose head does not belong to the signature of t’s head. We use
APos(t) for its set of pairwise disjoint alien positions, A(t) for its list of aliens from
left to right, and CPos(t) = {p ∈ Pos(t) | p 6≥ APos(t)} for its set of cap positions.
We define the cap t and alien substitution γt of t as follows: (i) Pos(t) = CPos(t) ∪
APos(t); (ii) (∀p ∈ CPos(t)), t(p) = t(p); (iii) (∀p ∈ APos(t)), t(p) = ξ(p) and
γt(ξ(p)) = t|p. The rank of t, denoted rk(t), is 1 plus the maximal rank of its aliens.

Fact. Given t ∈ T (FT ∪ FNT,X ), then t = tγt.

Example 1. Let FT = {G}, FNT = {F, 0, 1}, t = F (G(0, 1, 1), G(0, 1, x), G(0, 1, 1)).
Then t has cap F (y1, y2, y3) and aliens G(0, 1, 1) and G(0, 1, x). G(0, 1, 1) has cap
G(y1, y2, y3) and homogeneous aliens 0 and 1, while G(0, 1, x) has cap G(y1, y2, x)
and same set of homogeneous aliens. Hence, the rank of t is 3.

4 From Church-Rosser to Critical Pairs

Definition 9. A rewrite rule l→ r is rank non-increasing iff for all rewrites u→l→r v,
rk(u) ≥ rk(v). A rewrite system is rank non-increasing iff all its rules are.

From now on, we assume we are given two rewrite systems RT and RNT satisfying:
(A2) RT is a terminating rewrite system in T (FT,X );
(A3) RNT is a set of rank non-increasing, left-linear rules f(s)→ g(t) s.t. f, g ∈ FNT,

s, t ∈ T (FT ∪ FNT,X );
(A4) if g → d ∈ RT overlaps l→ r ∈ RNT at p ∈ FPos(l), then l|p ∈ T (FT,X ).

Our goal is to show that RT ∪RNT is Church-Rosser provided its critical pairs have
appropriate decreasing diagrams.

Strategy. Since RT and RNT are both rank non-increasing, by assumption for the latter
and homogeneity assumption of its rules for the former, we shall prove our result by
induction on the rank of terms. To this end, we introduce the set Tn(FT ∪ FNT,X ) of
terms of rank at most n. Since rewriting is rank non-increasing, Tn(FT ∪ FNT,X ) is
closed under diagram rewriting. This is why we adopted this restricted form of decreasing
diagrams rather than the more general form studied in [5].

We say that two terms in Tn(FT ∪ FNT,X ) are n-(RT∪RNT)-convertible (in short, n-
convertible) if their conversion involves terms in Tn(FT ∪ FNT,X ) only. We shall assume
that n-(RT ∪ RNT)-convertible terms are joinable, and show that (n + 1)-(RT ∪ RNT)-
convertible terms are joinable as well by exhibiting decreasing diagrams for all their
local peaks, using Corollary 1.

Since RNT may have non-linear right-hand sides, we classically use parallel rewriting
with RNT rules to enable the existence of decreasing diagrams for ancestor peaks in
case RNT is below RNT. The main difficulty, however, has to do with ancestor peaks
v q
RNT
← u →p

RT
w for which RNT is below RT. Due to non-left-linearity of the rules

in RT, the classical diagram for such peaks, v →→RNT
s →p

RT
t ←←RNT

w, can hardly be
made decreasing in case s →p

RT
t must be a facing step and v →→RNT

s side steps with
labels identical to that of the top RNT-step. A way out is to group them together as a
single facing step from v to t. To this end, we introduce a specific rewriting relation:



Definition 10 (Sub-rewriting). A term u sub-rewrites to v at p ∈ Pos(u) with l → r
in RT, written u→p

RTsub
v if the following conditions hold: (i) FPos(l) ⊆ CPos(u|p);

(ii) u (→≥p·APos(u|p)RT∪RNT
)∗ w = u[lσ]p ; (iii) v = u[rσ]p.

Condition (ii) allows arbitrary rewriting in A(u|p) until an RT-redex is obtained.
Thanks to assumptions (A1–3), these aliens remain aliens along the derivation from u to
w, implying (i). Condition (i) will however be needed later when relaxing assumptions
(A1) and (A3). Note also that the cap of w|p may collapse in the last step, in which case
v|p becomes FNT-headed.

A Hierarchy of Decompositions. Sub-rewriting needs another notion of cap for FT-
headed terms. Let ζn be a bijective mapping from Y ∪X to n-(RT ∪RNT)-convertibility
classes of terms in T (FT ∪ FNT,X ), which is the identity on X . The rank of a term being
at least one, 0-(RT ∪RNT)-convertibility does not identify any two different terms; hence
ζ0 is a bijection from Y ∪ X to T (FT ∪ FNT,X ). Similarly we denote by ζ∞ a bijective
mapping from Y ∪ X to (RT ∪RNT)-convertibility classes, abbreviated as ζ.

Definition 11 (Hat). The hat at rank n of a term t ∈ T (FT ∪ FNT,X ) is the term t̂n

defined as: if t is FNT-headed, t̂n = ζ−1n (t); otherwise, (∀p ∈ CPos(t)) t̂n(p) = t(p)
and (∀p ∈ APos(t)) t̂n(p) = ζ−1n (t|p).

Since n-(RT ∪RNT)-convertibility is an infinite hierarchy of equivalences identifying
more and more terms, given t, t̂n is an infinite sequence of terms, each of them being an
instance of the previous one, which is stable from some index nt. We use t̂ for t̂∞.

Lemma 1. Let t ∈ T (FT ∪ FNT,X ) and m ≥ n ≥ 0. Then t̂ •≥ t̂m •≥ t̂n •≥ t.

The associated variable substitution from t̂n to t̂m is ξn,m, omitting m when infinite.
Note that ξn,m does not actually depend on the term t, but only on the m- and

n-convertibility classes. Also, t̂0 corresponds to the case where identical terms only are
identified by ζ−10 , while t̂ corresponds to the case where any two (RT ∪RNT)-convertible
terms are identified by ζ−1. In the literature, t̂0 is usually called a hat (or a cap!).

Example 2. Let FNT = {F}, FT = {G, 0, 1} and RT = {1→ 0}. Then,
G(F (1, 0, x), F (1, 0, x), 1)→2·1

1→0 G(F (1, 0, x), F (0, 0, x), 1). 0-hats of these terms
areG(y, y, 1) andG(y, y′, 1), respectively. Their 1-hats are the same as their 0-hats, since
their aliens have rank 2, hence cannot be 1-convertible. On the other hand, their (i ≥ 2)-
hats are G(y, y, 1) and G(y, y, 1), since F (1, 0, x) and F (0, 0, x) are 2-convertible.

The following lemmas are standard, with ζt = ζ0|Var(t̂0).

Lemma 2. Let t ∈ T (FT ∪ FNT,X ). Then t = t̂0ζt.

Lemma 3. Let u→p
RT
v, p ∈ CPos(u). Then û0→p

RT
v̂0 and (∀y ∈ Var(v̂0)) ζu(y) =

ζv(y).

Lemma 4. Let u(Λ)∈FT and u→p
RT∪RNT

v at p≥APos(u). Then CPos(u)=CPos(v),
(∀q ∈ CPos(u))u(q) = v(q),APos(u) = APos(v), (∀q ∈ APos(u))u|q→=RT∪RNT

v|q .

Key properties of sub-rewriting are the following:



Lemma 5. Let u be an FT-headed term of rank n+ 1 s.t. u→≥APos(u)RT∪RNT
v. Then, (∀i ≥

n)ûi = v̂i.

Proof. Rules in RNT being FNT-headed, APos(u) = APos(v), and rewriting in aliens
does not change CPos(u). It does not change (i ≥ n)-convertibility either, hence the
statement. ut

Lemma 6. Let u of rank n+1, p ∈ CPos(u), and u→p
RTsub

v. Then, (∀i ≥ n) ûi→p
RT
v̂i.

Proof. By definition of sub-rewriting, we get u(→≥APos(u)RT∪RNT
)∗w→p

l→r∈RT
v, therefore

w|p = lσ for some substitution σ and v = w[rσ]p. Let i ≥ n.
By Lemma 3, ŵ0→p

l→r v̂
0. By repeated applications of Lemma 4, CPos(u) =

CPos(w), (∀q ∈ CPos(u))u(q) = w(q), and A(u) rewrites to A(w); hence aliens
in A(u) are n-convertible iff the corresponding aliens in A(w) are n-convertible. By
definition 11, we get ûn = ŵn.

Putting things together, ûi = ûnξn,i = ŵnξn,i = ŵ0ξ0,nξn,i→ v̂0ξ0,nξn,i = v̂i. ut

Definition 12 (Rewrite root). The root of a rewrite u→p
RTsub

v is the minimal position,
written p̂, such that (∀q : p ≥ q ≥ p̂ )u(q) ∈ FT.

Note that u|p is a subterm of u|p̂. By monotony of rewriting:

Corollary 2. Let u→p
RTsub

v. Then û|p̂→RT
v̂|p̂.

Main Result. We assume from here on that rules are indexed, those in RT by 0, and
those in RNT by (non-zero) natural numbers, making RNT into a disjoint union {Ri}i∈I
where I ⊆ i > 0. Having a strictly smaller index for RT rules is no harm nor necessity.

Our relations, parallel rewriting with RNT and sub-rewriting with RT, are labelled
by triples made of the rank of the rewritten term first, the index of the rule used, and
– approximately – the hat of the considered redex, ordered by the well-founded order
� := (>,>,→+

RT
)lex. More precisely,

u⇒P
Ri>0

v is given label 〈k, i, _〉, where k = max{rk(u|pi)}pi∈P ;

u→q
RTsub

v is given label 〈k, 0, û|q′〉, where k = rk(u|q) and q′ is the root q̂ of q.

The third component of an RNT-rewrite is never used. Decreasing diagrams for critical
pairs need be stable and satisfy a variable condition introduced by Toyama, see also [1]:

Definition 13. The RNT rigid critical peak v←Λ u⇒Qw (resp. rigid critical pair
(v, w)) is naturally decreasing if it has a stable decreasing diagram in which:

(i) step s⇒−Q′s′ facing u⇒ w uses the same rule and satisfies Var(s′|Q′) ⊆ Var(u|Q);
(ii) step t⇒− t′ facing u→ v uses the same rule.

Note the variable condition is automatically satisfied for an overlapping at the root.

Definition 14. The RNT-RT critical peak v←ΛRNT
u→q

RT
w (resp. critical pair (v, w))

is naturally decreasing if it has a stable decreasing diagram whose step t⇒−P t′ facing
u→ v uses the same rule.



Theorem 2 (Church-Rosser unions). A rewrite union RT ∪ RNT satisfying: (A1–4),
RNT-RT critical pairs are naturally decreasing, RNT rigid critical pairs are naturally
decreasing, is Church-Rosser iff its RT critical pairs are joinable in RT.

Proof. While the “only if” direction is trivial, we are going to prove the “if” direction.
Since →RT∪RNT

⊆ →RTsub
∪⇒RNT

and (→RTsub
∪⇒RNT

)∗ = (→RT∪RNT
)∗, RT ∪

RNT is Church-Rosser iff→RTsub
∪⇒RNT

is. By induction on the rank, we therefore show
that every local peak v ( RTsub

←∪⇐RNT
)u (→RTsub

∪⇒RNT
)w, where rk(u) = n+ 1,

enjoys a decreasing diagram, implying confluence on terms of rank n+1 by Corollary 1.
The proof is divided into three parts according to the considered local peak. Each

key case is described by a picture to ease the reading, in which→,→ and→ are used
for plain steps with RT, RTsub and RT ∪RNT, respectively, while→ is used for parallel
(sometimes plain) steps with RNT. Every omitted case is symmetric to some considered
case, or is easily solved by induction in case all rewrites take place in the aliens of u.
1) Consider a local peak v⇐P,〈k,i,_〉

RNT
u⇒Q,〈m,j,_〉

RNT
w. Following [1], we carry out first

the particular case of a root peak, for which a rule l→ r ∈ Ri applies at the root of u
(a) Root case. Although our labelling technique is different from [1], with ranks playing
a prominent role here, the proof can be adapted without difficulty, as described in Fig. 1.
Let Q1 := {q ∈ Q | q ∈ FPos(l)}. We first split the parallel rewrite from u to w into
two successive parallel steps, at positions in Q1 first, then at positions in Q2 = Q \Q1.
Note that the peak is specialized into ancestor peak when Q1 = ∅. The inner part of the
figure uses the fact that l unifies at Q1 with some RNT rule, yielding a rigid critical peak
(v′, u′, w′) of which the peak (v, u, w′σ) is a σ-instance. By assumption, (v′, w′) has
a stable diagram which is instantiated by σ in the figure. Since Q1 ∪Q2 are pairwise
disjoint positions and Q2 > FPos(w′), by left-linearity of RNT, w′σ⇒Q2

Rj
w′σ′ = w.

Now, we can push that parallel rewrite from w′σ to s′σ as indicated, using stability and
monotony of rewriting, thereby making ancestor redexes commute.

Finally, Toyama’s variable condition ensures that Q′1 and Q′2 are disjoint sets of
positions; hence sσ rewrites to s′σ′ in one parallel step with the same j-rule as u⇒ w.
The obtained diagram is decreasing as a consequence of stability of the rigid critical pair
diagram and rank non-increasingness of rewrites.
(b) For the general case, we proceed again as in [1]. For every position p ∈ min(P ∪Q),
the peak v⇐P,〈k,i,_〉

RNT
u⇒Q,〈m,j,_〉

RNT
w induces a root-peak v|p⇐P ′,〈k′,i,_〉

RNT
u|p⇒Q′,〈m′,j,_〉

RNT

w|p. As just shown, root-peaks have decreasing diagrams; hence, for each p, we have
a decreasing diagram between v|p and w|p. Notice that in the decreasing diagram we
have shown, each facing step – if it exists – uses the same rule as that one it faces. Since
positions in min(P ∪Q) are pairwise disjoint, these decreasing diagrams combine into
a single decreasing diagram: in particular, the facing steps⇒〈m

′,j,_〉
RNT

(resp.⇐〈k
′,i,_〉

RNT
)

yield the facing step⇒〈m,j,_〉RNT
(resp.⇐〈k,i,_〉RNT

).

2) Consider a local peak v p,〈k,0,û|p̂〉RTsub
←u→q,〈m,0,û|q̂〉

RTsub
w. We denote by l→ r and g → d

the RT-rules applied from u to v at p and u to w at q, respectively. We discuss cases
depending on p, p̂, q, q̂, instead of only p, q as usual.
(a) Disjoint case: p#q. The usual commutation lemma yields v→q,〈m,0,v̂|q̂〉

RTsub
t
p,〈k,0,ŵ|p̂〉
RTsub

←
w for some t. It is decreasing easily by Corollary 2 or Lemma 5, decided by p̂, q̂.
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Fig. 2. RNT above RT critical peak

(b) Root ancestor case: q̂ > p. By Definition 12, m < k; hence q ≥ APos(u|p̂). This
case is thus similar to the RT above RNT ancestor case considered later, pictured at Fig. 4.

(c) Ancestor case: q̂ = p̂; hence k = m, with q > p · FPos(l). This is the usual ancestor
case, within a given layer. The proof is depicted in Fig. 3, simplified by taking p = Λ.

Using Definition 8 and Lemma 2, then, by Definition 10, the rewrite from u = u γu,

to v = v̂0ζv (resp. w = ŵ0ζw) factors out through v′ = v̂′
0
ζv′ (resp., w′ = ŵ′

0
ζw′).

By Lemma 3, ζv and ζv′ coincide on Var(v̂′
0
), and so do ζw and ζw′ on Var(ŵ′

0
). By

Lemma 4, A(u) rewrites to both A(v′) and A(w′), hence each alien in A(v) and A(w)
originates from some in A(u). It follows that the aliens in A(v) and A(w) originating
from the same one in A(u) are n-convertible. For each y ∈ Var(v̂n) ∪ Var(ŵn), we
choose all aliens of v and w which belong to the n-convertibility class ζn(y), and apply
induction hypothesis to get a common reduct ty of them, mapping y to ty to construct the
substitution ζv↓nw. Letting vn be the term v̂nζv↓nw, v rewrites to vn. Similarly, w rewrites
to wn. This technique, which we call equalization, of equalizing all n-convertible aliens
to construct ζv↓nw is somewhat crucial in our proof. The last three steps follow from the
inner ancestor diagram between hats of u, v, w, which upper part follows from Lemma 6
and bottom part from the fact that q > p ·FPos(l), resulting in an ancestor peak between
homogeneous terms. Such an ancestor peak has an easy stable decreasing diagram, which
bottom part can be therefore lifted to the outside diagram. Checking that the obtained
diagram is decreasing is routine.

(d) Critical case: q̂ = p̂; hence k = m, with q ∈ FPos(l). This is the usual critical case,
happening necessarily within same layer. The proof works as in Case (2c), except that
the inner diagram is now of a critical peak. Since the RT critical peak has a joinability
diagram by assumption, thanks to stability of rewriting, it can be lifted to the outer
diagram, yielding a decreasing diagram for the starting peak.

3) Consider a local peak v p,〈k,0,û|p̂〉RTsub
←u⇒Q,〈m,j,_〉

RNT
w. There are three cases.

(a) Disjoint case: p#Q. We get the usual commuting diagram with two facing steps.
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(b) Ancestor case. There are two sub-cases: (α) p > Q; hence m > k. Since RNT is left-
linear, then v⇒〈m

′,j,_〉
RNT

t←←〈k,0,?〉RTsub
w for some t and m′ ≤ m, being a clearly decreasing

diagram. (β) p < Q. This case is a little bit more delicate, since the RT-rule l → r
used at position p may be non-left-linear. We use equalization as for Case (2c), depicted
in Fig. 4 in the particular case where p = Λ for simplicity. The main difference with
Case (2c) is that the RNT-step must occur in an alien; hence ŵn = ûn, which somewhat
simplifies the figure.
(c) Critical case. By assumption (A1-3), Q = {qi}i and p ∈ qi · FPos(l) for some qi.
The proof is depicted at Fig. 2 with Q = {Λ} for simplicity, implying a unique redex for
that parallel rewrite at the top. Note that the RT- and RNT-redexes must have different
ranks, hence m > k.

By assumption, u = lθ⇒Λl→r rθ = w and u(→≥APos(u|p)RT∪RNT
)∗u[gθ]p→p

g→d v for
some substitution θ (assuming l and g are renamed apart). The key of the proof is the
fact that u[gθ]p = lθ′ for some substitution θ′ such that θ→→ θ′. By assumption (A4), if
o is a variable position in g and p · o ∈ FPos(l), then l|p·o ∈ T (FT,X ). This indeed
ensures that the sub-rewrites from u to v cannot occur at positions in FPos(l), therefore
ensuring the fact u[gθ]p = lθ′ since l is linear. It follows that lθ′ rewrites to rθ′ at the
root, and to v at p ∈ FPos(l), which proves the existence of a critical pair of RT inside
RNT. The rest of the proof is routine, the lifting part being ensured by stability.

To conclude, we simply remark that any two (RT ∪ RNT)-convertible terms are n-
(RT∪RNT)-convertible for some n possibly strictly larger than their respective ranks. ut

5 Relaxing Assumptions

One must understand that there is no room for relaxing the conditions on RT and little
for RNT. Left-linearity is mandatory, rank non-increasingness as well, and the fact that
left-hand sides are headed by symbols which do not belong to FT serves avoiding critical
pairs of RNT inside RT. This does not forbid left-hand sides to stretch over possibly
several layers, making our result very different from known modularity results. Therefore,



the only potential relaxations apply to the right-hand sides of RNT-rules, which need not
be headed by FNT-symbols, as we assumed to make the proof more comfortable. We will
allow them to be headed by some symbols from FT.

From now on, we replace our assumption (A1) by the following: Let FC = FT ∩FNT

be the set of constructor symbols s.t. no rule inRT∪RNT can have an FC-headed left-hand
side. We use FT\C and FNT\C as shorthand for FT \ FC and FNT \ FC, respectively.

Terms in T (FC,X ) are constructor terms, trivial ones if in X . The definitions of
rank, cap and alien for terms headed by FT\C- or FNT\C-symbols are as before with
respect to FT and FNT, respectively. An FC-headed term has its cap and aliens defined
with respect to FC, and its rank is the maximal rank of its aliens, which are headed
in FT\C or FNT\C. The rank of a homogeneous constructor term is therefore 0, which
explains why we started with rank 1 before.

Definition 15. We introduce names for three important categories of terms:
– type 1: FNT\C-headed terms have a variable as cap and themselves as alien;
– type 2: terms u whose cap u ∈ T (FC,Y) and aliens are all FNT\C-headed;
– type 3: FT\C-headed terms whose cap u ∈ T (FT,X ∪Y), and aliens are FNT\C-headed.

We also modify our assumption (A3), which becomes:
(A3) RNT is a left-linear, rank non-increasing rewrite system whose rules have the form
f(l)→ r, f ∈ FNT\C, l ∈ T (FT ∪ FNT,X ), r is a term of type 2.
Previous assumption (A3) is a particular case of the new one when r has type 1 ⊆ type 2.

The proof structure of Theorem 2 depends on layering and labelling. Allowing
constructor lifting rules in RNT invalidates Lemmas 5, 6 used to control the label’s third
component of RT-sub-rewriting steps, since RNT-rewrites in aliens may now modify the
cap of an FT-headed term. Our strategy is to modify the notion of hat and get analogs of
Lemmas 5, 6, making the whole proof work by changing the third component of the label
of an RT-sub-rewriting step. Following [4], the idea is to estimate the constructors which
can pop up at the head of a given FNT\C-headed term, by rewriting it until stabilization.

From here on, we assume the Church-Rosser property for n-convertible terms of
rank up to n. Being fixed throughout this section, the rank n will often be left implicit.

Finite Constructor Lifting.

Definition 16. A derivation s→→ u, where s : type 1 and u : type 2 \ type 1, is said
to be constructor lifting. RT ∪RNT is a finite constructor lifting rewrite system if (∀s :
type 1)∃ns ≥ 0 s.t. for all constructor lifting derivation s→→ u, |u| ≤ ns.

Definition 17 (Stable terms). A term whose multiset M of aliens only contains FNT\C-
headed terms of rank at most n, is stable if M is stable. A multiset M of FNT\C-headed
terms of rank at most n is stable if (i) reducts of terms in M are FNT\C-headed; (ii) any
two convertible terms in M are equal.

Example 3. Let RT = {G(x, x, y) → y,G(x, y, x) → y,G(y, x, x) → y, 1 → 0},
RNT = {F (0, 1, x) → F (x, x, x), F (1, 0, x) → F (x, x, x), F (0, 0, x) → F (x, x, x)}.
Then, u = G(F (0, 1, G(0, 0, 0)), F (0, 0, 0), F (1, 0, 0)) is not stable since its aliens are
all convertible but different. But u rewrites to stableG(F (0, 0, 0), F (0, 0, 0), F (0, 0, 0)).



From rank non-increasingness and the Church-Rosser assumption, we get:

Lemma 7. Let u a stable term of type 1 s.t. u→→ v. Then v is a stable term of type 1.

Lemma 8. Let u a stable term whose aliens are of rank up to n. Then, (∀i ≤ n) ûi = û0.

Lemma 9 (Stabilization). A term s of type 1, 2, 3 whose aliens have rank up to n has
a stable term t such that t̂n = ŝn θ for some constructor substitution θ which depends
only on the aliens of s.

Proof. Let M be a multiset of type 1 terms, and u ∈M . By assumption (A3), the set of
constructor positions on top can only increase along a derivation from u. Being bounded,
it has a maximum. Let v be such a reduct. If v is of type 1, then it is stable. Otherwise,
we still needto equalize its convertible aliens, using the Church-Rosser property of terms
of rank up to n, and we are done. Applying this procedure to all terms in M , we are left
equalizing as above the convertible stable terms which are stable by Lemma 7. Taking
now a type 2/3 term, we apply the procedure to its multiset of aliens, all of which have
type 1. The relationship between the hats of s and t is clear: θ is generated by constructor
lifting, which is the same for equivalent aliens, hence for equal aliens. ut
Lemma 10 (Structure). Let s be a term of type 1,2,3 whose aliens have rank up to n,
and u, v be two stable terms obtained from s by stabilization. Then, (∀i ≤ n) ûi = v̂i.

Proof. Let p ∈ APos(s). By stabilization u|p and v|p are convertible stable terms of
type 2. By Church-Rosser assumption u|p→→ t←← v|p. Since constructors cannot be
rewritten, u|p and v|p must have the same constructor cap, thus u, v have the same cap.
Since they are stable, two convertible aliens of u (resp., v) must be equal, hence u, v
have the same 0-hat. We conclude by Lemma 8. ut
Definition 18 (Estimated hat). Let u be a term of type 1,2,3 whose aliens have rank
up to n and v a stable term obtained from u by stabilization. The estimated hat

4n
uv of u

w.r.t. v is the term v̂n.

By Lemma 10, the choice of v has no impact on
4n
uv , hence the short notation

4
u .

Lemma 11 (Alien rewriting). Let u, v be terms of type 3 whose aliens are of rank up
to n, such that u→≥APos(u)RT∪RNT

v. Then
4
u=
4
v .

Proof. Follows from Lemmas 9 and 10: any stable term for v is a stable term for u. ut
Lemma 12. Let u be a term of type 3 whose aliens have rank up to n, s.t. u→p

RTsub
v

with p ∈ CPos(u). Then
4
u →RT

4
v .

Proof. By definition of sub-rewriting u→→≥APos(u) w→p
RT
v. By Lemma 11,

4
u=
4
w. By

Lemma 6, ŵn→p
RT
v̂n, and aliens of v are aliens of w. Let now w′, v′ be stable terms

obtained from w, v by stabilization, hence ŵ′
n
= ŵnθw and v̂′

n
= v̂nθv by Lemma 9,

where θv, θw depend only on the aliens of v, w, respectively; hence θv and θw coincide
on Var(v̂n) ⊆ Var(ŵn) and v̂′

n
= v̂nθw. We conclude by stability of rewriting and

definition of estimated hats. ut
Theorem 3. Theorem 2 holds with finite constructor lifting.

Proof. Same as for Theorem 2, with the exception of the crucial sub-rewriting cases,
which are marginally modified by using stabilization instead of equalization of terms. ut



Infinite Constructor Lifting. It is easy to see that the only difficult case in the main
proof is the elimination of sub-rewriting critical peaks. Consider the critical peak
v Λl→r← v′←←≥APos(u)RT∪RNT

u→→≥APos(u)RT∪RNT
w′→p

g→d w, p∈FPos(l) and l→ r, g → d∈RT.
To obtain a term instance of l whose subterm at position p is an instance of g, v′ and w′

must be equalized into a term s whose hat rewrites at Λ with l→ r and at p with g → d
to the hats of the corresponding equalizations of v and w. The heart of the problem
lies therefore in equalization which constructs here a solution in the signature of FT to
FT-unification problems associated with critical pairs by rewriting in RT ∪RNT. Hence,

Theorem 4. With new assumption (A3), Theorem 2 holds if RT critical pairs modulo
RT ∪RNT are joinable in RT.

Because sub-rewriting can only equalize aliens, RT ∪RNT-unification sole purpose is
to solve occurs-check failures that occur in the plain unification problem l|p = g.

Definition 19. Let l → r and g → d be two rules in RT s.t. g Prolog unifies with l at
position p ∈ FPos(l). Let

∧
i xi = si ∧

∧
j yj = tj be a dag solved form returned by

Prolog unification, where
∧
i xi = si is the finite substitution part, and

∧
j yj = tj the

occurs-check part. Let now σ be the substitution {xi 7→ si}i and τ = {yj 7→ tj}j . Then
〈rσ, lσ[dσ]p〉 is a Prolog critical pair of RT, constrained by the occurs checks yj = tj .

If the critical pairs obtained by Prolog unification are joinable in RT constrained by
the occurs-check equations, then the Church-Rosser property is satisfied:

Conjecture 1. With new assumption(A3), Theorem 2 holds if RT critical pairs are join-
able in RT and Prolog critical pairs of RT are joinable in RT modulo their occurs checks.
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Example 4 (Variation of Huet’s exam-
ple [3]). Let

RT = { f(c(x), x)→ a(x),
f(y, c(y))→ b(y),
a(x)→ e(x),
b(y)→ e(c(y)) },

RNT = { g → c(g) }.
Then the unification problem f(c(x), x) =
f(y, c(y)) results in an empty substitution
and the occurs-check equations
τ = {x = c(y), y = c(x)}. The crit-
ical pair 〈a(x), b(y)〉 is then joinable by
a(x)→ e(x) = e(c(y))← b(y), as exem-
plified in the figure, where θ1 = {x 7→
cn(g)}, θ2 = {y 7→ cm(g)}.

Fig. 5. Variation of Huet’s example

The idea is shown in Fig. 5. Note that the red bottom steps operate on aliens, hence
have a small rank, making the whole joinability diagram decreasing. We have no clear
formulation of the converse yet. Confluence is indeed satisfied if the occurs check is



unsolvable, that is, when there exists no FNT\C-headed substitution θ of the yj’s such that
yjθ ←←→→RT∪RNT tjθ. We suspect this condition can be reinforced as yjθ→→RT∪RNT

tjθ,
possibly leading to interesting sufficient conditions for unsolvability of occurs checks.

6 Related Work

In [5], it is shown that confluence can be characterized by the existence of decreasing
diagrams for the critical pairs inRT∪RNT provided all rules are linear (an assumption that
was forgotten [but used] for RT, as pointed out to the third author by Aart Middeldorp).
This is a particular case of a recent result of Felgenhauer [1] showing that RNT is
confluent if rules are left-linear and parallel critical pairs have decreasing diagrams with
respect to rule indexes used as labels. When FT is empty, all terms have rank 1, hence
our labels for non-linear rules reduce to his. A difference is that we assume RNT-rules to
be non-collapsing. One could argue that RNT collapsing rules can be moved to RT, but
this answer is not satisfactory for two different reasons: the resulting change of labels
may affect the search for decreasing diagrams, and it can also impact condition (A1).
A second difference is that we use rigid parallel rewriting, which yields exponentially
fewer parallel critical pairs than when allowing parallel steps with different rules of a
given index (which we could have done too). The price to pay – having less flexibility
for finding decreasing diagrams – should not make a difference in practice.

A very recent result of Klein and Hirokawa, generalizing [2], extends Knuth and
Bendix’s critical pair test to relatively terminating systems [6]. It is an extension in
the sense that it boils down to it when RNT = ∅. Otherwise, it requires computing
critical pairs of RT modulo a confluent RNT, hence modifies the critical pair test for the
subset of terminating rules. Further, it requires proving relative termination (termination
of→→RNT

→RT
→→RNT

), complete unification modulo RNT, and absence of critical pairs
between RT and RNT, all tests implemented in CSI[http://dx.doi.org/10.1007/978-3-642-
22438-6_38] – to our surprise! This is used to detect that Huet’s example is non-confluent.

Theorem 2 can be seen as a modularity theorem to some extent, since rewriting a
term in T (FT,X ) can only involve RT rules. But left-hand sides of RNT rules may have
FT-symbols. That is why we need to compute critical pairs of RT inside RNT. Our proof
uses many concepts and techniques inherited from previous work on modularity, such as
the decomposition of terms (caps and aliens, hats and estimated caps [10]). We have not
tried using van Oostrom’s notion of cap, in which aliens must have maximal rank [13],
nor the method developed by Klein and Hirokawa for studying the Church-Rosser
property of disjoint rewrite relations on terms [6], which we could do by considering
cap rewriting with RT-rules and alien rewriting with all rules. This remains to be done.

7 Conclusion
Decreasing diagrams opened the way for generalizing Knuth and Bendix’s critical-pair
test for confluence to non-terminating systems, re-igniting these questions. Our results
answer important open questions, in particular by allowing both non-left-linear and
non-terminating rules. While combining many existing as well as new techniques, our
proof has proved quite robust. Two technical questions have been left open: having
collapsing rules in RNT, following [1], and eliminating assumption (A4).



A major theoretical question is whether layering requires assumption (A1). Our proof
is based on two key properties, layering and the absence of overlaps of RNT inside RT.
Currently, (A1) serves both purposes. The question is however open whether the latter
property is sufficient to define some form of layering, as we suspect.

We end up with our long term goal, applying this technique in practice. The need for
showing the Church-Rosser property of mixed terminating and non-terminating rewrite
computations arises in at least two areas, first-order and higher-order. The development
of sophisticated type theories with complex elimination rules requires proving Church-
Rosser before strong-normalization and type preservation, directly on untyped terms.
Unfortunately, besides being collapsing, β-reduction is also rank-increasing in the
presence of another signature. We therefore need to develop another notion of rank that
would apply to pure λ-calculus, a question related to the previous one.

Transformation valuation is a static analysis that tries to verify that an optimizer is
semantics preserving by constructing a value graph for both programs and showing their
equivalence by rewriting techniques [11]. Here, the user has a good feeling of which
subset of rules is a candidate for RNT. Where this is not the case, work is of course
needed to find good splits automatically. Implementers are invited to lead the way.
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